ABSTRACT
A disintegrin and metalloprotease 17 (ADAM17) is a membrane-tethered protease that triggers multiple signaling pathways. It releases active forms of the primary inflammatory cytokine tumor necrosis factor (TNF) and cancer-implicated epidermal growth factor (EGF) family growth factors. iRhom2, a rhomboid-like, membrane-embedded pseudoprotease, is an essential cofactor of ADAM17. Here, we present cryoelectron microscopy (cryo-EM) structures of the human ADAM17/iRhom2 complex in both inactive and active states. These reveal three regulatory mechanisms. First, exploiting the rhomboid-like hallmark of TMD recognition, iRhom2 interacts with the ADAM17 TMD to promote ADAM17 trafficking and enzyme maturation. Second, a unique iRhom2 extracellular domain unexpectedly retains the cleaved ADAM17 inhibitory prodomain, safeguarding against premature activation and dysregulated proteolysis. Finally, loss of the prodomain from the complex mobilizes the ADAM17 protease domain, contributing to its ability to engage substrates. Our results reveal how a rhomboid-like pseudoprotease has been repurposed during evolution to regulate a potent membrane-tethered enzyme, ADAM17, ensuring the fidelity of inflammatory and growth factor signaling.
Subject(s)
ADAM17 Protein , Cryoelectron Microscopy , Signal Transduction , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Humans , HEK293 Cells , Carrier Proteins/metabolism , Carrier Proteins/genetics , Inflammation/metabolism , Inflammation/genetics , Proteolysis , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Protein Domains , Protein Binding , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/genetics , Intracellular Signaling Peptides and ProteinsABSTRACT
Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.
Subject(s)
Cytomegalovirus , Tumor Necrosis Factor-alpha , Humans , Cytomegalovirus/physiology , Tumor Necrosis Factor-alpha/metabolism , Proteome/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Proteomics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cytokines/metabolism , Cell Membrane/metabolism , Metalloproteases/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Membrane Glycoproteins/metabolism , Viral Proteins/metabolismABSTRACT
Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by ß- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.
Subject(s)
ADAM10 Protein , ADAM17 Protein , Amyloid Precursor Protein Secretases , Membrane Proteins , Receptors, Phospholipase A2 , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Humans , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , HEK293 Cells , Receptors, Phospholipase A2/metabolism , Receptors, Phospholipase A2/genetics , Podocytes/metabolism , Proteolysis , Protein Domains , Ionomycin/pharmacologyABSTRACT
Tylosis with oesophageal cancer (TOC) is a rare familial disorder caused by cytoplasmic mutations in inactive rhomboid 2 (iRhom2 or iR2, encoded by Rhbdf2). iR2 and the related iRhom1 (or iR1, encoded by Rhbdf1) are key regulators of the membrane-anchored metalloprotease ADAM17, which is required for activating EGFR ligands and for releasing pro-inflammatory cytokines such as TNFα (or TNF). A cytoplasmic deletion in iR2, including the TOC site, leads to curly coat or bare skin (cub) in mice, whereas a knock-in TOC mutation (toc) causes less severe alopecia and wavy fur. The abnormal skin and hair phenotypes of iR2cub/cub and iR2toc/toc mice depend on amphiregulin (Areg) and Adam17, as loss of one allele of either gene rescues the fur phenotypes. Remarkably, we found that iR1-/- iR2cub/cub mice survived, despite a lack of mature ADAM17, whereas iR2cub/cub Adam17-/- mice died perinatally, suggesting that the iR2cub gain-of-function mutation requires the presence of ADAM17, but not its catalytic activity. The iR2toc mutation did not substantially reduce the levels of mature ADAM17, but instead affected its function in a substrate-selective manner. Our findings provide new insights into the role of the cytoplasmic domain of iR2 in vivo, with implications for the treatment of TOC patients.
Subject(s)
Keratoderma, Palmoplantar, Diffuse , Keratoderma, Palmoplantar , Neoplasms , Animals , Mice , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/genetics , Keratoderma, Palmoplantar/genetics , Membrane Proteins/geneticsABSTRACT
The renin-angiotensin-aldosterone system (RAAS) plays a critical role in the regulation of blood pressure and fluid balance, with angiotensin-converting enzyme (ACE) being a key transmembrane enzyme that converts angiotensin I to angiotensin II. Hence, ACE activity is an important drug target in cardiovascular pathologies such as hypertension. Our study demonstrates that human pulmonary microvascular endothelial cells (HPMECs) are an important source of proteolytically released ACE. The proteolytic release of transmembrane proteins, a process known as ectodomain shedding, is facilitated by membrane proteases called sheddases. By knockout and inhibition studies, we identified ADAM10 (A disintegrin and metalloprotease 10) as a primary sheddase responsible for ACE release in HEK293 cells. The function of ADAM10 as primary, constitutive sheddase of ACE was confirmed in HPMECs. Moreover, we demonstrated the physiological relevance of ADAM10 for ACE shedding in ex vivo precision cut lung slices (PCLS) from human and mouse lungs. Notably, ADAM17 activity is not directly involved in ACE shedding but indirectly by regulating ACE mRNA and protein levels, leading to increased ADAM10-mediated ACE shedding. Importantly, soluble ACE generated by shedding is enzymatically active and can thereby participate in systemic RAAS functions. Taken together, our findings highlight the critical role of ADAM10 (directly) and ADAM17 (indirectly) in ACE shedding and RAAS modulation.
Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Lung , Membrane Proteins , Peptidyl-Dipeptidase A , Humans , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Animals , Mice , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , HEK293 Cells , Endothelial Cells/metabolism , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Renin-Angiotensin System/physiology , Mice, Inbred C57BL , Male , Mice, Knockout , Endothelium, Vascular/metabolismABSTRACT
The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.
Subject(s)
Carrier Proteins , Esophageal Neoplasms , Keratoderma, Palmoplantar , Humans , Mice , Animals , Phosphorylation , Carrier Proteins/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Signal Transduction/genetics , Mutation , Esophageal Neoplasms/geneticsABSTRACT
Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.
Subject(s)
Carrier Proteins , Epstein-Barr Virus Infections , Animals , Humans , Mice , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/metabolism , Herpesvirus 4, Human , Major Histocompatibility Complex , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, KnockoutABSTRACT
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Subject(s)
Nitrosamines , Pancreatitis , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Acute Disease , Animals , Carcinogens , Ceruletide/toxicity , Cytokines , Disintegrins , Endopeptidases , Fibrosis , Interleukin-6/genetics , Interleukin-6/metabolism , Ketones , Mice , Nicotine , Pancreatitis/drug therapy , Pancreatitis/genetics , Peptide Hydrolases , Tumor Necrosis Factor-alpha/metabolismABSTRACT
PURPOSE OF REVIEW: Ectodomain shedding has been investigated since the late 1980s. The abundant and platelet specific GPIbα receptor is cleaved by ADAM17 resulting in the release of its ectodomain called glycocalicin. This review will address the role of glycocalicin as an end-stage marker of platelet turnover and storage lesion and will consider a potential function as effector in processes beyond hemostasis. RECENT FINDINGS: Glycocalicin has been described as a marker for platelet senescence, turnover and storage lesion but is not routinely used in a clinical setting because its diagnostic value is nondiscriminatory. Inhibition of glycocalicin shedding improves posttransfusion recovery but little is known (yet) about potential hemostatic improvements. In physiological settings, GPIbα shedding is restricted to the intracellular GPIbα receptor subpopulation suggesting a role for shedding or glycocalicin beyond hemostasis. SUMMARY: So far, all evidence represents glycocalicin as an end-stage biomarker of platelet senescence and a potential trigger for platelet clearance. The extensive list of interaction partners of GPIbα in fields beyond hemostasis opens new possibilities to investigate specific effector functions of glycocalicin.
Subject(s)
Blood Platelets , Platelet Glycoprotein GPIb-IX Complex , Humans , Platelet Glycoprotein GPIb-IX Complex/metabolism , Blood Platelets/metabolism , Biomarkers/metabolism , ADAM17 Protein/metabolism , Animals , Cellular Senescence , HemostasisABSTRACT
Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.
Subject(s)
ADAM17 Protein , Proto-Oncogene Proteins c-fos , Retinal Neovascularization , Animals , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Retinal Neovascularization/genetics , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice , Humans , Retinopathy of Prematurity/metabolism , Retinopathy of Prematurity/pathology , Retinopathy of Prematurity/genetics , Mice, Inbred C57BL , Transcription, Genetic , Gene Expression Regulation , Retinal Vessels/metabolism , Retinal Vessels/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Disease Models, Animal , AngiogenesisABSTRACT
PP2A is an essential protein phosphatase that regulates most cellular processes through the formation of holoenzymes containing distinct regulatory B-subunits. Only a limited number of PP2A-regulated phosphorylation sites are known. This hampers our understanding of the mechanisms of site-specific dephosphorylation and of its tumor suppressor functions. Here, we develop phosphoproteomic strategies for global substrate identification of PP2A-B56 and PP2A-B55 holoenzymes. Strikingly, we find that B-subunits directly affect the dephosphorylation site preference of the PP2A catalytic subunit, resulting in unique patterns of kinase opposition. For PP2A-B56, these patterns are further modulated by affinity and position of B56 binding motifs. Our screens identify phosphorylation sites in the cancer target ADAM17 that are regulated through a conserved B56 binding site. Binding of PP2A-B56 to ADAM17 protease decreases growth factor signaling and tumor development in mice. This work provides a roadmap for the identification of phosphatase substrates and reveals unexpected mechanisms governing PP2A dephosphorylation site specificity and tumor suppressor function.
Subject(s)
ADAM17 Protein/metabolism , Protein Phosphatase 2/metabolism , ADAM17 Protein/genetics , Amino Acid Motifs , Animals , Binding Sites , HeLa Cells , Humans , Mice , PhosphorylationABSTRACT
Animals have evolved multiple mechanisms to protect themselves from the cumulative effects of age-related cellular damage. Here, we reveal an unexpected link between the TNF (tumour necrosis factor) inflammatory pathway, triggered by the metalloprotease ADAM17/TACE, and a lipid droplet (LD)-mediated mechanism of protecting retinal cells from age-related degeneration. Loss of ADAM17, TNF and the TNF receptor Grindelwald in pigmented glial cells of the Drosophila retina leads to age-related degeneration of both glia and neurons, preceded by an abnormal accumulation of glial LDs. We show that the glial LDs initially buffer the cells against damage caused by glial and neuronally generated reactive oxygen species (ROS), but that in later life the LDs dissipate, leading to the release of toxic peroxidated lipids. Finally, we demonstrate the existence of a conserved pathway in human iPS-derived microglia-like cells, which are central players in neurodegeneration. Overall, we have discovered a pathway mediated by TNF signalling acting not as a trigger of inflammation, but as a cytoprotective factor in the retina.
Subject(s)
ADAM17 Protein/metabolism , Drosophila Proteins/metabolism , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Neuroglia/metabolism , Retina/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , ADAM17 Protein/genetics , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Lipid Droplets/pathology , Membrane Proteins/genetics , Neuroglia/pathology , Reactive Oxygen Species/metabolism , Retina/pathology , Tumor Necrosis Factor-alpha/geneticsABSTRACT
Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer. Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhom proteins, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17. Here, we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 (also known as RHBDF2) to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing the cytoplasmic domain of iRhom2 as a central component of a positive feedback loop in lung cancer cells. This article has an associated First Person interview with the first authors of the paper.
Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , ErbB Receptors/metabolism , Humans , Ligands , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal TransductionABSTRACT
Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.
Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Humans , Female , Endothelial Cells/metabolism , Receptor, Insulin/metabolism , Phosphatidylserines/metabolism , Neuraminidase/metabolism , Insulin/metabolism , Disintegrins , ADAM17 Protein/metabolism , Anoctamins/metabolismABSTRACT
Bone resorption is driven through osteoclast differentiation by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-Β ligand (RANKL). We noted that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 are downregulated at the expression level during osteoclast differentiation of the murine monocytic cell line RAW264.7 in response to RANKL. Both proteinases are well known to shed a variety of single-pass transmembrane molecules from the cell surface. We further showed that inhibitors of ADAM10 or ADAM17 promote osteoclastic differentiation and furthermore enhance the surface expression of receptors for RANKL and M-CSF on RAW264.7 cells. Using murine bone marrow-derived monocytic cells (BMDMCs), we demonstrated that a genetic deficiency of ADAM17 or its required regulator iRhom2 leads to increased osteoclast development in response to M-CSF and RANKL stimulation. Moreover, ADAM17-deficient osteoclast precursor cells express increased levels of the receptors for RANKL and M-CSF. Thus, ADAM17 negatively regulates osteoclast differentiation, most likely through shedding of these receptors. To assess the time-dependent contribution of ADAM10, we blocked this proteinase by adding a specific inhibitor on day 0 of BMDMC stimulation with M-CSF or on day 7 of subsequent stimulation with RANKL. Only ADAM10 inhibition beginning on day 7 increased the size of developing osteoclasts indicating that ADAM10 suppresses osteoclast differentiation at a later stage. Finally, we could confirm our findings in human peripheral blood mononuclear cells (PBMCs). Thus, downregulation of either ADAM10 or ADAM17 during osteoclast differentiation may represent a novel regulatory mechanism to enhance their differentiation process. Enhanced bone resorption is a critical issue in osteoporosis and is driven through osteoclast differentiation by specific osteogenic mediators. The present study demonstrated that the metalloproteinases ADAM17 and ADAM10 critically suppress osteoclast development. This was observed for a murine cell line, for isolated murine bone marrow cells and for human blood cells by either preferential inhibition of the proteinases or by gene knockout. As a possible mechanism, we studied the surface expression of critical receptors for osteogenic mediators on developing osteoclasts. Our findings revealed that the suppressive effects of ADAM17 and ADAM10 on osteoclastogenesis can be explained in part by the proteolytic cleavage of surface receptors by ADAM10 and ADAM17, which reduces the sensitivity of these cells to osteogenic mediators. We also observed that osteoclast differentiation was associated with the downregulation of ADAM10 and ADAM17, which reduced their suppressive effects. We therefore propose that this downregulation serves as a feedback loop for enhancing osteoclast development.
Subject(s)
ADAM10 Protein , ADAM17 Protein , Amyloid Precursor Protein Secretases , Cell Differentiation , Down-Regulation , Membrane Proteins , Osteoclasts , RANK Ligand , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Osteoclasts/metabolism , Osteoclasts/cytology , Animals , Cell Differentiation/genetics , Mice , Down-Regulation/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , RANK Ligand/metabolism , RAW 264.7 Cells , Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Mice, Inbred C57BLABSTRACT
ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.
Subject(s)
ADAM17 Protein , Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Receptor, Notch1 , Sorafenib , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Animals , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , ADAM17 Protein/metabolism , ADAM17 Protein/antagonists & inhibitors , Mice, Nude , Male , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Mice, Inbred BALB C , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , MiceABSTRACT
The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.
Subject(s)
Molecular Docking Simulation , Network Pharmacology , Rehmannia , Sepsis , Humans , Sepsis/drug therapy , Rehmannia/chemistry , Male , Female , Middle Aged , Molecular Dynamics Simulation , Protein Interaction Maps , Aged , Adult , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , ADAM17 Protein/metabolism , ADAM17 Protein/geneticsABSTRACT
BACKGROUND: Glutamate-rich WD repeat containing 1 (GRWD1) is over-expressed in a variety of malignant tumors and is considered to be a potential oncogene. However, its mechanism of action in gastric cancer (GC) is still unclear. METHODS: Data analysis, Immunohistochemistry, and Western Blot (WB) were performed to verify the expression of GRWD1 in GC and para-cancerous tissues. The association between GRWD1 expression and tumor size, tissue differentiation, lymph node metastasis, TNM stage, and prognosis was analyzed according to the high and low expression levels of GRWD1. The relationship between GRWD1 and Notch pathway was verified by data analysis and WB. The effects of GRWD1 on the proliferation, migration, and invasion of GC cells were verified by cell proliferation, migration, and invasion assays. We confirmed that the high expression of GRWD1 promoted the proliferation of GC cells in vivo through the tumor formation assay in nude mice. RESULTS: The expression of GRWD1 was higher in GC tissues than in para-cancerous tissues, and its expression was positively correlated with tumor size, lymph node metastasis, and TNM stage, but negatively correlated with differentiation grade and prognosis. GRWD1 over-expression increased ADAM metallopeptidase domain 17 (ADAM17) expression and promoted Notch1 intracellular domain (NICD) release to promote GC cell proliferation, migration, and invasion in vitro. Results from animal studies have shown that high GRWD1 expression could promote GC cell proliferation in vivo by activating the Notch signaling pathway. CONCLUSION: GRWD1 promotes GC progression through ADAM17-dependent Notch signaling, and GRWD1 may be a novel tumor marker and therapeutic target.
Subject(s)
ADAM17 Protein , Carrier Proteins , Stomach Neoplasms , Animals , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , Mice, Nude , Neoplasm Invasiveness , Signal Transduction , Stomach Neoplasms/pathology , Up-Regulation , Carrier Proteins/metabolism , ADAM17 Protein/metabolismABSTRACT
Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.
Subject(s)
Carrier Proteins , Membrane Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , ADAM17 Protein/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Cytokines/metabolism , Models, StructuralABSTRACT
BACKGROUND: Kawasaki disease (KD) is a pediatric systemic vasculitis characterized by endothelial cell dysfunction. Semaphorin 7A (Sema7A) has been reported to regulate endothelial phenotypes associated with cardiovascular diseases, while its role in KD remains unknown. This study aims to investigate the effect of Sema7A on endothelial permeability and inflammatory response in KD conditions. METHODS: Blood samples were collected from 68 KD patients and 25 healthy children (HC). The levels of Sema7A and A Disintegrin and Metalloprotease 17 (ADAM17) in serum were measured by enzyme-linked immunosorbent assay (ELISA), and Sema7A expression in blood cells was analyzed by flow cytometry. Ex vivo monocytes were used for Sema7A shedding assays. In vitro human coronary artery endothelial cells (HCAECs) were cultured in KD sera and stimulated with Sema7A, and TNF-α, IL-1ß, IL-6, and IL-18 of HCAECs were measured by ELISA and qRT-PCR. HCAECs monolayer permeability was measured by FITC-dextran. RESULTS: The serum level of Sema7A was significantly higher in KD patients than in HC and correlated with disease severity. Monocytes were identified as one of the source of elevated serum Sema7A, which implicates a process of ADAM17-dependent shedding. Sera from KD patients induced upregulation of plexin C1 and integrin ß1 in HCAECs compared to sera from HC. Sema7A mediated the proinflammatory cytokine production of HCAECs in an integrin ß1-dependent manner, while both plexin C1 and integrin ß1 contributed to Sema7A-induced HCAEC hyperpermeability. CONCLUSIONS: Sema7A is involved in the progression of KD vasculitis by promoting endothelial permeability and inflammation through a plexin C1 and integrin ß1-dependent pathway. Sema7A may serve as a potential biomarker and therapeutic target in the prognosis and treatment of KD.