Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
New Phytol ; 241(3): 1000-1006, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37936346

ABSTRACT

We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.


Subject(s)
Bryophyta , Marchantia , Animals , Marchantia/genetics , Genomic Imprinting , Life Cycle Stages
2.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37984066

ABSTRACT

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Subject(s)
Aquaporins , Avicennia , Avicennia/metabolism , Ecosystem , Water/metabolism , Aquaporins/genetics , Aquaporins/metabolism
3.
J Integr Plant Biol ; 66(4): 824-843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372488

ABSTRACT

Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.


Subject(s)
Arecaceae , Arecaceae/genetics , Genomics
4.
J Integr Plant Biol ; 66(1): 36-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108123

ABSTRACT

Dormancy is an adaptive trait which prevents seeds from germinating under unfavorable environmental conditions. Seeds with weak dormancy undergo pre-harvest sprouting (PHS) which decreases grain yield and quality. Understanding the genetic mechanisms that regulate seed dormancy and resistance to PHS is crucial for ensuring global food security. In this study, we illustrated the function and molecular mechanism of TaSRO1 in the regulation of seed dormancy and PHS resistance by suppressing TaVP1. The tasro1 mutants exhibited strong seed dormancy and enhanced resistance to PHS, whereas the mutants of tavp1 displayed weak dormancy. Genetic evidence has shown that TaVP1 is epistatic to TaSRO1. Biochemical evidence has shown that TaSRO1 interacts with TaVP1 and represses the transcriptional activation of the PHS resistance genes TaPHS1 and TaSdr. Furthermore, TaSRO1 undermines the synergistic activation of TaVP1 and TaABI5 in PHS resistance genes. Finally, we highlight the great potential of tasro1 alleles for breeding elite wheat cultivars that are resistant to PHS.


Subject(s)
Plant Dormancy , Triticum , Plant Dormancy/genetics , Triticum/genetics , Germination/genetics , Plant Breeding , Phenotype
5.
J Nematol ; 54(1): 20220028, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36060476

ABSTRACT

Two new species of Tokorhabditis, T. tauri n. sp. and T. atripennis n. sp., which were isolated from multiple Onthophagus species in North America and from O. atripennis in Japan, respectively, are described. The new species are each diagnosed by characters of the male tail and genitalia, in addition to molecular barcode differences that were previously reported. The description of T. tauri n. sp. expands the suite of known nematode associates of O. taurus, promoting ecological studies using a beetle that is an experimental model for insect-nematode-microbiota interactions in a semi-natural setting. Furthermore, our description of a third Tokorhabditis species, T. atripennis n. sp., sets up a comparative model for such ecological interactions, as well as other phenomena as previously described for T. tufae, including maternal care through obligate vivipary, the evolution of reproductive mode, and extremophilic living.

6.
New Phytol ; 231(6): 2346-2358, 2021 09.
Article in English | MEDLINE | ID: mdl-34115401

ABSTRACT

Mangroves have colonised extreme intertidal environments characterised by high salinity, hypoxia and other abiotic stresses. Aegiceras corniculatum, a pioneer mangrove species that has evolved two specialised adaptive traits (salt secretion and crypto-vivipary) is an attractive ecological model to investigate molecular mechanisms underlying adaptation to intertidal environments. We assembled de novo a high-quality reference genome of A. corniculatum and performed comparative genomic and transcriptomic analyses to investigate molecular mechanisms underlying adaptation to intertidal environments. We provide evidence that A. corniculatum experienced a whole-genome duplication (WGD) event c. 35 Ma. We infer that maintenance of cellular environmental homeostasis is an important adaptive process in A. corniculatum. The 14-3-3 and H+ -ATPase protein-coding genes, essential for the salt homeostasis, were preferentially retained after the recent WGD event. Using comparative transcriptomics, we show that genes upregulated under high-salt conditions are involved in salt transport and ROS scavenging. We also found that all homologues of DELAY OF GERMINATION1 (DOG1) had lost their heme-binding ability in A. corniculatum, and that this may contribute to crypto-vivipary. Our study provides insight into the genomic correlates of phenotypic adaptation to intertidal environments. This could contribute not only within the genomics community, but also to the field of plant evolution.


Subject(s)
Primulaceae , Gene Expression Profiling , Genomics , Primulaceae/genetics , Salinity , Stress, Physiological
7.
Plant J ; 94(2): 274-287, 2018 04.
Article in English | MEDLINE | ID: mdl-29396989

ABSTRACT

Nicotiana otophora contains Agrobacterium-derived T-DNA sequences introduced by horizontal gene transfer (Chen et al., 2014). Sixty-nine contigs were assembled into four different cellular T-DNAs (cT-DNAs) totalling 83 kb. TC and TE result from two successive transformation events, each followed by duplication, yielding two TC and two TE inserts. TC is also found in other Nicotiana species, whereas TE is unique to N. otophora. Both cT-DNA regions are partially duplicated inverted repeats. Analysis of the cT-DNA divergence patterns allowed reconstruction of the evolution of the TC and TE regions. TC and TE carry 10 intact open reading frames. Three of these are TE-6b genes, derived from a single 6b gene carried by the Agrobacterium strain which inserted TE in the N. otophora ancestor. 6b genes have so far only been found in Agrobacterium tumefaciens or Agrobacterium vitis T-DNAs and strongly modify plant growth (Chen and Otten, 2016). The TE-6b genes were expressed in Nicotiana tabacum under the constitutive 2 × 35S promoter. TE-1-6b-R and TE-2-6b led to shorter plants, dark-green leaves, a strong increase in leaf vein development and modified petiole wings. TE-1-6b-L expression led to a similar phenotype, but in addition leaves show outgrowths at the margins, flowers were modified and plants became viviparous, i.e. embryos germinated in the capsules at an early stage of their development. Embryos could be rescued by culture in vitro. The TE-6b phenotypes are very different from the earlier described 6b phenotypes and could provide new insight into the mode of action of the 6b genes.


Subject(s)
DNA, Bacterial/genetics , Genes, Plant/genetics , Nicotiana/genetics , Agrobacterium/genetics , Chromosome Mapping , DNA, Plant/genetics , Evolution, Molecular , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant/physiology , Seeds/growth & development , Nicotiana/anatomy & histology , Nicotiana/growth & development
8.
Breed Sci ; 66(3): 372-80, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27436947

ABSTRACT

In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45-50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25-60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination.

9.
Mol Phylogenet Evol ; 91: 123-34, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26048705

ABSTRACT

Several hypotheses have been suggested to explain the origin of fleshy fruit in monocots. One is that they originated in the understory of tropical regions and another is that fleshy fruit originated in tropical rainforests where high year-round rainfall implies that seasonality is not a limiting factor. Here we identify the time of origin and ecological preferences of woody bamboos to understand the evolution of the fleshy fruit known as the bacoid caryopsis. Bayesian Inference, Maximum Likelihood and molecular dating analyses were run based on eight plastid and two nuclear regions for 68 bamboo species. Climate data and soil parameters were gathered for 464 localities for these species. The ancestral type of caryopsis was reconstructed by parsimony. According to these analyses the bacoid caryopsis may have evolved independently seven times from the Late Miocene to the Early Pliocene and Mid-Pliocene to Mid-Pleistocene via convergent evolution. Our results suggest that in bamboos neither current climatic variables nor soil parameters were significantly correlated with the appearance of this type of fruit, nor do they have a phylogenetic signal. It is remarkable, however, that the first appearance of the bacoid caryopsis in bamboos might be associated with historical preferences for warmer and wetter climate during the Miocene. Further research is needed to identify whether other factors, such as vivipary or dispersal by small animals, rather than climate, could be responsible for the evolution of this trait in woody bamboos.


Subject(s)
Biological Evolution , Poaceae/physiology , Bayes Theorem , Climate , Fruit/genetics , Phylogeny , Poaceae/classification , Poaceae/genetics , Soil , Wood
10.
PeerJ ; 12: e17460, 2024.
Article in English | MEDLINE | ID: mdl-38952991

ABSTRACT

A taxonomic revision of Rhizophora L. (Rhizophoraceae) in Thailand is presented. Two species, R. apiculata Blume and R. mucronata Poir., are enumerated with updated morphological descriptions, illustrations and a taxonomic identification key, together with notes on distributions, habitats and ecology, phenology, conservation assessments, etymology, vernacular names, uses, and specimens examined. Three names in Rhizophora, are lectotypified: R. apiculata and two associated synonyms of R. mucronata (i.e., R. latifolia Miq. and R. macrorrhiza Griff.). R. longissima Blanco, a synonym of R. mucronata, is neotypified. All two Rhizophora species have a conservation assessment of Least Concern (LC). Based on the morphological identification, these two species can be distinguished from one another by the shape and width of the leaf laminae and the length of a terminal stiff point of the leaf laminae; the type and position of the inflorescences and the number of flowers per inflorescence; the character and color of the bracteoles; the presence or absence of the flower pedicels; the shape of the mature flower buds; the shape, color, and texture of the sepals; the shape, character, and the presence or absence of hairs of the petals; the number of stamens per flower; the size of the fruits; the color and size of the hypocotyls; the color and diameter of the cotyledonous cylindrical tubes; and the color of the colleters and exudate. The thick cuticles, sunken stomata, large hypodermal cells, and cork warts are adaptive anatomical features of leaves in Rhizophora that live in the mangrove environments. The pollen grains of Thai Rhizophora species are tricolporate, prolate spheroidal or oblate spheroidal shapes, small-sized, and reticulate exine sculpturing.


Subject(s)
Rhizophoraceae , Thailand , Rhizophoraceae/anatomy & histology , Ecosystem , Plant Leaves/anatomy & histology
11.
Front Plant Sci ; 14: 1156784, 2023.
Article in English | MEDLINE | ID: mdl-37457341

ABSTRACT

Introduction: This study found that wheat (Triticum aestivum) grain can germinate precociously during the maturation phase of grain development, a phenomenon called vivipary that was associated with alpha-amylase induction. Farmers receive severe discounts for grain with low falling number (FN), an indicator that grain contains sufficiently elevated levels of the starch-digesting enzyme alpha-amylase to pose a risk to end-product quality. High grain alpha-amylase can result from: preharvest sprouting (PHS)/germination when mature wheat is rained on before harvest, or from late maturity alpha-amylase (LMA) when grain experiences cool temperatures during the soft dough stage of grain maturation (Zadoks growth stage 85). An initial LMA-induction experiment found that low FN was associated with premature visible germination, suggesting that cool and humid conditions caused vivipary. Methods: To examine whether LMA and vivipary are related, controlled environment experiments examined the conditions that induce vivipary, whether LMA could be induced without vivipary, and whether the pattern of alpha-amylase expression during vivipary better resembled PHS or LMA. Results: Vivipary was induced in the soft to hard dough stages of grain development (Zadok's stages 83-87) both on agar and after misting of the mother plant. This premature germination was associated with elevated alpha-amylase activity. Vivipary was more strongly induced under the cooler conditions used for LMA-induction (18°C day/7.5°C night) than warmer conditions (25°C day/18°C night). Cool temperatures could induce LMA with little or no visible germination when low humidity was maintained, and susceptibility to vivipary was not always associated with LMA susceptibility in a panel of 8 varieties. Mature grain preharvest sprouting results in much higher alpha-amylase levels at the embryo-end of the kernel. In contrast, vivipary resulted in a more even distribution of alpha-amylase that was reminiscent of LMA. Discussion: Vivipary can occur in susceptible varieties under moist, cool conditions, and the resulting alpha-amylase activity may result in low FN problems when a farm experiences cool, rainy conditions before the crop is mature. While there are genotypic differences in LMA and vivipary susceptibility, overlapping mechanisms are likely involved since they are similarly controlled by temperature and growth stage, and result in similar patterns of alpha-amylase expression.

12.
Plants (Basel) ; 12(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050111

ABSTRACT

Many rare plant species lack up-to-date research about their reproductive ecology, which challenges effective in situ and ex situ conservation, particularly in the face of ongoing environmental and anthropogenic changes. For protected species, outdated and incomplete information also creates barriers to successful recovery planning and delisting. In this study, we gathered a range of reproductive metrics for the federally threatened and state endangered Florida endemic mint, Macbridea alba Chapman (Lamiaceae). We collected data at seven populations within Apalachicola National Forest (Florida, USA) and conducted germination trials to estimate reproductive potential. Additionally, we observed a previously undocumented lepidopteran seed predator for the species and confirmed the occurrence of vivipary. The seed set was low with less than 20% of flowers per inflorescence producing seed across populations; however, germination was high with more than 60% of seeds germinating in five of seven populations. When comparing our results to previous research conducted more than 20 years ago, the results were similar overall (i.e., germination, vivipary); however, new information emerged (i.e., herbivore pressure). As M. alba undergoes reassessment as a potential candidate for delisting from the Endangered Species Act (ESA) list, this information is critical for assessing recovery goals and decisions regarding the species' protected status. For recovery needs related to propagation and reintroduction, these results can inform future seed collection and propagation efforts for the species.

13.
Front Plant Sci ; 13: 1061747, 2022.
Article in English | MEDLINE | ID: mdl-36684724

ABSTRACT

Vivipary is a rare sexual reproduction phenomenon where embryos germinate directly on the maternal plants. However, it is a common genetic event of woody mangroves in the Rhizophoraceae family. The ecological benefits of vivipary in mangroves include the nurturing of seedlings in harsh coastal and saline environments, but the genetic and molecular mechanisms of vivipary remain unclear. Here we investigate the viviparous embryo development and germination processes in mangrove Kandelia obovata by a transcriptomic approach. Many key biological pathways and functional genes were enriched in different tissues and stages, contributing to vivipary. Reduced production of abscisic acid set a non-dormant condition for the embryo to germinate directly. Genes involved in the metabolism of and response to other phytohormones (gibberellic acid, brassinosteroids, cytokinin, and auxin) are expressed precociously in the axis of non-vivipary stages, thus promoting the embryo to grow through the seed coat. Network analysis of these genes identified the central regulatory roles of LEC1 and FUS3, which maintain embryo identity in Arabidopsis. Moreover, photosynthesis related pathways were significantly up-regulated in viviparous embryos, and substance transporter genes were highly expressed in the seed coat, suggesting a partial self-provision and maternal nursing. We conclude that the viviparous phenomenon is a combinatorial result of precocious loss of dormancy and enhanced germination potential during viviparous seed development. These results shed light on the relationship between seed development and germination, where the continual growth of the embryo replaces a biphasic phenomenon until a mature propagule is established.

14.
PeerJ ; 9: e10689, 2021.
Article in English | MEDLINE | ID: mdl-33614269

ABSTRACT

This is the first revision in more than 100 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Closely related to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2-3-locular ovary (vs. unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (vs. exposed, far exceeding the spathe), stipitate fruits and viviparous (asexually reproductive) roots (vs. sessile, roots non-viviparous), lack of laticifers (vs. laticifers present) and differences in spadix: spathe proportions and presentation. However, it is possible that a well sampled molecular phylogenetic analysis might show that one of these genera is nested inside the other. In this case the synonymisation of Pseudohydrosme will be required. Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese but probably extending to Congo, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral Region, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area. The discovery of Pseudohydrosme ebo resulted from a series of surveys for conservation management in Cameroon, and triggered this article. All three species are morphologically characterised, their habitat and biogeography discussed, and their extinction risks are respectively assessed as Critically Endangered (Possibly Extinct), Endangered and Critically Endangered using the IUCN standard. Clearance of forest habitat for logging, followed by agriculture or urbanisation are major threats. Pseudohydrosme gabunensis may occur in a formally protected area and is also cultivated widely but infrequently in Europe, Australia and the USA for its spectacular inflorescences.

15.
Plants (Basel) ; 10(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34834800

ABSTRACT

Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.

17.
Plant Signal Behav ; 14(3): e1578633, 2019.
Article in English | MEDLINE | ID: mdl-30764706

ABSTRACT

Approximately 75 MAP kinase kinase kinases (MAPKKKs) have been identified in the rice genome. However, only a few of them have been functionally characterized. In this paper, we report the function of a rice MAPKKK, OsMAPKKK63. OsMAPKKK63 was found to be induced by several abiotic stresses, including high salinity, chilling and drought. Our data indicate that OsMAPKKK63 possesses in vitro kinase activity and that it interacts with rice MAP kinase kinase OsMKK1 and OsMKK6. The two rice MKKs are known mediator of the salt stress response, implying that OsMAPKKK63 may be involved in the high salinity response. Our analysis of an OsMAPKKK63 knockout mutant indeed demonstrated that it is necessary for normal response to high salt. On the other hand, OsMAPKKK63 OX lines exhibited viviparous phenotype in both rice and Arabidopsis. The result suggests that OsMAPKKK63 may also be involved in seed dormancy control.


Subject(s)
Abscisic Acid/metabolism , Oryza/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Oryza/genetics , Plant Dormancy/genetics , Plant Dormancy/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
18.
Heliyon ; 5(10): e02584, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31720446

ABSTRACT

Researches documenting comprehensively the prevalence of seed vivipary in relation to phenology, as well as its impact on production are scant. This article reports the results of investigations carried out during four cropping seasons to quantitatively document seed vivipary in the oleaginous bottle gourd (Lagenaria siceraria). Field experiments were conducted during the first and second cropping season of 2014 and 2015 at the experimental station of Nangui Abrogoua University (Abidjan, Côte d'Ivoire). The assessment of the prevalence of seed vivipary was carried out using 185 L. siceraria accessions collected in different ecological zones of Côte d'Ivoire. To examine the influence of fruit maturation time on seed vivipary, four accessions (two viviparous and two non-viviparous) were cropped and harvested at 30 and 50 days after fertilization (DAF), complete whiteness of plants (CPW) and after 60 days of storage of fruits harvested on plants completely withered (CPWS). Finally, a comparative analysis of seed yield and its main components was conducted using four accessions including two highly viviparous and two non-viviparous. The results on seed vivipary prevalence showed that the oleaginous form of L. siceraria is highly susceptible and allowed the classification of the 185 accessions analyzed into three groups: non-viviparous (2.16%), viviparous (89.19%) and highly viviparous accessions (8.65%). No precocious seed germination was observed in non-viviparous accessions during fruit maturation stage. The fruits of highly viviparous accessions harvested at 30 DAF showed no precocious seed germination while 3.35-17.89% of fruits bearing viviparous seed were observed at 50 DAF. Plants from highly viviparous fruits showed significantly low yields compared those from non-viviparous fruits. These results suggested that an efficient control of seed vivipary allowing a quantitative and qualitative improvement of yield in the oilseed bottle gourd can be ensured by the selection of vivipary-tolerant genotypes and appropriate planning of the harvest time.

19.
Heliyon ; 5(11): e02614, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31844689

ABSTRACT

Microarray expression profile analysis is a useful approach to increase our knowledge about genes involved in regulatory networks and signal transduction pathways related to abiotic stress tolerance. Salt and drought, as two important abiotic stresses, adversely affect plant productivity in the world every year. To understand stress response mechanisms and identify genes and proteins which play critical roles in these mechanisms, the study of individual genes and proteins cannot be considered as an effective approach. On the other hand, the availability of new global data provides us an effective way to shed some light on the central role of molecules involved in stress response mechanisms in the plant. A meta-analysis of salt and drought stress responses was carried out using 38 samples of different experiments from leaves and roots of Arabidopsis plants exposed to drought and salt stresses. We figured out the number of differentially expressed genes (DEGs) was higher in roots under both stresses. Also, we found that the number of common DEGs under both stresses was more in roots and also the number of common DEGs in both tissues under salt stress was more than drought stress. The highest percent of DEGs was related to cell and cell part (about 87%). Around 9% and 7% of DEGs in roots and leaves encoded transcription factors, respectively. Network analysis revealed that three transcription factor families HSF, AP2/ERF and C2H2, may have critical roles in salt and drought stress response mechanisms in Arabidopsis â€‹and some proteins like STZ may be introduced as a new candidate gene for enhancing salt and drought tolerance in crop plants.

20.
PhytoKeys ; (96): 21-34, 2018.
Article in English | MEDLINE | ID: mdl-29670451

ABSTRACT

The authors introduce the term facultative vivipary for the first time in gingers and elaborate on this reproductive strategy. Four new observations of facultative vivipary are reported in the genus Hedychium which were discovered during botanical explorations by the authors in Northeast India (NE India) over the past three years. The viviparous taxa are H. marginatum C.B.Clarke, H. speciosum var. gardnerianum (Ker Gawl.) Sanoj & M.Sabu (previously, H. gardnerianum Sheppard ex Ker Gawl.), H. thyrsiforme Buch.-Ham. ex Sm. and H. urophyllum G.Lodd. The authors also attempt to summarise the occurrence of vivipary in the family Zingiberaceae from published reports and to clarify a taxonomic misidentification in a previously known report of vivipary in Hedychium elatum.

SELECTION OF CITATIONS
SEARCH DETAIL