ABSTRACT
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease in pigs. In Taiwan, the emerging genotype 2.1 (G2.1) CSFV caused sporadic outbreaks in 1994 and replaced the previous G3.4 CSFV in the field. The shift of CSFV genotypes to G2 CSFV was also observed in several CSFV-affected countries. The present study aimed to explore the mechanism of the genotype shift of CSFV. Two groups of specific pathogen-free (SPF) pigs were first inoculated with either G2.1 or G3.4 CSFV (single-inoculated group) and housed together with naïve SPF pigs (cohabitating group). The results showed that peak viremia, viral loads in blood and tissues, and viral shedding of G2.1 were consistently higher than those of G3.4 CSFV in single-inoculated and cohabitating pigs. The phenomenon of superinfection exclusion (SIE), characterized by the prevention of secondary infection by a primary infection, was readily observed in CSFV single-inoculated pigs. Interestingly, coinfection of both genotypes of CSFV was observed in 3 out of 4 cohabitating pigs, while only one pig was infected with G2.1 CSFV alone. These findings suggest that the genetic shift in CSFV in the field may be in part the consequence of SIE.
ABSTRACT
In Taiwan, the prevalent CSFV population has shifted from the historical genotype 3.4 (94.4 strain) to the newly invading genotype 2.1 (TD/96 strain) since 1996. This study analyzed the competition between these two virus genotypes in dual infection pigs with equal and different virus populations and with maternally derived neutralizing antibodies induced by a third genotype of modified live vaccine (MLV), to simulate that occurring in natural situations in the field. Experimentally, under various dual infection conditions, with or without the presence of maternal antibodies, with various specimens from blood, oral and fecal swabs, and internal organs at various time points, the TD/96 had consistently 1.51-3.08 log higher loads than those of 94.4. A second passage of competition in the same animals further widened the lead of TD/96 as indicated by viral loads. The maternally derived antibodies provided partial protection to both wild type CSFVs and was correlated with lower clinical scores, febrile reaction, and animal mortality. In the presence of maternal antibodies, pigs could be infected by both wild type CSFVs, with TD/96 dominating. These findings partially explain the CSFV shift observed, furthering our understanding of CSFV pathogenesis in the field, and are helpful for the control of CSF.
ABSTRACT
Classical swine fever (CSF), an economically important and highly contagious disease of pigs, is caused by classical swine fever virus (CSFV). In Taiwan, CSFVs from field outbreaks belong to two distinct genotypes. The historical genotype 3.4 dominated from the 1920s to 1996, and since 1996, the newly invading genotype 2.1 has dominated. To explain the phenomenon of this virus shift in the field, representative viruses belonging to genotypes 2.1 and 3.4 were either inoculated alone (single infection) or co-inoculated (co-infection), both in vivo and in vitro, to compare the virus replication and pathogenesis. In pigs co-infected with the genotype 2.1 TD/96/TWN strain and the genotype 3.4 94.4/IL/94/TWN strain, the newly invading genotype 2.1 was detected earlier in the blood, oral fluid, and feces, and the viral loads were consistently and significantly higher than that of the historical genotype 3.4. In cell cultures, the ratio of secreted virus to cell-associated virus of the genotype 2.1 strain was higher than that of the genotype 3.4 strain. This study is the first to demonstrate a possible explanation of virus shift in the field, wherein the newly invading genotype 2.1 replicates more efficiently than did genotype 3.4 and outcompetes the replication and pathogenicity of genotype 3.4 in pigs in the field.