Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
Add more filters

Publication year range
1.
Cell ; 187(16): 4213-4230.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013471

ABSTRACT

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.


Subject(s)
Cryoelectron Microscopy , Spumavirus , Virus Assembly , Virus Internalization , Spumavirus/genetics , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , Evolution, Molecular , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Models, Molecular
2.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36182704

ABSTRACT

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Subject(s)
Arterivirus , Hemorrhagic Fevers, Viral , Animals , Arterivirus/physiology , Hemorrhagic Fevers, Viral/veterinary , Hemorrhagic Fevers, Viral/virology , Humans , Macaca , Primates , Viral Zoonoses , Virus Internalization , Virus Replication
3.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32359424

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Bayes Theorem , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Epidemiological Monitoring , Humans , Likelihood Functions , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Travel
4.
Mol Cell ; 84(14): 2747-2764.e7, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059371

ABSTRACT

A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.


Subject(s)
COVID-19 , Cryoelectron Microscopy , Mutation , Protein Conformation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Humans , COVID-19/virology , COVID-19/immunology , Protein Binding , Immune Evasion , Models, Molecular , Protein Domains , Binding Sites
5.
Immunity ; 50(2): 520-532.e3, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30709739

ABSTRACT

Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immune Evasion/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Epitope Mapping/methods , Epitopes/genetics , Epitopes/metabolism , HIV Antibodies/genetics , HIV Antibodies/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Humans , Immune Evasion/genetics , Mutation , Neutralization Tests , Protein Binding , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
6.
Trends Biochem Sci ; 47(1): 3-5, 2022 01.
Article in English | MEDLINE | ID: mdl-34657789

ABSTRACT

Giant viruses have extravagantly large double-stranded (ds)DNA genomes that are packaged into exceedingly complex virions. In two recent papers, Liu et al. and Valencia-Sánchez, Abini-Agbomson et al. show that some giant viruses encode unique histone doublets, which form nucleosomes remarkably similar to those found across the eukaryotic domain of life.


Subject(s)
Genome, Viral , Giant Viruses , DNA , DNA Viruses/genetics , Giant Viruses/genetics , Phylogeny , Virion
7.
Proc Natl Acad Sci U S A ; 120(30): e2303578120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459528

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans has been monitored at an unprecedented level due to the public health crisis, yet the stochastic dynamics underlying such a process is dubious. Here, considering the number of acquired mutations as the displacement of the viral particle from the origin, we performed biostatistical analyses from numerous whole genome sequences on the basis of a time-dependent probabilistic mathematical model. We showed that a model with a constant variant-dependent evolution rate and nonlinear mutational variance with time (i.e., anomalous diffusion) explained the SARS-CoV-2 evolutionary motion in humans during the first 120 wk of the pandemic in the United Kingdom. In particular, we found subdiffusion patterns for the Primal, Alpha, and Omicron variants but a weak superdiffusion pattern for the Delta variant. Our findings indicate that non-Brownian evolutionary motions occur in nature, thereby providing insight for viral phylodynamics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Diffusion , Models, Statistical , Evolution, Molecular
8.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39101626

ABSTRACT

Retroviruses are an ancient viral family that have globally coevolved with vertebrates and impacted their evolution. In Australia, a continent that has been geographically isolated for millions of years, little is known about retroviruses in wildlife, despite the devastating impacts of a retrovirus on endangered koala populations. We therefore sought to identify and characterize Australian retroviruses through reconstruction of endogenous retroviruses from marsupial genomes, in particular the Tasmanian devil due to its high cancer incidence. We screened 19 marsupial genomes and identified over 80,000 endogenous retrovirus fragments which we classified into eight retrovirus clades. The retroviruses were similar to either Betaretrovirus (5/8) or Gammaretrovirus (3/8) retroviruses, but formed distinct phylogenetic clades compared to extant retroviruses. One of the clades (MEBrv 3) lost an envelope but retained retrotranspositional activity, subsequently amplifying throughout all Dasyuridae genomes. Overall, we provide insights into Australian retrovirus evolution and identify a highly active endogenous retrovirus within Dasyuridae genomes.


Subject(s)
Endogenous Retroviruses , Genome , Marsupialia , Phylogeny , Animals , Endogenous Retroviruses/genetics , Marsupialia/virology , Australia , Evolution, Molecular
9.
J Virol ; 98(8): e0065724, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39007615

ABSTRACT

RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.


Subject(s)
Distemper Virus, Canine , Distemper , Ferrets , Genetic Variation , Mutation , Animals , Distemper Virus, Canine/genetics , Distemper Virus, Canine/physiology , Distemper/virology , Vero Cells , Chlorocebus aethiops , Genome, Viral , Adaptation, Physiological/genetics , Virus Replication , Adaptation, Biological , Dogs
10.
Proc Natl Acad Sci U S A ; 119(19): e2108815119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35500121

ABSTRACT

The prevailing abundance of full-length HIV type 1 (HIV-1) genome sequences provides an opportunity to revisit the standard model of HIV-1 group M (HIV-1/M) diversity that clusters genomes into largely nonrecombinant subtypes, which is not consistent with recent evidence of deep recombinant histories for simian immunodeficiency virus (SIV) and other HIV-1 groups. Here we develop an unsupervised nonparametric clustering approach, which does not rely on predefined nonrecombinant genomes, by adapting a community detection method developed for dynamic social network analysis. We show that this method (dynamic stochastic block model [DSBM]) attains a significantly lower mean error rate in detecting recombinant breakpoints in simulated data (quasibinomial generalized linear model (GLM), P<8×10−8), compared to other reference-free recombination detection programs (genetic algorithm for recombination detection [GARD], recombination detection program 4 [RDP4], and RDP5). When this method was applied to a representative sample of n = 525 actual HIV-1 genomes, we determined k = 29 as the optimal number of DSBM clusters and used change-point detection to estimate that at least 95% of these genomes are recombinant. Further, we identified both known and undocumented recombination hotspots in the HIV-1 genome and evidence of intersubtype recombination in HIV-1 subtype reference genomes. We propose that clusters generated by DSBM can provide an informative framework for HIV-1 classification.


Subject(s)
HIV-1 , HIV-1/genetics , Recombination, Genetic
11.
Biol Proced Online ; 26(1): 11, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664647

ABSTRACT

BACKGROUND: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS: The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS: PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION: Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.

12.
J Virol ; 97(12): e0136923, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38038429

ABSTRACT

IMPORTANCE: Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Nonstructural Proteins , Animals , Humans , Mice , Amino Acid Substitution , Camelus , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Viral Nonstructural Proteins/genetics
13.
J Virol ; 97(12): e0171923, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032199

ABSTRACT

IMPORTANCE: All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.


Subject(s)
Caliciviridae Infections , Capsid Proteins , Norovirus , Animals , Mice , Amino Acid Substitution , Caliciviridae Infections/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Immune Evasion , Norovirus/metabolism , Viral Core Proteins/metabolism
14.
Curr Top Microbiol Immunol ; 439: 139-166, 2023.
Article in English | MEDLINE | ID: mdl-36592245

ABSTRACT

Mutation, recombination and pseudo-recombination are the major forces driving the evolution of viruses by the generation of variants upon which natural selection, genetic drift and gene flow can act to shape the genetic structure of viral populations. Recombination between related virus genomes co-infecting the same cell usually occurs via template swapping during the replication process and produces a chimeric genome. The family Geminiviridae shows the highest evolutionary success among plant virus families, and the common presence of recombination signatures in their genomes reveals a key role in their evolution. This review describes the general characteristics of members of the family Geminiviridae and associated DNA satellites, as well as the extensive occurrence of recombination at all taxonomic levels, from strain to family. The review also presents an overview of the recombination patterns observed in nature that provide some clues regarding the mechanisms involved in the generation and emergence of recombinant genomes. Moreover, the results of experimental evolution studies that support some of the conclusions obtained in descriptive or in silico works are summarized. Finally, the review uses a number of case studies to illustrate those recombination events with evolutionary and pathological implications as well as recombination events in which DNA satellites are involved.


Subject(s)
Geminiviridae , Geminiviridae/genetics , Evolution, Molecular , Mutation , Genome, Viral , Recombination, Genetic , DNA , DNA, Viral/genetics , Phylogeny
15.
Curr Top Microbiol Immunol ; 439: 1-94, 2023.
Article in English | MEDLINE | ID: mdl-36592242

ABSTRACT

The landscape paradigm is revisited in the light of evolution in simple systems. A brief overview of different classes of fitness landscapes is followed by a more detailed discussion of the RNA model, which is currently the only evolutionary model that allows for a comprehensive molecular analysis of a fitness landscape. Neutral networks of genotypes are indispensable for the success of evolution. Important insights into the evolutionary mechanism are gained by considering the topology of sequence and shape spaces. The dynamic concept of molecular quasispecies is viewed in the light of the landscape paradigm. The distribution of fitness values in state space is mirrored by the population structures of mutant distributions. Two classes of thresholds for replication error or mutations are important: (i) the-conventional-genotypic error threshold, which separates ordered replication from random drift on neutral networks, and (ii) a phenotypic error threshold above which the molecular phenotype is lost. Empirical landscapes are reviewed and finally, the implications of the landscape concept for virus evolution are discussed.


Subject(s)
Models, Genetic , Viruses , Genotype , Phenotype , Mutation , RNA/chemistry , RNA/genetics , Viruses/genetics , Evolution, Molecular , Genetic Fitness , Biological Evolution
16.
Bull Math Biol ; 86(8): 88, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877355

ABSTRACT

Models are often employed to integrate knowledge about epidemics across scales and simulate disease dynamics. While these approaches have played a central role in studying the mechanics underlying epidemics, we lack ways to reliably predict how the relationship between virulence (the harm to hosts caused by an infection) and transmission will evolve in certain virus-host contexts. In this study, we invoke evolutionary invasion analysis-a method used to identify the evolution of uninvadable strategies in dynamical systems-to examine how the virulence-transmission dichotomy can evolve in models of virus infections defined by different natural histories. We reveal peculiar patterns of virulence evolution between epidemics with different disease natural histories (SARS-CoV-2 and hepatitis C virus). We discuss the findings with regards to the public health implications of predicting virus evolution, and in broader theoretical canon involving virulence evolution in host-parasite systems.


Subject(s)
Biological Evolution , COVID-19 , Epidemics , Hepacivirus , Mathematical Concepts , Models, Biological , SARS-CoV-2 , Virulence , Humans , Epidemics/statistics & numerical data , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , COVID-19/epidemiology , Hepacivirus/pathogenicity , Hepacivirus/genetics , Hepatitis C/virology , Hepatitis C/transmission , Hepatitis C/epidemiology , Host-Pathogen Interactions , Epidemiological Models
17.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526695

ABSTRACT

Environmental conditions are an important factor driving pathogens' evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, with the magnitude of such benefit being a selectable trait.


Subject(s)
Arabidopsis/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Viruses/genetics , Symbiosis/genetics , Adaptation, Physiological , Arabidopsis/virology , Brassica napus/genetics , Brassica napus/virology , Droughts , Evolution, Molecular , Gene Expression Regulation, Plant/genetics , Plant Diseases/virology , Plant Growth Regulators/genetics , Plant Viruses/pathogenicity , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Potyvirus/genetics , Potyvirus/pathogenicity , Stress, Physiological/genetics
18.
Proc Biol Sci ; 290(2009): 20231965, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876196

ABSTRACT

Understanding the ecological and evolutionary processes that drive host-pathogen interactions is critical for combating epidemics and conserving species. The Varroa destructor mite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despite Varroa infestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host-pathogen interactions in honeybees.


Subject(s)
RNA Viruses , Varroidae , Bees , Animals , Virulence , RNA Viruses/genetics , Host-Pathogen Interactions
19.
J Virol ; 96(9): e0031822, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35435725

ABSTRACT

In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.


Subject(s)
Colletotrichum , Fungal Viruses , RNA Viruses , Colletotrichum/pathogenicity , Colletotrichum/virology , Fungal Viruses/classification , Fungal Viruses/genetics , Genome, Viral , Open Reading Frames , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase
20.
J Virol ; 96(13): e0040622, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35658529

ABSTRACT

The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.


Subject(s)
HIV Envelope Protein gp41 , HIV-1 , Alanine/genetics , Antibodies, Monoclonal , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL