Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 422
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891815

ABSTRACT

The growing trend in fruit wine production reflects consumers' interest in novel, diverse drinking experiences and the increasing demand for healthier beverage options. Fruit wines made from kiwi, pomegranates, and persimmons fermented using S. bayanus Lalvin strain EC1118 demonstrate the versatility of winemaking techniques. Kiwifruit, persimmon, and pomegranate wines were analyzed using HPLC and GC-TOFMS analyses to determine their concentrations of phenolic acids and volatile compounds. These results were supported by Fourier transform infrared (FTIR) spectroscopy to characterize and compare chemical shifts in the polyphenol regions of these wines. The wines' characterization included an anti-inflammatory assay based on NO, TNF-alpha, and IL-6 production in the RAW 264.7 macrophage model. FTIR spectroscopy predicted the antioxidant and phenolic contents in the wines. In terms of polyphenols, predominantly represented by chlorogenic, caffeic, and gallic acids, pomegranate and kiwifruit wines showed greater benefits. However, kiwifruit wines exhibited a highly diverse profile of volatile compounds. Further analysis is necessary, particularly regarding the use of other microorganisms in the fermentation process and non-Saccharomyces strains methods. These wines exhibit high biological antioxidant potential and health properties, providing valuable insights for future endeavors focused on designing healthy functional food products.


Subject(s)
Anti-Inflammatory Agents , Fermentation , Fruit , Saccharomyces cerevisiae , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Mice , Saccharomyces cerevisiae/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/chemistry , Fruit/chemistry , Fruit/metabolism , Animals , RAW 264.7 Cells , Spectroscopy, Fourier Transform Infrared/methods , Polyphenols/analysis , Antioxidants/analysis , Actinidia/chemistry , Pomegranate/chemistry
2.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37167555

ABSTRACT

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Subject(s)
Actinidia , Actinidia/chemistry , tert-Butyl Alcohol/chemistry , Cysteine Endopeptidases , Peptide Hydrolases , Plant Extracts
3.
J Sci Food Agric ; 104(7): 4320-4330, 2024 May.
Article in English | MEDLINE | ID: mdl-38318646

ABSTRACT

BACKGROUND: This study aimed to investigate the effect of 6, 12, and 24 h short-term anaerobic treatment on kiwiberry quality and antioxidant properties at 5 °C. RESULTS: Short-term anaerobic treatment was found to delay ripening and softening in kiwiberries, evident from changes in ethylene release, total soluble solids, starch, protopectin, and fruit texture. The 24 h treatment group exhibited the lowest decay rate of 12% on day 49, a 38% reduction compared with the control group. Anaerobic treatment reduced flesh translucency and decay in the fruit. The 12 h and 24 h treatments enhanced the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, and increased the level of total phenolics, flavonoids, anthocyanins, and ascorbic acid. Moreover, it lowered oxidative damage in cell membranes, evidenced by reduced malondialdehyde content and relative conductivity. CONCLUSION: These results indicate that anaerobic treatment maintains the fruit quality by stimulating its antioxidant defense system. Therefore, short-term anaerobic treatment emerges as a promising method for kiwiberry storage. © 2024 Society of Chemical Industry.


Subject(s)
Actinidia , Antioxidants , Antioxidants/analysis , Actinidia/chemistry , Anthocyanins/analysis , Anaerobiosis , Ascorbic Acid/analysis , Fruit/chemistry
4.
J Sci Food Agric ; 104(4): 2142-2155, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37926484

ABSTRACT

BACKGROUND: Kiwifruit pomace, which contains abundant phenolic compounds, is typically discarded during the juicing process, leading to wastage of valuable resources. To address this issue, various indicators (including total acidity, sugar/acid ratio, vitamin C, total polyphenols, polyphenol monomers, and soluble solids content) of 15 kiwifruit cultivars were evaluated and juiced. Then, a polyphenol-concentrated solution from kiwifruit pomace was backfilled into kiwi juice to prepare whole nutritious compound kiwi juice, and its anti-hyperlipidemic activity on obese model mice was then investigated. RESULTS: Through grey relational analysis and the technique for order preference by similarity to an ideal solution (TOPSIS), Kuimi and Huayou were identified as the predominant varieties for juicing, with weighted relevance scores of 0.695 and 0.871 respectively and TOPSIS scores of 0.6509 and 0.8220 respectively. The polyphenol content of Cuixiang pomace was 43.97 mg g-1 , making it the most suitable choice for polyphenol extraction. By backfilling a polyphenol-concentrated solution derived from Cuixiang pomace into compound kiwi juice of Huayou and Kuimi, the whole nutritious compound kiwi juice with polyphenols was produced and exhibited superior bioactivities, including enhanced hepatic oxidative stress defense, and alleviated serum lipid abnormalities. Furthermore, whole nutritious compound kiwi juice with polyphenols ameliorated host intestinal microbiota dysbiosis by increasing the relative abundance of the phyla Bacteroidota and Verrucomicrobiota. CONCLUSION: A hypolipidemic dietary supplement based on kiwifruit pomace polyphenols has been successfully developed, providing an effective solution for hyperlipidemia intervention. © 2023 Society of Chemical Industry.


Subject(s)
Actinidia , Hyperlipidemias , Animals , Mice , Polyphenols/chemistry , Hyperlipidemias/drug therapy , Fruit/chemistry , Plant Extracts/chemistry , Dietary Supplements/analysis , Actinidia/chemistry
5.
Molecules ; 28(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067549

ABSTRACT

Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant's potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization.


Subject(s)
Actinidia , Alkaloids , Actinidia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Polysaccharides , Vitamins , Flavonoids , Phenols , Phytochemicals/pharmacology , Ethnopharmacology
6.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615645

ABSTRACT

The quality of fruit as a source of bioactive ingredients is related to the genetic characteristics of plants, but it can also be modified by growing conditions. Therefore, long-term research can be extremely valuable in evaluating various crop plants, especially novel ones. The aim of the research was to test four popular European kiwiberry (Actinidia arguta) cultivars ('Geneva', 'Bingo', 'Weiki', 'Anna') in terms of selected morphological features, yield, and chemical composition as well as their variability over 3 years. It can be concluded that the studied genotypes were very diverse in terms of the biochemical compounds' concentration in individual seasons. The cultivars 'Anna' and 'Weiki' were the most similar ones with respect to each other in terms of morphology and chemical composition. The cultivars 'Bingo' and 'Geneva' were definitely different. 'Bingo' was characterized by the largest and most uniform fruits in each season and had the highest concentration of vitamin C but the lowest carotenoid concentration. In turn, 'Geneva' produced the smallest fruit in each season with the highest concentration of polyphenols and a high concentration of carotenoids and displayed the highest antioxidant capacity regardless of the determination method. The research was performed with the application of computer-supported statistical analysis.


Subject(s)
Actinidia , Antioxidants , Antioxidants/analysis , Actinidia/genetics , Actinidia/chemistry , Ascorbic Acid/analysis , Polyphenols/analysis , Vitamins/analysis , Carotenoids/analysis , Fruit/chemistry
7.
Molecules ; 28(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005281

ABSTRACT

Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.


Subject(s)
Actinidia , Volatile Organic Compounds , Chromatography, High Pressure Liquid , Fruit/chemistry , Actinidia/chemistry , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry , Volatile Organic Compounds/analysis , Aldehydes/analysis , Odorants/analysis , Esters/analysis , Sugars/analysis
8.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056810

ABSTRACT

Near infrared (NIR) spectroscopy is an important tool for predicting the internal qualities of fruits. Using aquaphotomics, spectral changes between linearly polarized and unpolarized light were assessed on 200 commercially grown yellow-fleshed kiwifruit (Actinidia chinensis var. chinensis 'Zesy002'). Measurements were performed on different configurations of unpeeled (intact) and peeled (cut) kiwifruit using a commercial handheld NIR instrument. Absorbance after applying standard normal variate (SNV) and second derivative Savitzky-Golay filters produced different spectral features for all configurations. An aquagram depicting all configurations suggests that linearly polarized light activated more free water states and unpolarized light activated more bound water states. At depth (≥1 mm), after several scattering events, all radiation is expected to be fully depolarized and interactions for incident polarized or unpolarized light will be similar, so any observed differences are attributable to the surface layers of the fruit. Aquagrams generated in terms of the fruit soluble solids content (SSC) were similar for all configurations, suggesting the SSC in fruit is not a contributing factor here.


Subject(s)
Actinidia/chemistry , Fruit/chemistry , Spectroscopy, Near-Infrared/methods , Water/chemistry , Light
9.
Molecules ; 27(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056819

ABSTRACT

Using the framework of aquaphotomics, we have sought to understand the changes within the water structure of kiwifruit juice occurring with changes in temperature. The study focuses on the first (1300-1600 nm) and second (870-1100 nm) overtone regions of the OH stretch of water and examines temperature differences between 20, 25, and 30 °C. Spectral data were collected using a Fourier transform-near-infrared spectrometer with 1 mm and 10 mm transmission cells for measurements in the first and second overtone region, respectively. Water wavelengths affected by temperature variation were identified. Aquagrams (water spectral patterns) highlight slightly different responses in the first and second overtone regions. The influence of increasing temperature on the peak absorbance of the juice was largely a lateral wavelength shift in the first overtone region and a vertical amplitude shift in the second overtone region of water. With the same data set, we investigated the use of external parameter orthogonalisation (EPO) and extended multiple scatter correction (EMSC) pre-processing to assist in building temperature-independent partial least square regression models for predicting soluble solids concentration (SSC) of kiwifruit juice. The interference component selected for correction was the first principal component loading measured using pure water samples taken at the same three temperatures (20, 25, and 30 °C). The results show that the EMSC method reduced SSC prediction bias from 0.77 to 0.1 °Brix in the first overtone region of water. Using the EPO method significantly reduced the prediction bias from 0.51 to 0.04 °Brix, when applying a model made at one temperature (30 °C) to measurements made at another temperature (20 °C) in the second overtone region of water.


Subject(s)
Actinidia/chemistry , Fruit and Vegetable Juices/analysis , Plant Extracts/analysis , Spectroscopy, Near-Infrared/methods , Temperature , Water/chemistry , Least-Squares Analysis
10.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080263

ABSTRACT

The feasibility of using dwarf kiwi fruits (Actinia arguta Miq.) as a healthy and sustainable food, compared to other types of commercial kiwi fruits, was evaluated in the present study. The overall antioxidant capacity of these fruits was assessed by either extraction-dependent methods (ABTS, ORAC) or the direct method called Quick, Easy, New, CHEap, Reproducible (QUENCHER) (DPPH, FRAP, Folin-Ciocalteu), applied for the first time to analyze kiwi fruits. With this methodology, all the molecules with antioxidant capacity are measured together in a single step, even those with high molecular weight or poor solubility in aqueous extraction systems, such as antioxidant dietary fiber. The effect of kiwi extracts on physiological and induced intracellular reactive oxygen species (ROS) production on IEC-6 cells was also analyzed, as well as total phenolic content (TPC) by Fast Blue BB, flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. A. arguta fruits showed the highest values in all the antioxidant assays, being remarkably higher than the other kiwi species for Q-FRAP and Q-DPPH. Dwarf kiwi showed the highest potential in reducing physiological ROS and the highest values of TPC (54.57 mgGAE/g), being hydroxybenzoic acids the main phenolic family found (2.40 mgGAE/g). Therefore, dwarf kiwi fruits are a natural source of antioxidants compared to conventional kiwi fruits, being a sustainable and healthy alternative to diversify fruits in the diet.


Subject(s)
Actinidia , Actinidia/chemistry , Antioxidants/chemistry , Diet , Fruit/chemistry , Hydroxybenzoates/analysis , Phenols/analysis , Plant Extracts/chemistry , Reactive Oxygen Species/analysis
11.
Biochem Biophys Res Commun ; 555: 154-159, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33819745

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress-induced neuronal death has been identified as one of the major causes of nigrostriatal degeneration in PD. The fruit of Actinidia arguta (A. arguta), known as sarunashi in Japan, has been reported to show beneficial health effects such as antioxidant, anti-inflammatory, anti-mutagenic, and anticholinergic effects. In this study, we investigated the neuroprotective effects of A. arguta in 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-induced PD model mice. A. arguta juice was administered to 7-week-old C57BL/6J mice continuously for 10 days before the first MPTP injection. The degeneration of dopaminergic neurons in the substantia nigra was induced by MPTP (30 mg/kg, i. p.) once daily for five consecutive days. We found that the administration of A. arguta ameliorated MPTP-induced motor impairment and suppressed the MPTP-induced reductions of tyrosine hydroxylase-positive neurons and tyrosine hydroxylase protein expression in the substantia nigra. Our findings suggest that taking A. arguta could provide neuroprotection that delays or prevents the neurodegenerative process of PD.


Subject(s)
Actinidia/chemistry , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Animals , Blotting, Western , Catalepsy/chemically induced , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Fruit and Vegetable Juices , MPTP Poisoning/complications , Male , Mice, Inbred C57BL , Parkinson Disease/etiology , Parkinson Disease, Secondary/drug therapy , Tyrosine 3-Monooxygenase/metabolism
12.
Biomed Chromatogr ; 35(7): e5103, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33629744

ABSTRACT

Radix Actinidia decoction and its prescriptions are used to treat tumors and other diseases. Although some chemical components have been isolated from Radix Actinidia, systematic analysis of its chemical components has not been reported, which hinders the basic research on its effective substances and its quality control. In this work, a UPLC-QTOF-MS method was employed to profile and characterize the chemical constituents of water extracts from Radix Actinidia Chinensis Planch (RACP). We unambiguously or tentatively identified 295 chemical components from RACP, including 46 pentacyclic triterpenes, 72 flavonoids, 53 phenolic acids, 24 coumarins, three anthraquinones and other compounds. Most of the chemical components have not been described so far in Actinidia. More than 180 phytochemicals are reported in Actinidia for the first time. 2α,3α,24-trihydroxyurs-12-en-28-oic acid, asiatic acid, syringic acid, fraxin, esculetin, 5,7-dihydroxychromone, esculin, (+)-catechin, (-)-epi-catechin, vanillic acid, ferulic acid, protocatechuic acid and rutin were unambiguously identified by comparison with the reference standards. Catechin derivatives, coumarin derivatives and phenolic acid derivatives were the main water-soluble components in RACP. This study broadened the chemical profiles of RACP, and laid the foundation for subsequent research on the effective components and their mechanism of action. This work also provides an important reference for the quality control and evaluation of RACP.


Subject(s)
Actinidia/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Phytochemicals , Plant Roots/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Phenols/analysis , Phenols/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry
13.
Chem Biodivers ; 18(3): e2000925, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33491874

ABSTRACT

Hardy kiwifruit (Actinidia arguta) is a highly appreciated exotic fruit endowed with outstanding bioactive compounds. The present work proposes to characterize the pulp from A. arguta organic fruits, emphasizing its radicals scavenging capacity and effects on intestinal cells (Caco-2 and HT29-MTX). The physicochemical properties and phenolic profile were also screened. The total phenolic and flavonoid contents (TPC and TFC, respectively) of pulp were 12.21 mg GAE/g on dry weight (DW) and 5.92 mg CE/g DW, respectively. A high antioxidant activity was observed (FRAP: 151.41 µmol FSE/g DW; DPPH: 12.17 mg TE/g DW). Furthermore, the pulp did not induce a toxic effect on Caco-2 and HT29-MTX cells viability up to 1000 µg/mL. Regarding in vitro scavenging capacity, the pulp revealed the highest scavenging power against NO. (IC50 =3.45 µg/mL) and HOCl (IC50 =12.77 µg/mL). These results emphasize the richness of A. arguta fruit pulp to be used in different food products.


Subject(s)
Actinidia/chemistry , Antioxidants/pharmacology , Fruit/chemistry , Hypochlorous Acid/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Phytochemicals/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Hypochlorous Acid/metabolism , Nitric Oxide/metabolism , Phytochemicals/chemistry , Phytochemicals/isolation & purification
14.
Molecules ; 26(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361562

ABSTRACT

Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), α-ß-globulin (α-ß G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, α-ß G and Fgn will be predictors of coronary artery disease (CAD).


Subject(s)
Actinidia/chemistry , Antioxidants/chemistry , Diospyros/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Antioxidants/pharmacology , Humans , Polyphenols/pharmacology
15.
Molecules ; 26(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419110

ABSTRACT

(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins' sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.


Subject(s)
Actinidia/chemistry , Allergens/chemistry , Antigens, Plant/chemistry , Carrier Proteins/chemistry , Plant Proteins/chemistry , Pomegranate/chemistry , Seeds/chemistry , Allergens/isolation & purification , Antigens, Plant/isolation & purification , Carrier Proteins/isolation & purification , Crystallography, X-Ray , Plant Proteins/isolation & purification , Protein Conformation, alpha-Helical
16.
Molecules ; 26(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202843

ABSTRACT

The aim of this study was to assess the enzymatic and non-enzymatic antioxidant status of kiwiberry (Actinidia arguta) leaf under different N regimes tested three times in field conditions during the 2015 growing season in two cultivars ('Weiki' and 'Geneva'). Leaf total antioxidant capacity using ABTS, DPPH and FRAP tests was evaluated in the years 2015 to 2017, which experienced different weather conditions. Both cultivars exhibited a significant fall in leaf L-ascorbic acid (L-AA) and reduced glutathione (GSH) as well as global content of these compounds during the growing season, while total phenolic contents slightly ('Weiki') or significantly ('Geneva') increased. There was a large fluctuation in antioxidative enzyme activity during the season. The correlation between individual antioxidants and trolox equivalent antioxidant capacity (TEAC) depended on the plant development phase. The study revealed two peaks of an increase in TEAC at the start and end of the growing season. Leaf L-AA, global phenolics, APX, CAT and TEAC depended on the N level, but thiol compounds were not affected. Over the three years, TEAC decreased as soil N fertility increased, and the strength of the N effect was year dependent. The relationship between leaf N content and ABTS and FRAP tests was highly negative. The antioxidant properties of kiwiberry leaves were found to be closely related to the plant development phase and affected by soil N fertility.


Subject(s)
Actinidia/chemistry , Nitrogen/chemistry , Phytochemicals/chemistry , Plant Leaves/chemistry , Soil/chemistry , Actinidia/growth & development , Nitrogen/metabolism , Phytochemicals/biosynthesis , Plant Leaves/growth & development , Species Specificity
17.
J Sci Food Agric ; 101(11): 4743-4750, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-33491781

ABSTRACT

BACKGROUND: Kiwifruit (Actinidia) has long been called the 'king of fruits' because of its unique flavor and the wide range of bioactive compounds which contains ascorbic acid, phenolics and minerals. These bioactivities are influenced by species and cultivar. However, to date few studies are concerned with the effect of ripening time on fruit quality. Here, early and late ripening kiwifruits were investigated to determine their content of ascorbic acid, organic acid, and phenolic compounds. RESULTS: Early ripening cultivars contained higher quinic acid and malic acid, while citric acid were found in large amounts in late ripening kiwifruits. Most of the early ripening cultivars contained higher free phenolic fractions than the late ripening fruits, mainly due to the high levels of epicatechin. However, conjugated phenolics, mainly including caffeic and 2,3,4-trihydroxybenzoic acid, achieved higher levels in the late ripening cultivars. Free phenolics were higher than conjugated phenolics in the early ripening cultivars. Principal component analysis revealed some key compounds that differentiated the kiwifruits, and all the kiwifruits were divided into two subgroups as early and late ripening cultivars. CONCLUSION: Ripening time had a great impact on the accumulation of bioactive compounds. The early ripening cultivars, compared to the late ripening ones, were characterized by higher levels of free neochlorogenic acid and epicatechin, while the late ripening kiwifruits contained higher amounts of conjugated phenolics. Results from this study provide further insights into the health-promoting phenolic compounds in kiwifruit, and also provide good evidence to aid consumer selection. © 2021 Society of Chemical Industry.


Subject(s)
Actinidia/chemistry , Fruit/growth & development , Phenols/chemistry , Actinidia/classification , Actinidia/growth & development , Ascorbic Acid/analysis , Catechin/analysis , Fruit/chemistry , Fruit/classification
18.
J Sci Food Agric ; 101(12): 5082-5088, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33570749

ABSTRACT

BACKGROUND: Kiwifruit is an important horticultural crop all over the world and its development is important in Argentina. This dioecious crop has a short blooming period with nectarless flowers, and its fruit production depends on cross-pollination. Here, we tested whether kiwifruit quality increases by using honeybees exposed to female flowers treated with an artificial fragrance. The three experimental treatments were: A, sprinkled female flowers with 1:1 sugar syrup + Lavandula hybrida extract solution (a new attractant substance especially developed for this study named Lavandin Grosso); B, sprinkled female flowers with 1:1 water + sugar syrup (female flowers with additional sugar syrup reward); C (control; female flowers exposed to honeybees). RESULTS: The results showed a higher number of visits of honeybees to the female flowers sprinkled with the attractant substance, Lavandin Grosso, as well as higher fruit quality (weight, number of seeds, regularity in fruit size). CONCLUSION: Our study demonstrates the potential of fragrance-treated flowers to improve yield production in kiwifruit. © 2021 Society of Chemical Industry.


Subject(s)
Actinidia/parasitology , Bees/physiology , Fruit/chemistry , Odorants/analysis , Actinidia/chemistry , Actinidia/growth & development , Animals , Argentina , Flowers/growth & development , Flowers/parasitology , Fruit/growth & development , Fruit/parasitology , Pollination , Quality Control
19.
J Sci Food Agric ; 101(7): 2779-2787, 2021 May.
Article in English | MEDLINE | ID: mdl-33140404

ABSTRACT

BACKGROUND: Penicillic acid (PA) is produced by Aspergillus spp. and Penicillium spp., which are common postharvest and storage fungi of fruits. PA can be of concern for human health because of its toxicity and high fruit consumption by the population. However, no data on PA occurrence in various fruits have yet been reported. A quick, easy, cheap, effective, rugged and safe (QuEChERS) approach for PA determination in various fruits was developed and applied to explore PA incidence in fruits. RESULTS: The modified QuEChERS procedure with extraction by ethyl acetate and purification by multi-walled carbon nanotubes (MWCNTs), primary secondary amine (PSA) and octadecyl silane (C18) was established to determine PA in various fruits by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average recoveries were 72.9-102.2% and relative standard deviations (RSDs) were 1.3-7.9%. A total of 161 fruits samples, including kiwi, apple, peach, grape and mandarin/orange, were collected in southern China. The incidence of PA in fruits was 14.9% and the levels of PA contamination were 0.200-0.596 µg kg-1 . Our results suggested that orange/mandarin, grape and kiwi were favorable matrices for Aspergillus spp. and Penicillium spp. to produce PA, rather than peach and apple. CONCLUSION: To the best of our knowledge, this is the first report about PA contamination in various fruits in China. Our study emphasizes the necessity of the current established method, which could be used for continuous monitoring of PA and reducing the health risk to Chinese consumers. © 2020 Society of Chemical Industry.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Mycotoxins/chemistry , Penicillic Acid/chemistry , Tandem Mass Spectrometry/methods , Actinidia/chemistry , Aspergillus/metabolism , China , Citrus sinensis/chemistry , Food Contamination/analysis , Fruit/microbiology , Malus/chemistry , Mycotoxins/metabolism , Penicillic Acid/metabolism , Penicillium/metabolism , Vitis/chemistry
20.
J Nat Prod ; 83(5): 1416-1423, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32315181

ABSTRACT

Actinidia arguta, commonly called hardy kiwifruit or kiwiberry, has cold-resistant properties and can be cultivated in Asia, including Korea. Seven new triterpenoids (2-4 and 8-11) along with eight known triterpenoids were isolated from the leaves of A. arguta through various chromatographic techniques. The new triterpenoids were defined as actiniargupenes A-C (2-4), actinidic acid derivatives with phenylpropanoid constituent units, dehydroisoactinidic acid (8), and actiniargupenes D-F (9-11), asiatic acid derivatives with phenylpropanoid substituents, on the basis of 1D and 2D NMR and MS data. Among the triterpenoids, those with a phenylpropanoid constituent unit showed inhibitory activity on α-glucosidase, which suggested the importance of the phenylpropanoid moiety. Molecular docking analysis demonstrated the interaction between the 4'-OH group of the phenylpropanoid moiety and α-glucosidase.


Subject(s)
Actinidia/chemistry , Plant Leaves/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , alpha-Glucosidases/drug effects , Enzyme Inhibitors/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL