Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Publication year range
1.
Plant J ; 116(4): 1118-1135, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37248640

ABSTRACT

Field-grown crops rarely experience growth conditions in which yield can be maximized. Environmental stresses occur in combination, with advancements in crop tolerance further complicated by its polygenic nature. Strategic targeting of causal genes is required to meet future crop production needs. Here, we employed a systems biology approach in wheat (Triticum aestivum L.) to investigate physio-metabolic adjustments and transcriptome reprogramming involved in acclimations to heat, drought, salinity and all combinations therein. A significant shift in magnitude and complexity of plant response was evident across stress scenarios based on the agronomic losses, increased proline concentrations and 8.7-fold increase in unique differentially expressed transcripts (DETs) observed under the triple stress condition. Transcriptome data from all stress treatments were assembled into an online, open access eFP browser for visualizing gene expression during abiotic stress. Weighted gene co-expression network analysis revealed 152 hub genes of which 32% contained the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) transcriptional repression motif. Cross-referencing against the 31 DETs common to all stress treatments isolated TaWRKY33 as a leading candidate for greater plant tolerance to combinatorial stresses. Integration of our findings with available literature on gene functional characterization allowed us to further suggest flexible gene combinations for future adaptive gene stacking in wheat. Our approach demonstrates the strength of robust multi-omics-based data resources for gene discovery in complex environmental conditions. Accessibility of such datasets will promote cross-validation of candidate genes across studies and aid in accelerating causal gene validation for crop resiliency.


Subject(s)
Multiomics , Triticum , Triticum/physiology , Stress, Physiological/genetics , Transcriptome/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
2.
BMC Plant Biol ; 24(1): 297, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632517

ABSTRACT

BACKGROUND: Developing and enriching genetic resources plays important role in the crop improvement. The flag leaf affects plant architecture and contributes to the grain yield of wheat (Triticum aestivum L.). The genetic improvement of flag leaf traits faces problems such as a limited genetic basis. Among the various genetic resources of wheat, Thinopyrum intermedium has been utilized as a valuable resource in genetic improvement due to its disease resistance, large spikes, large leaves, and multiple flowers. In this study, a recombinant inbred line (RIL) population was derived from common wheat Yannong15 and wheat-Th. intermedium introgression line SN304 was used to identify the quantitative trait loci (QTL) for flag leaf-related traits. RESULTS: QTL mapping was performed for flag leaf length (FLL), flag leaf width (FLW) and flag leaf area (FLA). A total of 77 QTLs were detected, and among these, 51 QTLs with positive alleles were contributed by SN304. Fourteen major QTLs for flag leaf traits were detected on chromosomes 2B, 3B, 4B, and 2D. Additionally, 28 QTLs and 8 QTLs for flag leaf-related traits were detected in low-phosphorus and drought environments, respectively. Based on major QTLs of positive alleles from SN304, we identified a pair of double-ended anchor primers mapped on chromosome 2B and amplified a specific band of Th. intermedium in SN304. Moreover, there was a major colocated QTL on chromosome 2B, called QFll/Flw/Fla-2B, which was delimited to a physical interval of approximately 2.9 Mb and contained 20 candidate genes. Through gene sequence and expression analysis, four candidate genes associated with flag leaf formation and growth in the QTL interval were identified. CONCLUSION: These results promote the fine mapping of QFll/Flw/Fla-2B, which have pleiotropic effects, and will facilitate the identification of candidate genes for flag leaf-related traits. Additionally, this work provides a theoretical basis for the application of Th. intermedium in wheat breeding.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Chromosome Mapping , Plant Breeding , Phenotype , Plant Leaves/genetics
3.
BMC Plant Biol ; 24(1): 27, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172667

ABSTRACT

BACKGROUND: Wheat, a crucial food crop in China, is highly vulnerable to drought stress throughout its growth and development. WRKY transcription factors (TFs), being one of the largest families of TFs, play a vital role in responding to various abiotic stresses in plants. RESULTS: Here, we cloned and characterized the TF TaWRKY31 isolated from wheat. This TF, belonging to the WRKY II family, contains a WRKYGQK amino acid sequence and a C2H2-type zinc finger structure. TaWRKY31 exhibits tissue-specific expression and demonstrates responsiveness to abiotic stresses in wheat. TaWRKY31 protein is localized in the nucleus and can function as a TF with transcription activating activity at the N-terminus. Results showed that the wheat plants with silenced strains (BSMV:TaWRKY31-1as and BSMV:TaWRKY31-2as) exhibited poor growth status and low relative water content when subjected to drought treatment. Moreover, the levels of O2·-, H2O2, and malondialdehyde (MDA) in the BSMV:TaWRKY31-induced wheat plants increased, while the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) decreased. Compared to control plants, BSMV:TaWRKY31-induced wheat plants exhibited lower expression levels of TaSOD (Fe), TaPOD, TaCAT, TaDREB1, TaP5CS, TaNCED1, TaSnRK2, TaPP2C, and TaPYL5.Under stress or drought treatment conditions, the overexpression of TaWRKY31 in Arabidopsis resulted in decreased levels of H2O2 and MDA, as well as reduced stomatal opening and water loss. Furthermore, an increase in resistance oxidase activity, germination rate, and root length in the TaWRKY31 transgenic Arabidopsis was observed. Lastly, overexpression of TaWRKY31 in Arabidopsis resulted in higher the expression levels of AtNCED3, AtABA2, AtSnRK2.2, AtABI1, AtABF3, AtP5CS1, AtSOD (Cu/Zn), AtPOD, AtCAT, AtRD29A, AtRD29B, and AtDREB2A than in control plants. CONCLUSIONS: Our findings indicate that TaWRKY31 enhances drought resistance in plants by promoting the scavenging of reactive oxygen species, reducing stomatal opening, and increasing the expression levels of stress-related genes.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Droughts , Arabidopsis/metabolism , Triticum/genetics , Triticum/metabolism , Drought Resistance , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Water/metabolism
4.
BMC Plant Biol ; 24(1): 705, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054416

ABSTRACT

BACKGROUND: Drought stress limits significantly the crop productivity. However, plants have evolved various strategies to cope with the drought conditions by adopting complex molecular, biochemical, and physiological mechanisms. Members of the nuclear factor Y (NF-Y) transcription factor (TF) family constitute one of the largest TF classes and are involved in plant responses to abiotic stresses. RESULTS: TaNF-YB2, a NY-YB subfamily gene in T. aestivum, was characterized in this study focusing on its role in mediating plant adaptation to drought stress. Yeast two-hybrid (Y-2 H), biomolecular fluoresence complementation (BiFC), and Co-immunoprecipitation (Co-IP) assays indicated that TaNF-YB2 interacts with the NF-YA member TaNF-YA7 and NF-YC family member TaNF-YC7, which constitutes a heterotrimer TaNF-YB2/TaNF-YA7/TaNF-YC7. The TaNF-YB2 transcripts are induced in roots and aerial tissues upon drought signaling; GUS histochemical staining analysis demonstrated the roles of cis-regulatory elements ABRE and MYB situated in TaNF-YB2 promoter to contribute to target gene response to drought. Transgene analysis on TaNF-YB2 confirmed its functions in regulating drought adaptation via modulating stomata movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis. TaNF-YB2 possessed the abilities in transcriptionally activating TaP5CS2, the P5CS family gene involving proline biosynthesis and TaSOD1, TaCAT5, and TaPOD5, the genes encoding antioxidant enzymes. Positive correlations were found between yield and the TaNF-YB2 transcripts in a core panel constituting 45 wheat cultivars under drought condition, in which two types of major haplotypes including TaNF-YB2-Hap1 and -Hap2 were included, with the former conferring more TaNF-YB2 transcripts and stronger plant drought tolerance. CONCLUSIONS: TaNF-YB2 is transcriptional response to drought stress. It is an essential regulator in mediating plant drought adaptation by modulating the physiological processes associated with stomatal movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis, depending on its role in transcriptionally regulating stress response genes. Our research deepens the understanding of plant drought stress underlying NF-Y TF family and provides gene resource in efforts for molecular breeding the drought-tolerant cultivars in T. aestivum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Triticum , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Genes, Plant , Drought Resistance
5.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632554

ABSTRACT

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping , Triticum/genetics , Genetic Linkage , Plant Breeding , Phenotype
6.
BMC Plant Biol ; 24(1): 673, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004709

ABSTRACT

BACKGROUND: This research explores the efficacy of mutagenesis, specifically using sodium azide (SA) and hydrazine hydrate (HZ) treatments, to introduce genetic diversity and enhance traits in three wheat (Triticum aestivum L.) genotypes. The experiment entails subjecting the seeds to different doses of SA and HZ and cultivating them in the field for two consecutive generations: M1 (first generation) and M2 (second generation). We then employed selective breeding techniques with Start Codon Targeted (SCoT) markers to select traits within the wheat gene pool. Also, the correlation between SCoT markers and specific agronomic traits provides insights into the genetic mechanisms underlying mutagenesis-induced changes in wheat. RESULTS: In the study, eleven genotypes were derived from parent varieties Sids1, Sids12, and Giza 168, and eight mutant genotypes were selected from the M1 generation and further cultivated to establish the M2 generation. The results revealed that various morphological and agronomical characteristics, such as plant height, spikes per plant, spike length, spikelet per spike, grains per spikelet, and 100-grain weight, showed increases in different genotypes from M1 to M2. SCoT markers were employed to assess genetic diversity among the eleven genotypes. The bioinformatics analysis identified a correlation between SCoT markers and the transcription factors ABSCISIC ACID INSENSITIVE3 (ABI3) and VIVIPAROUS1 (VP1), crucial for plant development, growth, and stress adaptation. A comprehensive examination of genetic distance and the function identification of gene-associated SCoT markers may provide valuable insights into the mechanisms by which SA and HZ act as mutagens, enhancing wheat agronomic qualities. CONCLUSIONS: This study demonstrates the effective use of SA and HZ treatments to induce gene diversity through mutagenesis in the wheat gene pool, resulting in the enhancement of agronomic traits, as revealed by SCoT markers. The significant improvements in morphological and agronomical characteristics highlight the potential of mutagenesis techniques for crop improvement. These findings offer valuable information for breeders to develop effective breeding programs to enhance wheat quality and resilience through increased genetic diversity.


Subject(s)
Genetic Variation , Mutagenesis , Triticum , Triticum/genetics , Triticum/growth & development , Genetic Markers , Gene Pool , Genotype , Plant Breeding/methods , Codon, Initiator/genetics , Phenotype , Genes, Plant
7.
Plant Cell Environ ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847343

ABSTRACT

Wheat (Triticum aestivum L.) is an important cereal crop cultivated and consumed worldwide. Global warming-induced escalation of temperature during the seedling and grain-filling phase adversely affects productivity. To survive under elevated temperatures, most crop plants develop natural mechanisms at molecular level by activating heat shock proteins. However, other heat stress-related proteins like heat acclimatization (HA) proteins are documented in hexaploid wheat but have not been explored in detail in its diploid and tetraploid progenitors, which might help to overcome elevated temperature regimes for short periods. Our study aims to explore the potential HA genes in progenitors Triticum durum and Aegilops tauschii that perform well at higher temperatures. Seven genes were identified and phylogenetically classified into three families: K homology (KH), Chloroplast protein-enhancing stress tolerance (CEST), and heat-stress-associated 32 kDa (HSA32). Protein-protein interaction network revealed partner proteins that aid mRNA translation, protein refolding, and reactive species detoxification. Syntenic analysis displayed highly conserved relationships. RT-qPCR-based expression profiling revealed HA genes to exhibit diverse and dynamic patterns under high-temperature regimes, suggesting their critical role in providing tolerance to heat stress. The present study furnishes genetic landscape of HA genes that might help in developing climate-resilient wheat with higher acclimatization potential.

8.
J Exp Bot ; 75(18): 5484-5500, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-38894654

ABSTRACT

To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops-rice, maize, and wheat-and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including gene editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.


Subject(s)
Crops, Agricultural , Edible Grain , Plant Roots , Plant Roots/growth & development , Plant Roots/anatomy & histology , Plant Roots/physiology , Plant Roots/genetics , Edible Grain/growth & development , Edible Grain/genetics , Edible Grain/physiology , Crops, Agricultural/growth & development , Crops, Agricultural/genetics , Crop Production/methods , Plant Breeding , Zea mays/growth & development , Zea mays/genetics , Zea mays/physiology , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Triticum/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Oryza/metabolism
9.
Ann Bot ; 133(3): 413-426, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38195097

ABSTRACT

BACKGROUND AND AIMS: The development and morphology of crop plants have been profoundly altered by evolution under cultivation, initially through unconscious selection, without deliberate foresight, and later by directed breeding. Wild wheats remain an important potential source of variation for modern breeders; however, the sequence and timing of morphological changes during domestication are not fully resolved. METHODS: We grew and measured 142 wheat accessions representing different stages in wheat evolution, including three independent domestication events, and compared their morphological traits to define the morphospace of each group. KEY RESULTS: The results show that wild and domesticated wheats have overlapping morphospaces, but each also occupies a distinct area of morphospace from one another. Polyploid formation in wheat increased leaf biomass and seed weight but had its largest effects on tiller loss. Domestication continued to increase the sizes of wheat leaves and seeds and made wheat grow taller, with more erect architecture. Associated changes to the biomass of domesticated wheats generated more grains and achieved higher yields. Landrace improvement subsequently decreased the numbers of tillers and spikes, to focus resource allocation to the main stem, accompanied by a thicker main stem and larger flag leaves. During the Green Revolution, wheat height was reduced to increase the harvest index and therefore yield. Modern wheats also have more erect leaves and larger flower biomass proportions than landraces. CONCLUSIONS: Quantitative trait history in wheat differs by trait. Some trait values show progressive changes in the same direction (e.g. leaf size, grain weight), whereas others change in a punctuated way at particular stages (e.g. canopy architecture), and other trait values switch directions during wheat evolution (e.g. plant height, flower biomass proportion). Agronomically valued domestication traits arose during different stages of wheat history, such that modern wheats are the product of >10 000 years of morphological evolution.


Subject(s)
Polyploidy , Triticum , Phenotype , Plant Leaves/genetics , Edible Grain
10.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612594

ABSTRACT

Members of the abscisic acid (ABA)-responsive element (ABRE) binding factor (ABF) and ABA-responsive element binding protein (AREB) families play essential roles in the regulation of ABA signaling pathway activity and shape the ability of plants to adapt to a range of stressful environmental conditions. To date, however, systematic genome-wide analyses focused on the ABF/AREB gene family in wheat are lacking. Here, we identified 35 ABF/AREB genes in the wheat genome, designated TaABF1-TaABF35 according to their chromosomal distribution. These genes were further classified, based on their phylogenetic relationships, into three groups (A-C), with the TaABF genes in a given group exhibiting similar motifs and similar numbers of introns/exons. Cis-element analyses of the promoter regions upstream of these TaABFs revealed large numbers of ABREs, with the other predominant elements that were identified differing across these three groups. Patterns of TaABF gene expansion were primarily characterized by allopolyploidization and fragment duplication, with purifying selection having played a significant role in the evolution of this gene family. Further expression profiling indicated that the majority of the TaABF genes from groups A and B were highly expressed in various tissues and upregulated following abiotic stress exposure such as drought, low temperature, low nitrogen, etc., while some of the TaABF genes in group C were specifically expressed in grain tissues. Regulatory network analyses revealed that four of the group A TaABFs (TaABF2, TaABF7, TaABF13, and TaABF19) were centrally located in protein-protein interaction networks, with 13 of these TaABF genes being regulated by 11 known miRNAs, which play important roles in abiotic stress resistance such as drought and salt stress. The two primary upstream transcription factor types found to regulate TaABF gene expression were BBR/BPC and ERF, which have previously been reported to be important in the context of plant abiotic stress responses. Together, these results offer insight into the role that the ABF/AREB genes play in the responses of wheat to abiotic stressors, providing a robust foundation for future functional studies of these genes.


Subject(s)
Genome-Wide Association Study , Triticum , Triticum/genetics , Phylogeny , Gene Expression Regulation , Upstream Stimulatory Factors
11.
Plant J ; 112(1): 249-267, 2022 10.
Article in English | MEDLINE | ID: mdl-35960661

ABSTRACT

Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1)-induced protein kinase (RIPK) in Arabidopsis belongs to the receptor-like cytoplasmic kinase (RLCK) family and plays a vital role in immunity. However, the role of RLCKs in the high-temperature seedling-plant (HTSP) resistance of wheat (Triticum aestivum) to Puccinia striiformis f. sp. tritici (Pst), the stripe rust pathogen, remains unclear. Here, we identified a homologous gene of RIPK in wheat, namely TaRIPK. Expression of TaRIPK was induced by Pst inoculation and high temperatures. Silencing of TaRIPK reduced the expression level of TaRPM1, resulting in weaker HTSP resistance. Moreover, TaRIPK interacts with and phosphorylates papain-like cysteine protease 1 (TaPLCP1). Meanwhile, we found that the Pst-secreted protein PSTG_01766 targets TaPLCP1. Transient expression of PSTG_01766 inhibited basal immunity in tobacco (Nicotiana benthamiana) and wheat. The role of PSTG_01766 as an effector involved in HTSP resistance was further supported by host-induced gene silencing and bacterial type three secretion system-mediated delivery into wheat. PSTG_01766 inhibited the TaRIPK-induced phosphorylation of TaPLCP1. Furthermore, PSTG_01766 has the potential to influence the subcellular localization of TaPLCP1. Overall, we suggest that the TaRIPK-TaPLCP1-TaRPM1 module fits the guard model for disease resistance, participating in HTSP resistance. PSTG_01766 decreases HTSP resistance via targeting TaPLCP1. Guarded by wheat and attacked by Pst, TaPLCP1 may serve as a central hub of the defense response. Our findings improve the understanding of the molecular mechanism of wheat HTSP resistance, which may be an important strategy for controlling stripe rust in the face of global warming.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/physiology , Disease Resistance/genetics , Papain/metabolism , Plant Diseases/microbiology , Protein Kinases/metabolism , Puccinia , Seedlings/metabolism , Temperature , Nicotiana , Triticum/metabolism
12.
BMC Plant Biol ; 23(1): 193, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041463

ABSTRACT

BACKGROUND: Wheat is a major cereal that can narrow the gap between the increasing human population and food production. In this connection, assessing genetic diversity and conserving wheat genetic resources for future exploitation is very important for breeding new cultivars that may withstand the expected climate change. The current study evaluates the genetic diversity in selected wheat cultivars using ISSR and SCoT markers, the rbcL and matK chloroplast DNA barcoding, and grain surface sculpture characteristics. We anticipate that these objectives may prioritize using the selected cultivars to improve wheat production. The selected collection of cultivars may lead to the identification of cultivars adapted to a broad spectrum of climatic environments. RESULTS: Multivariate clustering analyses of the ISSR and SCoT DNA fingerprinting polymorphism grouped three Egyptian cultivars with cultivar El-Nielain from Sudan, cultivar Aguilal from Morocco, and cultivar Attila from Mexico. In the other group, cultivar Cook from Australia and cultivar Chinese-166 were differentiated from four other cultivars: cultivar Cham-10 from Syria, cultivar Seri-82 from Mexico, cultivar Inqalab-91 from Pakistan, and cultivar Sonalika from India. In the PCA analysis, the Egyptian cultivars were distinct from the other studied cultivars. The rbcL and matK sequence variation analysis indicated similarities between Egyptian cultivars and cultivar Cham-10 from Syria and cultivar Inqalab-91 from Pakistan, whereas cultivar Attila from Mexico was distinguished from all other cultivars. Combining the data of ISSR and SCoT with the rbcL and matK results retained the close resemblance among the two Egyptian cultivars EGY1: Gemmeiza-9 and EGY3: Sakha-93, and the Moroccan cultivar Aguilal, and the Sudanese cultivar El-Nielain and between Seri-82, Inqalab-91, and Sonalika cultivars. The analysis of all data distinguished cultivar Cham-10 from Syria from all other cultivars, and the analysis of grain traits indicated a close resemblance between cv. Cham-10 from and the two Egyptian cultivars Gemmeiza-9 and Sakha-93. CONCLUSIONS: The analysis of rbcL and matK chloroplast DNA barcoding agrees with the ISSR and the SCoT markers in supporting the close resemblance between the Egyptian cultivars, particularly Gemmeiza-9 and Sakha-93. The ISSR and SCoT data analyses significantly expressed high differentiation levels among the examined cultivars. Cultivars with closer resemblance may be recommended for breeding new wheat cultivars adapted to various climatic environments.


Subject(s)
DNA, Chloroplast , Triticum , Humans , Edible Grain , Plant Breeding , Polymorphism, Genetic
13.
New Phytol ; 237(5): 1558-1573, 2023 03.
Article in English | MEDLINE | ID: mdl-36519272

ABSTRACT

The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping , Triticum/anatomy & histology , Quantitative Trait Loci/genetics , Plant Leaves/anatomy & histology , Phenotype , Epidermal Cells
14.
Plant Cell Environ ; 46(3): 747-763, 2023 03.
Article in English | MEDLINE | ID: mdl-36600451

ABSTRACT

Salt stress reduces plant water flow during day and night. It is not known to which extent root hydraulic properties change in parallel. To test this idea, hydroponically grown wheat plants were grown at four levels of salt stress (50, 100, 150 and 200 mM NaCl) for 5-8d before harvest (d14-18) and subjected to a range of analyses to determine diurnal changes in hydraulic conductivity (Lp) at cell, root and plant level. Cell pressure probe analyses showed that the Lp of cortex cells was differentially affected by salt stress during day and night, and that the response to salt stress differed between the main axis of roots and lateral roots. The Aquaporin (AQP) inhibitor H2 O2 reduced Lp to a common, across treatments, level as observed in salt-stressed plants during the night. Analyses of transpiring plants and exuding root systems provided values of root Lp which were in the same range as values modeled based on cell-Lp. The results can best be explained through a change in root Lp in response to salt stress and day/night, which results from an altered activity of AQPs. qPCR gene expression analyses point to possible candidate AQP isoforms.


Subject(s)
Aquaporins , Triticum , Triticum/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Water/metabolism , Biological Transport , Salt Stress , Aquaporins/metabolism
15.
Mol Breed ; 43(8): 64, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533603

ABSTRACT

Wheat (Triticum aestivum L.) is one of the most important cereal crops for ensuring food security worldwide. Identification of major quantitative trait loci (QTL) for spike-related traits is important for improvement of yield potential in wheat breeding. In this study, by using the wheat 55K single nucleotide polymorphism (SNP) array and diversity array technology (DArT), two recombinant inbred line populations derived from crosses avocet/chilero and avocet/huites were used to map QTL for kernel number per spike (KNS), total spikelet number per spike (TSS), fertile spikelet number per spike (FSS), and spike compactness (SC). Forty-two QTLs were identified on chromosomes 2A (4), 2B (3), 3A (2), 3B (7), 5A (11), 6A (4), 6B, and 7A (10), explaining 3.13-21.80% of the phenotypic variances. Twelve QTLs were detected in multi-environments on chromosomes 2A, 3B (2), 5A (4), 6A (3), 6B, and 7A, while four QTL clusters were detected on chromosomes 3A, 3B, 5A, and 7A. Two stable and new QTL clusters, QKns/Tss/Fss/SC.haust-5A and QKns/Tss/Fss.haust-7A, were detected in the physical intervals of 547.49-590.46 Mb and 511.54-516.15 Mb, accounting for 7.53-14.78% and 7.01-20.66% of the phenotypic variances, respectively. High-confidence annotated genes for QKns/Tss/Fss/SC.haust-5A and QKns/Tss/Fss.haust-7A were more highly expressed in spike development. The results provide new QTL and molecular markers for marker-assisted breeding in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01401-4.

16.
Mol Breed ; 43(12): 83, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009099

ABSTRACT

Low temperature and cold damage are natural factors that seriously reduce wheat yield. Thus, how to improve the cold resistance of wheat has been the focus of wheat breeders and geneticists. However, the genetic improvement for this trait has been slow, mainly because cold resistance is a complex quantitative trait and field phenotypic identification is relatively difficult. Therefore, the discovery, mapping, and cloning of the cold resistance genes of wheat provide a theoretical basis for the genetic improvement of wheat against cold resistance and facilitate the analysis of the molecular mechanisms of cold resistance in wheat. This study used the wheat line H261 and its EMS mutants LF2099 and XiNong 239 as materials. Cold trait segregation occurred in the F2 generation of mutants LF2099 and XiNong 239 at a 15:1 separation ratio. Genetic analysis showed that two dominant overlapping genes, temporarily named Wcr-3 and Wcr-4, control cold resistance in wheat. Furthermore, a combined BSA and SNP array established that Wcr-3 is between BU100519 (SSR marker) and AX-94843669 (SNP marker). The markers are 1.32 cM apart, corresponding to the 5.41 Mb physical interval on the Chinese Spring 2B chromosome with 67 functionally annotated genes. Wcr-4 is located between AX-94657955 (SNP marker) and LC-23 (SSR marker), which are 1.79 cM apart, corresponding to a 2.35 Mb physical interval on the Chinese Spring 2D chromosome, which contains 66 functionally annotated genes. Wcr-3 and Wcr-4 are two new cold resistance genes, laying the foundation for their fine mapping and cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01425-w.

17.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834288

ABSTRACT

Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.


Subject(s)
Seedlings , Transcriptome , Seedlings/genetics , Seedlings/metabolism , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Metabolome/genetics , Phosphorus/metabolism , Amino Acids/metabolism , Gene Expression Regulation, Plant
18.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176157

ABSTRACT

The transformation efficiency (TE) was improved by a series of special chemical and physical methods using immature embryos from the cultivar Fielder, with the PureWheat technique. To analyze the reaction of immature embryos infected, which seemed to provide the necessary by Agrobacterium tumefaciens in PureWheat, a combination of scanning electron microscopy (SEM), complete transcriptome analysis, and metabolome analysis was conducted to understand the progress. The results of the SEM analysis revealed that Agrobacterium tumefaciens were deposited under the damaged cortex of immature embryos as a result of pretreatment and contacted the receptor cells to improve the TE. Transcriptome analysis indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, plant-pathogen interaction, plant hormone signal transduction, and the MAPK (Mitogen-activated protein kinase) signaling pathway. By analyzing the correlation between differentially expressed genes and metabolites, the expression of many genes and the accumulation of metabolites were changed in glucose metabolism and the TCA cycle (Citrate cycle), as well as the amino acid metabolism; this suggests that the infection of wheat embryos with Agrobacterium is an energy-demanding process. The shikimate pathway may act as a hub between glucose metabolism and phenylpropanoid metabolism during Agrobacterium infection. The downregulation of the F5H gene and upregulation of the CCR gene led to the accumulation of lignin precursors through phenylpropanoid metabolism. In addition, several metabolic pathways and oxidases were found to be involved in the infection treatment, including melatonin biosynthesis, benzoxazinoid biosynthesis, betaine biosynthesis, superoxide dismutase, and peroxidase, suggesting that wheat embryos may be under the stress of Agrobacterium and, thus, undergo an oxidative stress response. These findings explore the physiological and molecular changes of immature embryos during the co-culture stage of the PureWheat technique and provide insights for Agrobacterium-mediated transgenic wheat experiments.


Subject(s)
Agrobacterium tumefaciens , Triticum , Agrobacterium tumefaciens/genetics , Triticum/metabolism , Transcriptome , Plants, Genetically Modified/genetics , Gene Expression Profiling , Glucose/metabolism
19.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175632

ABSTRACT

It is well established that potassium (K+) is an essential nutrient for wheat (Triticum aestivum L.) growth and development. Several microRNAs (miRNAs), including miR166, are reportedly vital roles related to plant growth and stress responses. In this study, a K+ starvation-responsive miRNA (miR166d) was identified, which showed increased expression in the roots of wheat seedlings exposed to low-K+ stress. The overexpression of miR166d considerably increased the tolerance of transgenic Arabidopsis plants to K+ deprivation treatment. Furthermore, disrupting miR166d expression via virus-induced gene silencing (VIGS) adversely affected wheat adaptation to low-K+ stress. Additionally, miR166d directly targeted the calcium-dependent protein kinase 7-D gene (TaCPK7-D) in wheat. The TaCPK7-D gene expression was decreased in wheat seedling roots following K+ starvation treatment. Silencing TaCPK7-D in wheat increased K+ uptake under K+ starvation. Moreover, we observed that the miR166d/TaCPK7-D module could affect wheat tolerance to K+ starvation stress by regulating TaAKT1 and TaHAK1 expression. Taken together, our results indicate that miR166d is vital for K+ uptake and K+ starvation tolerance of wheat via regulation of TaCPK7-D.


Subject(s)
Plant Proteins , Triticum , Gene Expression Regulation, Plant , Plant Proteins/genetics , Potassium/metabolism , Seedlings/genetics , Seedlings/metabolism , Signal Transduction/genetics , Triticum/metabolism , MicroRNAs
20.
BMC Plant Biol ; 22(1): 204, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35443615

ABSTRACT

BACKGROUND: CHY zinc-finger and RING finger (CHYR) proteins have been functionally characterized in plant growth, development and various stress responses. However, the genome-wide analysis was not performed in wheat. RESULTS: In this study, a total of 18 TaCHYR genes were identified in wheat and classified into three groups. All TaCHYR genes contained CHY-zinc finger, C3H2C3-type RING finger and zinc ribbon domains, and group III members included 1-3 hemerythrin domains in the N-terminus regions. TaCHYR genes in each group shared similar conserved domains distribution. Chromosomal location, synteny and cis-elements analysis of TaCHYRs were also analyzed. Real-time PCR results indicated that most of selected 9 TaCHYR genes exhibited higher expression levels in leaves during wheat seedling stage. All these TaCHYR genes were up-regulated after PEG treatment, and these TaCHYRs exhibited differential expression patterns in response to salt, cold and heat stress in seedling leaves. The growth of yeast cells expressing TaCHYR2.1, TaCHYR9.2 and TaCHYR11.1 were inhibited under salt and dehydration stress. Moreover, gene ontology (GO) annotation, protein interaction and miRNA regulatory network of TaCHYR genes were analyzed. CONCLUSIONS: These results increase our understanding of CHYR genes and provide robust candidate genes for further functional investigations aimed at crop improvement.


Subject(s)
Bread , Triticum , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Seedlings/genetics , Stress, Physiological/genetics , Triticum/genetics , Triticum/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL