Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Biol Chem ; 298(12): 102697, 2022 12.
Article in English | MEDLINE | ID: mdl-36379252

ABSTRACT

Organisms must either synthesize or assimilate essential organic compounds to survive. The homocysteine synthase Met15 has been considered essential for inorganic sulfur assimilation in yeast since its discovery in the 1970s. As a result, MET15 has served as a genetic marker for hundreds of experiments that play a foundational role in eukaryote genetics and systems biology. Nevertheless, we demonstrate here through structural and evolutionary modeling, in vitro kinetic assays, and genetic complementation, that an alternative homocysteine synthase encoded by the previously uncharacterized gene YLL058W enables cells lacking Met15 to assimilate enough inorganic sulfur for survival and proliferation. These cells however fail to grow in patches or liquid cultures unless provided with exogenous methionine or other organosulfurs. We show that this growth failure, which has historically justified the status of MET15 as a classic auxotrophic marker, is largely explained by toxic accumulation of the gas hydrogen sulfide because of a metabolic bottleneck. When patched or cultured with a hydrogen sulfide chelator, and when propagated as colony grids, cells without Met15 assimilate inorganic sulfur and grow, and cells with Met15 achieve even higher yields. Thus, Met15 is not essential for inorganic sulfur assimilation in yeast. Instead, MET15 is the first example of a yeast gene whose loss conditionally prevents growth in a manner that depends on local gas exchange. Our results have broad implications for investigations of sulfur metabolism, including studies of stress response, methionine restriction, and aging. More generally, our findings illustrate how unappreciated experimental variables can obfuscate biological discovery.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Sulfur , Humans , Hydrogen Sulfide/metabolism , Methionine/metabolism , Mutation , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Fungal Genet Biol ; 164: 103765, 2023 01.
Article in English | MEDLINE | ID: mdl-36528339

ABSTRACT

The production of yeast oil from lignocellulosic biomasses is impaired by inhibitors formed during the pretreatment step, mainly acetic acid. Herein, we applied Adaptive Laboratory Evolution (ALE) to select three Acetic acid Tolerant Strains (ATS) of P. laurentii UFV-1. Different phenotypes emerged alongside evolution. The ATS II presented trade-offs in the absence of acetic acid, suggesting that it displays a specialized phenotype of tolerance to growth on organic acids. On the other hand, ATS I and ATS III presented phenotypes associated with the behavior of generalists. ATS I was considered the most promising evolved strain as it displayed the oleaginous phenotype in all conditions tested. Thus, we applied whole-genome sequencing to detect the mutations that emerged in this strain during the ALE. We found alterations in genes encoding proteins involved in different cellular functions, including multidrug resistance (MDR) transporters, energy metabolism, detoxification, coenzyme recycling, and cell envelope remodeling. To evaluate acetic acid stress responses, both parental and ATS I strains were cultivated in chemostat mode in the absence and presence of acetic acid. In contrast to ATS I, the parental strain presented alterations in the cell envelope and cell size under acetic acid stress conditions. Furthermore, the parental strain and the ATS I presented differences regarding acetic acid assimilation. Contrary to the parental strain, the ATS I displayed an increase in unsaturated fatty acid content irrespective of acetic acid stress, which might be related to improved tolerance to acetic acid. Altogether, these results provided insights into the mechanisms involved with the acetic acid tolerance displayed by ATS I and the responses of P. laurentii to this stressful condition.


Subject(s)
Acetic Acid , Saccharomyces cerevisiae , Acetic Acid/pharmacology , Acetic Acid/metabolism , Saccharomyces cerevisiae/genetics , Phenotype , Membrane Transport Proteins/genetics
3.
Appl Environ Microbiol ; 89(11): e0114123, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37843270

ABSTRACT

IMPORTANCE: Limited nitrogen supply can prevent the completion of alcoholic fermentation. Supplementation through peptides as an alternative, natural source of nitrogen for yeast offers an interesting solution for this issue. In this work, the S. cerevisiae peptide transporters of the Opt and Fot families were studied. We demonstrated that Fot and Opt2 have a broader peptide length preference than previously reported, enabling yeasts to acquire sufficient nitrogen from peptides without requiring additional ammonia or amino acids to complete fermentation. On the contrary, Opt1 was unable to consume any peptide in the given conditions, whereas it has been described elsewhere as the main peptide transporter for peptides longer than three amino acid residues in experiments in laboratory conditions. This controversy signifies the need in applied sciences for approaching experimental conditions to those prevalent in the industry for its more accurate characterization. Altogether, this work provides further evidence of the importance of peptides as a nitrogen source for yeast and their consequent positive impact on fermentation kinetics.


Subject(s)
Saccharomyces cerevisiae , Wine , Humans , Saccharomyces cerevisiae/metabolism , Nitrogen/metabolism , Biological Transport , Oligopeptides/metabolism , Fermentation
4.
Food Microbiol ; 114: 104300, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290876

ABSTRACT

Some spoilage yeasts are able to develop resistance to commonly used weak-acid preservatives. We studied the trehalose metabolism and its regulation in Saccharomyces cerevisiae in response to propionic acid stress. We show interruption of trehalose synthetic pathway caused the mutant hypersensitive to the acid stress, while its overexpression conferred acid-tolerance to yeast. Interestingly, this acid-tolerance phenotype was largely independent of trehalose but relied on the trehalose synthetic pathway. We demonstrate trehalose metabolism played a vital role in regulation of glycolysis flux and Pi/ATP homeostasis in yeast during acid-adaptation, and the PKA and TOR signaling pathways were involved in regulating trehalose synthesis at transcriptional level. This work confirmed the regulatory function of trehalose metabolism and improved our understanding of molecular mechanism of acid-adaptation of yeast. By exemplifying trehalose metabolism interruption limited the growth of S. cerevisiae exposed to weak acids, and trehalose pathway overexpression conferring acid-resistance to Yarrowia lipolytica enhanced citric acid production, this work provides new insights into the development of efficient preservation strategies and robust organic acid producers.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Trehalose/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Acids/metabolism , Food Industry
5.
J Biol Chem ; 297(2): 100917, 2021 08.
Article in English | MEDLINE | ID: mdl-34181946

ABSTRACT

Across eukaryotes, Rho GTPases such as Rac and Cdc42 play important roles in establishing cell polarity, which is a key feature of cell growth. In mammals and filamentous fungi, Rac targets large protein complexes containing NADPH oxidases (NOX) that produce reactive oxygen species (ROS). In comparison, Rho GTPases of unicellular eukaryotes were believed to signal cell polarity without ROS, and it was unclear whether Rho GTPases were required for ROS production in these organisms. We document here the first example of Rho GTPase-mediated post-transcriptional control of ROS in a unicellular microbe. Specifically, Cdc42 is required for ROS production by the NOX Fre8 of the opportunistic fungal pathogen Candida albicans. During morphogenesis to a hyphal form, a filamentous growth state, C. albicans FRE8 mRNA is induced, which leads to a burst in ROS. Fre8-ROS is also induced during morphogenesis when FRE8 is driven by an ectopic promoter; hence, Fre8 ROS production is in addition controlled at the post-transcriptional level. Using fluorescently tagged Fre8, we observe that the majority of the protein is associated with the vacuolar system. Interestingly, much of Fre8 in the vacuolar system appears inactive, and Fre8-induced ROS is only produced at sites near the hyphal tip, where Cdc42 is also localized during morphogenesis. We observe that Cdc42 is necessary to activate Fre8-mediated ROS production during morphogenesis. Cdc42 regulation of Fre8 occurs without the large NOX protein complexes typical of higher eukaryotes and therefore represents a novel form of ROS control by Rho GTPases.


Subject(s)
Candida albicans/pathogenicity , Candidiasis/pathology , Hyphae/metabolism , Reactive Oxygen Species/metabolism , cdc42 GTP-Binding Protein/metabolism , Candida albicans/isolation & purification , Candidiasis/metabolism , Candidiasis/microbiology , Cell Polarity , Fungal Proteins/metabolism , Morphogenesis
6.
Mol Microbiol ; 114(1): 46-65, 2020 07.
Article in English | MEDLINE | ID: mdl-32090388

ABSTRACT

The methionine salvage pathway (MSP) regenerates methionine from 5'-methylthioadenosine (MTA). Aerobic MSP consists of six enzymatic steps. The mug14+ and adi1+ genes that are involved in the third and fifth steps of the pathway are repressed when Schizosaccharomyces pombe undergoes a transition from high- to low-iron conditions. Results consistently show that methionine auxotrophic cells (met6Δ) require iron for growth in the presence of MTA as the sole source of methionine. Inactivation of the iron-using protein Adi1 leads to defects in the utilization of MTA. In the case of the third step of the pathway, co-expression of two distinct proteins, Mta3 and Mde1, is required. These proteins are interdependent to rescue MTA-dependent growth deficit of met6Δ cells. Coimmunoprecipitation experiments showed that Mta3 is a binding partner of Mde1. Meiotic met6Δ cells co-expressing mta3+ and mde1+ or mta3+ and mug14+ produce comparable levels of spores in the presence of MTA, revealing that Mde1 and Mug14 share a common function when co-expressed with Mta3 in sporulating cells. In sum, our findings unveil several novel features of MSP, especially with respect to its regulation by iron and the discovery of a non-canonical third enzymatic step in the fission yeast.


Subject(s)
Deoxyadenosines/metabolism , Iron/metabolism , Methionine/biosynthesis , Schizosaccharomyces/metabolism , Thionucleosides/metabolism , Iron Deficiencies , Polyamines/metabolism
7.
FEMS Yeast Res ; 21(3)2021 04 07.
Article in English | MEDLINE | ID: mdl-33826723

ABSTRACT

Present knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed distinct extracellular hexose concentrations and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h-1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h-1) and JP1 (0.32 h-1), could be associated to its low invertase activity (0.04-0.09 U/mgDM). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.


Subject(s)
Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Sucrose/metabolism , Aerobiosis , Bioreactors , Biotechnology , Fructose/metabolism , Glucose/metabolism , Phenotype , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
J Biol Chem ; 294(27): 10674-10685, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31152065

ABSTRACT

Cyanamide (H2N-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that Saccharomyces cerevisiae exposed to cyanamide resulted in strong induction of DDI2 gene expression. Ddi2 enzymatically hydrates cyanamide to urea and belongs to the family of HD-domain metalloenzymes (named after conserved active-site metal-binding His and Asp residues). Here, we report the X-ray structure of yeast Ddi2 to 2.6 Å resolution, revealing that Ddi2 is a dimeric zinc metalloenzyme. We also confirm that Ddi2 shares structural similarity with other known HD-domain proteins. HD residues His-55, His-88, and Asp-89 coordinate the active-site zinc, and the fourth zinc ligand is a water/hydroxide molecule. Other HD domain enzymes have a second aspartate metal ligand, but in Ddi2 this residue (Thr-157) does not interact with the zinc ion. Several Ddi2 active-site point mutations exhibited reduced catalytic activity. We kinetically and structurally characterized H137N and T157V mutants of Ddi2. A cyanamide soak of the Ddi2-T157V enzyme revealed cyanamide bound directly to the Zn2+ ion, having displaced the zinc-bound water molecule. The mode of cyanamide binding to Ddi2 resembles cyanamide binding to the active-site zinc of carbonic anhydrase, a known cyanamide hydratase. Finally, we observed that the sensitivity of ddi2Δ ddi3Δ to cyanamide was not rescued by plasmids harboring ddi2-H137N or ddi2-TI57V variants, demonstrating that yeast cells require a functioning cyanamide hydratase to overcome cyanamide-induced growth defects.


Subject(s)
Hydro-Lyases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Cyanamide/chemistry , Cyanamide/metabolism , Dimerization , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Inactivation, Metabolic , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Substrate Specificity , Zinc/chemistry , Zinc/metabolism
9.
J Biol Chem ; 293(17): 6349-6362, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29549126

ABSTRACT

In the fission yeast Schizosaccharomyces pombe, acquisition of exogenous heme is largely mediated by the cell membrane-associated Shu1. Here, we report that Str3, a member of the major facilitator superfamily of transporters, promotes cellular heme import. Using a strain that cannot synthesize heme de novo (hem1Δ) and lacks Shu1, we found that the heme-dependent growth deficit of this strain is rescued by hemin supplementation in the presence of Str3. Microscopic analyses of a hem1Δ shu1Δ str3Δ mutant strain in the presence of the heme analog zinc mesoporphyrin IX (ZnMP) revealed that ZnMP fails to accumulate within the mutant cells. In contrast, Str3-expressing hem1Δ shu1Δ cells could take up ZnMP at a 10-µm concentration. The yeast Saccharomyces cerevisiae cannot efficiently transport exogenously supplied hemin. However, heterologous expression of Str3 from S. pombe in S. cerevisiae resulted in ZnMP accumulation within S. cerevisiae cells. Moreover, hemin-agarose pulldown assays revealed that Str3 binds hemin. In contrast, an Str3 mutant in which Tyr and Ser residues of two putative heme-binding motifs (530YX3Y534 and 552SX4Y557) had been replaced with alanines exhibited a loss of affinity for hemin. Furthermore, this Str3 mutant failed to rescue the heme-dependent growth deficit of a hem1Δ shu1Δ str3Δ strain. Further analysis by absorbance spectroscopy disclosed that a predicted extracellular loop region in Str3 containing the two putative heme-binding motifs interacts with hemin, with a KD of 6.6 µm Taken together, these results indicate that Str3 is a second cell-surface membrane protein for acquisition of exogenous heme in S. pombe.


Subject(s)
Carrier Proteins/chemistry , Heme/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/chemistry , Amino Acid Motifs , Carrier Proteins/genetics , Carrier Proteins/metabolism , Heme/genetics , Heme/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Species Specificity
10.
J Biol Chem ; 293(49): 18977-18988, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30209131

ABSTRACT

Vacuolar ATPases are multisubunit protein complexes that are indispensable for acidification and pH homeostasis in a variety of physiological processes in all eukaryotic cells. An arginine residue (Arg735) in transmembrane helix 7 (TM7) of subunit a of the yeast ATPase is known to be essential for proton translocation. However, the specific mechanism of its involvement in proton transport remains to be determined. Arginine residues are usually assumed to "snorkel" toward the protein surface when exposed to a hydrophobic environment. Here, using solution NMR spectroscopy, molecular dynamics simulations, and in vivo yeast assays, we obtained evidence for the formation of a transient, membrane-embedded cation-π interaction in TM7 between Arg735 and two highly conserved nearby aromatic residues, Tyr733 and Trp737 We propose a mechanism by which the transient, membrane-embedded cation-π complex provides the necessary energy to keep the charged side chain of Arg735 within the hydrophobic membrane. Such cation-π interactions may define a general mechanism to retain charged amino acids in a hydrophobic membrane environment.


Subject(s)
Arginine/chemistry , Protons , Saccharomyces cerevisiae Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Gene Knockout Techniques , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Static Electricity , Tryptophan/chemistry , Tryptophan/genetics , Tyrosine/chemistry , Tyrosine/genetics , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/genetics
11.
J Biol Chem ; 293(18): 6721-6735, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29567836

ABSTRACT

The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na+/H+ exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aß in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease.


Subject(s)
Drosophila Proteins/metabolism , Endosomes/metabolism , Histone Deacetylase 1/metabolism , Lysosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Acetylation , Animals , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Cell Line, Transformed , Cyclic AMP Response Element-Binding Protein/metabolism , Drosophila , Epigenesis, Genetic , HEK293 Cells , Histones/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Neurodegenerative Diseases/metabolism , Saccharomyces cerevisiae/enzymology , Sodium-Hydrogen Exchangers/metabolism , Transcription, Genetic
12.
Appl Environ Microbiol ; 85(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31375494

ABSTRACT

So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of S. cerevisiae in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (µ < 0.002 h-1) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of S. cerevisiae under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals.IMPORTANCE The yeast Saccharomyces cerevisiae is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing S. cerevisiae cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of S. cerevisiae through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth S. cerevisiae cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.


Subject(s)
Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Ammonium Compounds/metabolism , Batch Cell Culture Techniques , Biomass , Bioreactors , Carbon/metabolism , Culture Media/chemistry , Fermentation , Glucose/metabolism , Metabolic Networks and Pathways , Models, Biological , Nitrogen/metabolism , Phosphates/metabolism
13.
Biotechnol Bioeng ; 116(5): 1029-1038, 2019 05.
Article in English | MEDLINE | ID: mdl-30659597

ABSTRACT

To achieve large-scale, high-throughput experiments for systems biology research of microorganisms, reliable data from robust cultivation systems are needed. Chemostats are such systems, ensuring reproducibility and quality by providing a stable, well-controlled environment for the cells. However, many of the available chemostat systems require large amounts of media and are complex to set up and expensive to purchase and maintain. To address these concerns, we developed a mini-chemostat (MC) system with 16 reactors, each at a working volume of 40 ml. Sensors measure dissolved oxygen in the reactor, while OD600 is measured in the outflow. We further developed a CO2 and pH sensor array that can be plugged into the outflow of the reactors. The system was used to characterize yeast physiology at four metabolically different conditions: limitations of glucose, both aerobic and anaerobic, nitrogen, and ethanol. The physiology of yeast cells grown at the four different conditions in the MC system was compared with the yeast cells grown in a DASGIP 1 L system using RNAseq analysis. The results show that the MC system provides the same environmental conditions as the DASGIP system and that the MC system is reproducible between different runs. The system is built to be easily scalable with more reactors and to include more sensors, if available. Our study shows that a robust, reproducible chemostat system for high-throughput and large-scale experiments can be built at low costs.


Subject(s)
Bioreactors , Ethanol/metabolism , Glucose/metabolism , Saccharomyces cerevisiae/growth & development
14.
J Biol Chem ; 292(12): 4898-4912, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28193844

ABSTRACT

The Schizosaccharomyces pombe shu1+ gene encodes a cell-surface protein required for assimilation of exogenous heme. In this study, shaving experiments showed that Shu1 is released from membrane preparations when spheroplast lysates are incubated with phosphoinositide-specific phospholipase C (PI-PLC). Shu1 cleavability by PI-PLC and its predicted hydropathy profile strongly suggested that Shu1 is a glycosylphosphatidylinositol-anchored protein. When heme biosynthesis is selectively blocked in hem1Δ mutant cells, the heme analog zinc mesoporphyrin IX (ZnMP) first accumulates into vacuoles and then subsequently, within the cytoplasm in a rapid and Shu1-dependent manner. An HA4-tagged shu1+ allele that retained wild-type function localizes to the cell surface in response to low hemin concentrations, but under high hemin concentrations, Shu1-HA4 re-localizes to the vacuolar membrane. Inactivation of abc3+, encoding a vacuolar membrane transporter, results in hem1Δ abc3Δ mutant cells being unable to grow in the presence of hemin as the sole iron source. In hem1Δ abc3Δ cells, ZnMP accumulates primarily in vacuoles and does not sequentially accumulate in the cytosol. Consistent with a role for Abc3 as vacuolar hemin exporter, results with hemin-agarose pulldown assays showed that Abc3 binds to hemin. In contrast, an Abc3 mutant in which an inverted Cys-Pro motif had been replaced with Ala residues fails to bind hemin with high affinity. Taken together, these results show that Shu1 undergoes rapid hemin-induced internalization from the cell surface to the vacuolar membrane and that the transporter Abc3 participates in the mobilization of stored heme from the vacuole to the cytosol.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Heme/metabolism , Membrane Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Biological Transport , Hemin/metabolism , Metalloporphyrins/metabolism , Protein Transport , Schizosaccharomyces/cytology
15.
J Biol Chem ; 292(28): 11896-11914, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28572514

ABSTRACT

During fungal spore germination, a resting spore returns to a conventional mode of cell division and resumes vegetative growth, but the requirements for spore germination are incompletely understood. Here, we show that copper is essential for spore germination in Schizosaccharomyces pombe Germinating spores develop a single germ tube that emerges from the outer spore wall in a process called outgrowth. Under low-copper conditions, the copper transporters Ctr4 and Ctr5 are maximally expressed at the onset of outgrowth. In the case of Ctr6, its expression is broader, taking place before and during outgrowth. Spores lacking Ctr4, Ctr5, and the copper sensor Cuf1 exhibit complete germination arrest at outgrowth. In contrast, ctr6 deletion only partially interferes with formation of outgrowing spores. At outgrowth, Ctr4-GFP and Ctr5-Cherry first co-localize at the spore contour, followed by re-location to a middle peripheral spore region. Subsequently, they move away from the spore body to occupy the periphery of the nascent cell. After breaking of spore dormancy, Ctr6 localizes to the vacuole membranes that are enriched in the spore body relative to the germ tube. Using a copper-binding tracker, results showed that labile copper is preferentially localized to the spore body. Further analysis showed that Ctr4 and Ctr6 are required for copper-dependent activation of the superoxide dismutase 1 (SOD1) during spore germination. This activation is critical because the loss of SOD1 activity blocked spore germination at outgrowth. Taken together, these results indicate that cell-surface copper transporters and SOD1 are required for completion of the spore germination program.


Subject(s)
Cation Transport Proteins/metabolism , Gene Expression Regulation, Fungal , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/physiology , Spores, Fungal/physiology , Superoxide Dismutase-1/metabolism , Transcription Factors/metabolism , Cation Transport Proteins/genetics , Copper/metabolism , Enzyme Activation , Gene Deletion , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Microscopy, Interference , Microscopy, Phase-Contrast , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SLC31 Proteins , Schizosaccharomyces/cytology , Schizosaccharomyces/growth & development , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Spores, Fungal/cytology , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Transcription Factors/genetics , Red Fluorescent Protein
16.
Yeast ; 35(12): 639-652, 2018 12.
Article in English | MEDLINE | ID: mdl-30221387

ABSTRACT

Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake. Here, PvSUF1-dependent S. cerevisiae strains were evolved for faster growth. Of five independently evolved strains, two showed an approximately twofold higher anaerobic growth rate on sucrose than the parental strain (µ = 0.19 h-1 and µ = 0.08 h-1 , respectively). All five mutants displayed sucrose-induced proton uptake (13-50 µmol H+ (g biomass)-1  min-1 ). Their ATP yield from sucrose dissimilation, as estimated from biomass yields in anaerobic chemostat cultures, was the same as that of a congenic strain expressing the native sucrose symporter Mal11p. Four out of six observed amino acid substitutions encoded by evolved PvSUF1 alleles removed or introduced a cysteine residue and may be involved in transporter folding and/or oligomerization. Expression of one of the evolved PvSUF1 alleles (PvSUF1I209F C265F G326C ) in an unevolved strain enabled it to grow on sucrose at the same rate (0.19 h-1 ) as the corresponding evolved strain. This study shows how laboratory evolution may improve sucrose uptake in yeast via heterologous plant transporters, highlights the importance of cysteine residues for their efficient expression, and warrants reinvestigation of PvSuf1's transport mechanism.


Subject(s)
Membrane Transport Proteins/metabolism , Mutant Proteins/metabolism , Mutation, Missense , Phaseolus/enzymology , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sucrose/metabolism , Adenosine Triphosphate/metabolism , Anaerobiosis , Biological Transport , Membrane Transport Proteins/genetics , Mutant Proteins/genetics , Phaseolus/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
17.
Metab Eng ; 45: 121-133, 2018 01.
Article in English | MEDLINE | ID: mdl-29196124

ABSTRACT

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02h-1 (LmSPase) and 0.06 ± 0.01h-1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01h-1 and 0.08 ± 0.00h-1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.


Subject(s)
Bacterial Proteins , Glucosyltransferases , Leuconostoc mesenteroides/genetics , Membrane Transport Proteins , Metabolic Engineering , Phaseolus/genetics , Plant Proteins , Saccharomyces cerevisiae , Sucrose/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Biological Transport, Active/genetics , Glucosyltransferases/biosynthesis , Glucosyltransferases/genetics , Leuconostoc mesenteroides/enzymology , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
18.
Antonie Van Leeuwenhoek ; 111(2): 183-195, 2018 02.
Article in English | MEDLINE | ID: mdl-28900755

ABSTRACT

The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serves [corrected] as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.


Subject(s)
Glucose/metabolism , Kluyveromyces/physiology , Batch Cell Culture Techniques , Biomass , Bioreactors , Extracellular Space , Kluyveromyces/chemistry , Metabolome , Metabolomics/methods
19.
Antonie Van Leeuwenhoek ; 110(7): 971-983, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28470565

ABSTRACT

Although first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce. Thus, developing an appropriate scaled down system for this process has become a necessity. In this paper, we present the design and demonstration of a simple and effective laboratory-scale system mimicking the industrial process used for first generation (1G) fuel ethanol production in the Brazilian sugarcane mills. We benchmarked this system via the superior phenotype of the Saccharomyces cerevisiae PE-2 strain, compared to other strains from the same species: S288c, baker's yeast, and CEN.PK113-7D. We trust that such a system can be easily implemented in different laboratories worldwide, and will allow a better understanding of the S. cerevisiae strains that can persist and dominate in this industrial, non-aseptic and peculiar environment.


Subject(s)
Ethanol/metabolism , Industrial Microbiology , Saccharomyces cerevisiae/metabolism , Brazil , Fermentation
20.
J Biol Chem ; 290(16): 10176-90, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25733668

ABSTRACT

Iron is an essential metal cofactor that is required for many biological processes. Eukaryotic cells have consequently developed different strategies for its acquisition. Until now, Schizosaccharomyces pombe was known to use reductive iron uptake and siderophore-bound iron transport to scavenge iron from the environment. Here, we report the identification of a gene designated shu1(+) that encodes a protein that enables S. pombe to take up extracellular heme for cell growth. When iron levels are low, the transcription of shu1(+) is induced, although its expression is repressed when iron levels rise. The iron-dependent down-regulation of shu1(+) requires the GATA-type transcriptional repressor Fep1, which strongly associates with a proximal promoter region of shu1(+) in vivo in response to iron repletion. HA4-tagged Shu1 localizes to the plasma membrane in cells expressing a functional shu1(+)-HA4 allele. When heme biosynthesis is selectively blocked in mutated S. pombe cells, their ability to acquire exogenous hemin or the fluorescent heme analog zinc mesoporphyrin IX is dependent on the expression of Shu1. Further analysis by absorbance spectroscopy and hemin-agarose pulldown assays showed that Shu1 interacts with hemin, with a KD of ∼2.2 µm. Taken together, results reported here revealed that S. pombe possesses an unexpected pathway for heme assimilation, which may also serve as a source of iron for cell growth.


Subject(s)
Gene Expression Regulation, Fungal , Heme/metabolism , Iron/metabolism , Membrane Transport Proteins/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Cell Membrane/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Hemin/metabolism , Ion Transport , Membrane Transport Proteins/metabolism , Metalloporphyrins/metabolism , Oxidation-Reduction , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL