Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30078709

ABSTRACT

In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.


Subject(s)
Ear, Inner/physiology , Hair Cells, Auditory, Inner/physiology , Sensory Receptor Cells/physiology , Amino Acid Transport Systems, Acidic/genetics , Animals , Calbindin 2/genetics , Cochlea/physiology , Deafness/genetics , Female , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Spiral Ganglion/physiology , Synaptic Transmission , Transgenes
2.
Nature ; 632(8023): 147-156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020173

ABSTRACT

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Subject(s)
Adaptation, Physiological , Axons , Circadian Rhythm , Neurotransmitter Agents , Photoperiod , Animals , Female , Mice , Adaptation, Physiological/physiology , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Axons/metabolism , Axons/physiology , Circadian Rhythm/physiology , CLOCK Proteins/genetics , Darkness , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/metabolism , Neural Pathways/physiology , Neurotransmitter Agents/metabolism , Preoptic Area/cytology , Preoptic Area/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Rabies virus , Serotonin/metabolism , Sleep/physiology , Wakefulness/physiology
3.
EMBO J ; 43(16): 3450-3465, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937634

ABSTRACT

Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.


Subject(s)
Dicarboxylic Acid Transporters , Humans , Kinetics , Dicarboxylic Acid Transporters/metabolism , Dicarboxylic Acid Transporters/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Protein Multimerization , Amino Acid Transport Systems, Acidic/metabolism , Amino Acid Transport Systems, Acidic/genetics , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Antiporters/metabolism , Antiporters/genetics , Antiporters/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Biological Transport , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/chemistry , Adenosine Triphosphate/metabolism , Carrier Proteins , Membrane Transport Proteins
4.
Mol Genet Metab ; 142(4): 108520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945121

ABSTRACT

The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.


Subject(s)
Aspartic Acid , Malate Dehydrogenase , Malates , Mitochondria , Humans , Malates/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Aspartic Acid/metabolism , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/diagnosis , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/metabolism , Oxidative Phosphorylation , Antiporters
5.
PLoS Genet ; 16(8): e1008745, 2020 08.
Article in English | MEDLINE | ID: mdl-32845888

ABSTRACT

Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Serine/metabolism , Sphingolipids/metabolism , Amino Acid Transport Systems, Acidic/genetics , Homeostasis , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Sphingolipids/biosynthesis
6.
J Neurosci ; 41(1): 103-117, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33208470

ABSTRACT

Amacrine cells of the retina are conspicuously variable in their morphologies, their population demographics, and their ensuing functions. Vesicular glutamate transporter 3 (VGluT3) amacrine cells are a recently characterized type of amacrine cell exhibiting local dendritic autonomy. The present analysis has examined three features of this VGluT3 population, including their density, local distribution, and dendritic spread, to discern the extent to which these are interrelated, using male and female mice. We first demonstrate that Bax-mediated cell death transforms the mosaic of VGluT3 cells from a random distribution into a regular mosaic. We subsequently examine the relationship between cell density and mosaic regularity across recombinant inbred strains of mice, finding that, although both traits vary across the strains, they exhibit minimal covariation. Other genetic determinants must therefore contribute independently to final cell number and to mosaic order. Using a conditional KO approach, we further demonstrate that Bax acts via the bipolar cell population, rather than cell-intrinsically, to control VGluT3 cell number. Finally, we consider the relationship between the dendritic arbors of single VGluT3 cells and the distribution of their homotypic neighbors. Dendritic field area was found to be independent of Voronoi domain area, while dendritic coverage of single cells was not conserved, simply increasing with the size of the dendritic field. Bax-KO retinas exhibited a threefold increase in dendritic coverage. Each cell, however, contributed less dendrites at each depth within the plexus, intermingling their processes with those of neighboring cells to approximate a constant volumetric density, yielding a uniformity in process coverage across the population.SIGNIFICANCE STATEMENT Different types of retinal neuron spread their processes across the surface of the retina to achieve a degree of dendritic coverage that is characteristic of each type. Many of these types achieve a constant coverage by varying their dendritic field area inversely with the local density of like-type neighbors. Here we report a population of retinal amacrine cells that do not develop dendritic arbors in relation to the spatial positioning of such homotypic neighbors; rather, this cell type modulates the extent of its dendritic branching when faced with a variable number of overlapping dendritic fields to approximate a uniformity in dendritic density across the retina.


Subject(s)
Amacrine Cells/physiology , Amino Acid Transport Systems, Acidic/physiology , Dendrites/physiology , Retina/cytology , Retina/physiology , Amino Acid Transport Systems, Acidic/genetics , Animals , Apoptosis/physiology , Cell Count , Cell Death , Chromosome Mapping , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons, Afferent/physiology , Quantitative Trait Loci , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/physiology
7.
J Neurosci ; 41(13): 2930-2943, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33574178

ABSTRACT

Cochlear outer hair cells (OHCs) are known to uniquely participate in auditory processing through their electromotility, and like inner hair cells, are also capable of releasing vesicular glutamate onto spiral ganglion (SG) neurons: in this case, onto the sparse Type II SG neurons. However, unlike glutamate signaling at the inner hair cell-Type I SG neuron synapse, which is robust across a wide spectrum of sound intensities, glutamate signaling at the OHC-Type II SG neuron synapse is weaker and has been hypothesized to occur only at intense, possibly damaging sound levels. Here, we tested the ability of the OHC-Type II SG pathway to signal to the brain in response to moderate, nondamaging sound (80 dB SPL) as well as to intense sound (115 dB SPL). First, we determined the VGluTs associated with OHC signaling and then confirmed the loss of glutamatergic synaptic transmission from OHCs to Type II SG neurons in KO mice using dendritic patch-clamp recordings. Next, we generated genetic mouse lines in which vesicular glutamate release occurs selectively from OHCs, and then assessed c-Fos expression in the cochlear nucleus in response to sound. From these analyses, we show, for the first time, that glutamatergic signaling at the OHC-Type II SG neuron synapse is capable of activating cochlear nucleus neurons, even at moderate sound levels.SIGNIFICANCE STATEMENT Evidence suggests that cochlear outer hair cells (OHCs) release glutamate onto Type II spiral ganglion neurons only when exposed to loud sound, and that Type II neurons are activated by tissue damage. Knowing whether moderate level sound, without tissue damage, activates this pathway has functional implications for this fundamental auditory pathway. We first determined that OHCs rely largely on VGluT3 for synaptic glutamate release. We then used a genetically modified mouse line in which OHCs, but not inner hair cells, release vesicular glutamate to demonstrate that moderate sound exposure activates cochlear nucleus neurons via the OHC-Type II spiral ganglion pathway. Together, these data indicate that glutamate signaling at the OHC-Type II afferent synapse participates in auditory function at moderate sound levels.


Subject(s)
Acoustic Stimulation/methods , Cochlear Nucleus/metabolism , Glutamic Acid/metabolism , Hair Cells, Auditory, Outer/metabolism , Neurons/metabolism , Spiral Ganglion/metabolism , Afferent Pathways/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Animals , Auditory Pathways/metabolism , Excitatory Postsynaptic Potentials/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
Addict Biol ; 27(4): e13178, 2022 07.
Article in English | MEDLINE | ID: mdl-35754102

ABSTRACT

Alcohol dependence results in long-lasting neuroadaptive changes in meso-corticolimbic system, especially in the nucleus accumbens (NAc), which drives relapse-like ethanol drinking upon abstinence or withdrawal. Within NAc, altered glutamate homeostasis is one of the neuroadaptive changes caused by alcohol dependence. Accumbal glutamate homeostasis is tightly maintained through glutamate transporter 1 (GLT-1) and cystine-glutamate antiporter (xCT). But the role of GLT-1 and xCT in relapse-like ethanol drinking is poorly understood. Here, we used alcohol-preferring (P) rats in relapse-like ethanol drinking paradigm to (a) determine the effect of relapse-like ethanol drinking on gene and protein expression of GLT-1 and xCT in NAc, measured by quantitative polymerase chain reaction (qPCR) and Western blot, respectively; (b) examine if glutamate uptake is affected by relapse-like ethanol drinking in NAc, measured by radioactive glutamate uptake assay; (c) elucidate if upregulation of either/both GLT-1 or/and xCT through ceftriaxone is/are required to attenuate relapse-like ethanol drinking. The GLT-1 or xCT protein expression was suppressed during ceftriaxone treatments through microinjection of GLT-1/xCT anti-sense vivo-morpholinos. We found that relapse-like ethanol drinking did not affect the gene and protein expression of GLT-1 and xCT in NAc. The glutamate uptake was also unaltered. Ceftriaxone (200 mg/kg body weight, i.p.) treatments during the last 5 days of abstinence attenuated relapse-like ethanol drinking. The suppression of GLT-1 or xCT expression prevented the ceftriaxone-induced attenuation of relapse-like ethanol drinking. These findings confirm that upregulation of both GLT-1 and xCT within NAc is crucial for ceftriaxone-mediated attenuation of relapse-like ethanol drinking.


Subject(s)
Alcoholism , Ceftriaxone , Alcohol Drinking/metabolism , Alcoholism/genetics , Alcoholism/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Animals , Ceftriaxone/metabolism , Ceftriaxone/pharmacology , Ethanol/pharmacology , Excitatory Amino Acid Transporter 2/genetics , Glutamic Acid/metabolism , Nucleus Accumbens , Rats , Recurrence
9.
J Neurosci ; 40(40): 7688-7701, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32895292

ABSTRACT

Innocuous mechanical stimuli, such as rubbing or stroking the skin, relieve itch through the activation of low-threshold mechanoreceptors. However, the mechanisms behind this inhibition remain unknown. We presently investigated whether stroking the skin reduces the responses of superficial dorsal horn neurons to pruritogens in male C57BL/6J mice. Single-unit recordings revealed that neuronal responses to chloroquine were enhanced during skin stroking, and this was followed by suppression of firing below baseline levels after the termination of stroking. Most of these neurons additionally responded to capsaicin. Stroking did not suppress neuronal responses to capsaicin, indicating state-dependent inhibition. Vesicular glutamate transporter 3 (VGLUT3)-lineage sensory nerves compose a subset of low-threshold mechanoreceptors. Stroking-related inhibition of neuronal responses to chloroquine was diminished by optogenetic inhibition of VGLUT3-lineage sensory nerves in male and female Vglut3-cre/NpHR-EYFP mice. Conversely, in male and female Vglut3-cre/ChR2-EYFP mice, optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited firing responses of spinal neurons to pruritogens after the termination of stimulation. This inhibition was nearly abolished by spinal delivery of the κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride, but not the neuropeptide Y receptor Y1 antagonist BMS193885. Optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited pruritogen-evoked scratching without affecting mechanical and thermal pain behaviors. Therefore, VGLUT3-lineage sensory nerves appear to mediate inhibition of itch by tactile stimuli.SIGNIFICANCE STATEMENT Rubbing or stroking the skin is known to relieve itch. We investigated the mechanisms behind touch-evoked inhibition of itch in mice. Stroking the skin reduced the activity of itch-responsive spinal neurons. Optogenetic inhibition of VGLUT3-lineage sensory nerves diminished stroking-evoked inhibition, and optogenetic stimulation of VGLUT3-lineage nerves inhibited pruritogen-evoked firing. Together, our results provide a mechanistic understanding of touch-evoked inhibition of itch.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Mechanoreceptors/metabolism , Pruritus/metabolism , Sensory Thresholds , Touch , Action Potentials , Amino Acid Transport Systems, Acidic/genetics , Animals , Capsaicin/pharmacology , Dihydropyridines/pharmacology , Female , Male , Mechanoreceptors/drug effects , Mechanoreceptors/physiology , Mice , Mice, Inbred C57BL , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Neural Inhibition , Phenylurea Compounds/pharmacology , Sensory System Agents/pharmacology
10.
Am J Med Genet A ; 185(10): 3068-3073, 2021 10.
Article in English | MEDLINE | ID: mdl-34037307

ABSTRACT

PYCR2 pathogenic variants lead to an autosomal recessive hypomyelinating leukodystrophy 10 (HLD10), characterized by global developmental delay, microcephaly, facial dysmorphism, movement disorder, and hypomyelination. This study identified the first two unrelated Thai patients with HLD10. Patient 1 harbored the novel compound heterozygous variants, c.257T>G (p.Val86Gly) and c.400G>A (p.Val134Met), whereas patient 2 possessed the homozygous variant, c.400G>A (p.Val134Met), in PYCR2. Haplotype analysis revealed that the two families' members shared a 2.3 Mb region covering the c.400G>A variant, indicating a common ancestry. The variant was estimated to age 1450 years ago. Since the c.400G>A was detected in three out of four mutant alleles and with a common ancestry, this variant might be common in Thai patients. We also reviewed the phenotype and genotype of all 35 previously reported PYCR2 patients and found that majorities of cases were homozygous with a consanguineous family history, except patient 1 and another reported case who were compound heterozygous. All patients had microcephaly and developmental delay. Hypotonia and peripheral spasticity were common. Hypomyelination or delayed myelination was a typical radiographic feature. Here, we report the first two Thai patients with HLD10 with the novel PYCR2 variants expanding the genotypic spectrum and suggest that the c.400G>A might be a common mutation in Thai patients.


Subject(s)
Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Developmental Disabilities/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Microcephaly/genetics , Mitochondrial Diseases/genetics , Movement Disorders/genetics , Psychomotor Disorders/genetics , Pyrroline Carboxylate Reductases/genetics , Adolescent , Alleles , Amino Acid Transport Systems, Acidic/genetics , Antiporters/genetics , Child , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/pathology , Female , Genotype , Haplotypes/genetics , Hereditary Central Nervous System Demyelinating Diseases/complications , Hereditary Central Nervous System Demyelinating Diseases/pathology , Homozygote , Humans , Male , Microcephaly/complications , Microcephaly/pathology , Mitochondrial Diseases/complications , Mitochondrial Diseases/pathology , Movement Disorders/complications , Movement Disorders/pathology , Mutation , Pedigree , Phenotype , Psychomotor Disorders/complications , Psychomotor Disorders/pathology , Young Adult
11.
Nature ; 518(7537): 68-73, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25652997

ABSTRACT

Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the 'humanizing' mutations favour structurally 'unlocked' intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.


Subject(s)
Amino Acid Transport Systems, Acidic/chemistry , Amino Acid Transport Systems, Acidic/metabolism , Aspartic Acid/metabolism , Pyrococcus horikoshii/chemistry , Amino Acid Sequence , Amino Acid Transport Systems, Acidic/genetics , Biological Transport , Crystallography, X-Ray , Detergents , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Ligands , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Movement , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation/genetics , Protein Stability , Protein Structure, Tertiary , Proteolipids/metabolism , Sodium/metabolism , Solvents , Thermodynamics
12.
J Neurosci ; 39(23): 4434-4447, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30926748

ABSTRACT

Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3 (Vglut3KO ), at 9-11 weeks, approximately half the number of synapses found in Vglut3WT were maintained as postsynaptic AMPA receptors juxtaposed with presynaptic ribbons and voltage-gated calcium channels (CaV1.3). Synapses were larger in Vglut3KO than Vglut3WT In Vglut3WT and Vglut3+/- mice, 8-16 kHz octave-band noise exposure at 100 dB sound pressure level caused a threshold shift (∼40 dB) and a loss of synapses (>50%) at 24 h after exposure. Hearing threshold and synapse number partially recovered by 2 weeks after exposure as ribbons became larger, whereas recovery was significantly better in Vglut3WT Noise exposure at 94 dB sound pressure level caused auditory threshold shifts that fully recovered in 2 weeks, whereas suprathreshold hearing recovered faster in Vglut3WT than Vglut3+/- These results, from mice of both sexes, suggest that spontaneous repair of synapses after noise depends on the level of Vglut3 protein or the level of glutamate release during the recovery period. Noise-induced loss of presynaptic ribbons or postsynaptic AMPA receptors was not observed in Vglut3KO , demonstrating its dependence on vesicular glutamate release. In Vglut3WT and Vglut3+/-, noise exposure caused unpairing of presynaptic ribbons and presynaptic CaV1.3, but not in Vglut3KO where CaV1.3 remained clustered with ribbons at presynaptic active zones. These results suggest that, without glutamate release, noise-induced presynaptic Ca2+ influx was insufficient to disassemble the active zone. However, synapse volume increased by 2 weeks after exposure in Vglut3KO , suggesting glutamate-independent mechanisms.SIGNIFICANCE STATEMENT Hearing depends on glutamatergic transmission mediated by Vglut3, but the role of glutamate in synapse loss and repair is unclear. Here, using mice of both sexes, we show that one copy of the Vglut3 gene is sufficient for noise-induced threshold shift and loss of ribbon synapses, but both copies are required for normal recovery of hearing function and ribbon synapse number. Impairment of the recovery process in mice having only one functional copy suggests that glutamate release may promote synapse regeneration. At least one copy of the Vglut3 gene is necessary for noise-induced synapse loss. Although the excitotoxic mechanism remains unknown, these findings are consistent with the presumption that glutamate is the key mediator of noise-induced synaptopathy.


Subject(s)
Amino Acid Transport Systems, Acidic/physiology , Glutamic Acid/physiology , Hair Cells, Auditory, Inner/physiology , Hearing Loss, Noise-Induced/physiopathology , Synapses/physiology , Aging/physiology , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/genetics , Animals , Auditory Threshold/physiology , Calcium/metabolism , Evoked Potentials, Auditory , Exocytosis , Female , Gene Dosage , Genes, Reporter , Hair Cells, Auditory, Outer/physiology , Ion Transport , Male , Mice , Mice, Knockout , Receptors, AMPA/physiology , Recovery of Function , Spiral Ganglion/cytology , Synapses/ultrastructure
13.
Am J Hum Genet ; 100(6): 969-977, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575651

ABSTRACT

Progressive limb spasticity and cerebellar ataxia are frequently found together in clinical practice and form a heterogeneous group of degenerative disorders that are classified either as pure spastic ataxia or as complex spastic ataxia with additional neurological signs. Inheritance is either autosomal dominant or autosomal recessive. Hypomyelinating features on MRI are sometimes seen with spastic ataxia, but this is usually mild in adults and severe and life limiting in children. We report seven individuals with an early-onset spastic-ataxia phenotype. The individuals come from three families of different ethnic backgrounds. Affected members of two families had childhood onset disease with very slow progression. They are still alive in their 30s and 40s and show predominant ataxia and cerebellar atrophy features on imaging. Affected members of the third family had a similar but earlier-onset presentation associated with brain hypomyelination. Using a combination of homozygozity mapping and exome sequencing, we mapped this phenotype to deleterious nonsense or homeobox domain missense mutations in NKX6-2. NKX6-2 encodes a transcriptional repressor with early high general and late focused CNS expression. Deficiency of its mouse ortholog results in widespread hypomyelination in the brain and optic nerve, as well as in poor motor coordination in a pattern consistent with the observed human phenotype. In-silico analysis of human brain expression and network data provides evidence that NKX6-2 is involved in oligodendrocyte maturation and might act within the same pathways of genes already associated with central hypomyelination. Our results support a non-redundant developmental role of NKX6-2 in humans and imply that NKX6-2 mutations should be considered in the differential diagnosis of spastic ataxia and hypomyelination.


Subject(s)
Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Hereditary Central Nervous System Demyelinating Diseases/complications , Hereditary Central Nervous System Demyelinating Diseases/genetics , Homeodomain Proteins/genetics , Intellectual Disability/complications , Intellectual Disability/genetics , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Muscle Spasticity/complications , Muscle Spasticity/genetics , Mutation/genetics , Optic Atrophy/complications , Optic Atrophy/genetics , Psychomotor Disorders/complications , Psychomotor Disorders/genetics , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/genetics , Adult , Amino Acid Sequence , Amino Acid Transport Systems, Acidic/genetics , Antiporters/genetics , Brain/embryology , Brain/metabolism , Child , Female , Gene Regulatory Networks , Homeodomain Proteins/chemistry , Humans , Infant , Male , Pedigree , Phenotype , Young Adult
14.
Toxicol Appl Pharmacol ; 407: 115241, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937103

ABSTRACT

Neurological diseases were often characterized by progressive neuronal death, and emerging evidences suggested that ferroptosis may be an active driver of multiple neurodegenerative diseases. However, the mechanisms underlying ferroptosis in neuron cells are unclear. Here, we demonstrated that ferroptotic stimuli caused injury in neuron-like PC12 cells by modulating the expression of proteins involved in iron metabolism and lipid peroxidation at multiple levels, such as altering iron import/export, activating ferritinophagy, and decreasing glutathione (GSH) level. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple genes involved in ferroptosis, however, its exact role remain elusive. Our mechanistic inquiry revealed that Nrf2 expression enhanced iron storage capacity by increasing ferritin heavy chain 1 (FTH1) expression in PC12 cells. Moreover, Nrf2 alleviated the decrease in GSH level by promoting the expression of genes related to GSH synthesis, including solute carrier family 7 member 11 (SLC7A11) and cysteine ligase (GCL). The contribution of Nrf2 on ferroptosis resistance was further verified by increasing cell tolerance to oxidative stress. Furthermore, Nfe2l2 (Nrf2) knockdown sensitized cells to ferroptotic cell death. Taken together, our findings suggested that iron accumulation caused by altering iron metabolism and the decrease of GSH content are key factors in determining ferroptosis in PC12 cells, and Nrf2 inhibits ferroptosis by combating iron-induced oxidative stress. Our present study provided new clues for the intervention and prevention against ferroptosis-associated neurological diseases.


Subject(s)
Ferroptosis/drug effects , Glutathione/biosynthesis , Iron Overload/drug therapy , NF-E2-Related Factor 2/biosynthesis , Neurons/drug effects , Amino Acid Transport Systems, Acidic/biosynthesis , Amino Acid Transport Systems, Acidic/genetics , Animals , Gene Knockdown Techniques , Glutathione/deficiency , Iron/metabolism , Lipid Peroxidation/drug effects , NF-E2-Related Factor 2/drug effects , PC12 Cells , RNA, Small Interfering , Rats
15.
Neuropediatrics ; 51(2): 160-163, 2020 04.
Article in English | MEDLINE | ID: mdl-31766059

ABSTRACT

CASE: We are reporting the third unrelated case of cerebral aspartate-glutamate carrier isoform 1 (AGC1) deficiency. Patient is a 21-month-old Yemeni male who presented with refractory seizure disorder and developmental arrest. Neuroimaging showed cerebral volume loss and diminished N-acetylaspartate (NAA) peak. Whole exome sequencing revealed a homozygous novel missense variant in the SLC25A12 gene. Patient's seizure frequency abated drastically following initiation of ketogenic diet. DISCUSSION AND CONCLUSION: Cerebral AGC1 deficiency results in dysfunction of mitochondrial malate aspartate shuttle, thereby prohibiting myelin synthesis. There are significant phenotypic commonalities between our patient and previously reported cases including intractable epilepsy, psychomotor delay, cerebral atrophy, and diminished NAA peak. Our report also provides evidence regarding beneficial effect of ketogenic diet in this rare neurometabolic epilepsy.


Subject(s)
Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Diet, Ketogenic , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Mitochondrial Diseases/diagnosis , Mitochondrial Membrane Transport Proteins/genetics , Psychomotor Disorders/diagnosis , Adult , Amino Acid Transport Systems, Acidic/genetics , Antiporters/genetics , Drug Resistant Epilepsy/diet therapy , Hereditary Central Nervous System Demyelinating Diseases/diet therapy , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/physiopathology , Humans , Male , Mitochondrial Diseases/diet therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Mutation, Missense , Protein Isoforms , Psychomotor Disorders/diet therapy , Psychomotor Disorders/genetics , Psychomotor Disorders/physiopathology , Exome Sequencing , Young Adult
16.
Environ Microbiol ; 21(4): 1287-1305, 2019 04.
Article in English | MEDLINE | ID: mdl-30666812

ABSTRACT

The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Adaptation, Physiological/genetics , Genome, Bacterial/genetics , Glycine/analogs & derivatives , Amino Acid Transport Systems, Acidic/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Enzyme Activation/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Glycine/metabolism , Glycine/toxicity , Herbicides/metabolism , Herbicides/toxicity , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Glyphosate
17.
Plant Physiol ; 178(1): 174-188, 2018 09.
Article in English | MEDLINE | ID: mdl-30082496

ABSTRACT

The coordinated distribution of nitrogen to source leaves and sinks is essential for supporting leaf metabolism while also supplying sufficient nitrogen to seeds for development. This study aimed to understand how regulated amino acid allocation to leaves affects photosynthesis and overall plant nitrogen use efficiency in Arabidopsis (Arabidopsis thaliana) and how soil nitrogen availability influences these processes. Arabidopsis plants with a knockout of AAP2, encoding an amino acid permease involved in xylem-to-phloem transfer of root-derived amino acids, were grown in low-, moderate-, and high-nitrogen environments. We analyzed nitrogen allocation to shoot tissues, photosynthesis, and photosynthetic and plant nitrogen use efficiency in these knockout plants. Our results demonstrate that, independent of nitrogen conditions, aap2 plants allocate more nitrogen to leaves than wild-type plants. Increased leaf nitrogen supply positively affected chlorophyll and Rubisco levels, photosynthetic nitrogen use efficiency, and carbon assimilation and transport to sinks. The aap2 plants outperformed wild-type plants with respect to growth, seed yield and carbon storage pools, and nitrogen use efficiency in both high and deficient nitrogen environments. Overall, this study demonstrates that increasing nitrogen allocation to leaves represents an effective strategy for improving carbon fixation and photosynthetic nitrogen use efficiency. The results indicate that an optimized coordination of nitrogen and carbon partitioning processes is critical for high oilseed production in Arabidopsis, including in plants exposed to limiting nitrogen conditions.


Subject(s)
Amino Acids/metabolism , Nitrogen/metabolism , Photosynthesis , Plant Leaves/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Carbon Cycle , Chlorophyll/metabolism , Mutagenesis, Insertional , Plant Shoots/metabolism , Plant Vascular Bundle/metabolism , Plants, Genetically Modified , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological
18.
FEMS Yeast Res ; 19(8)2019 12 01.
Article in English | MEDLINE | ID: mdl-31711143

ABSTRACT

PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.


Subject(s)
Acetates/metabolism , Amino Acid Transport Systems, Acidic/genetics , Antiporters/genetics , Membrane Proteins/genetics , Peroxins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Acetates/pharmacology , Acetyl Coenzyme A/metabolism , Aspartic Acid/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression , Metabolomics , Mitochondria/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
19.
Int J Mol Sci ; 20(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340538

ABSTRACT

WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.


Subject(s)
Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Cerebral Cortex/metabolism , Dwarfism/genetics , Epilepsy/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mitochondrial Diseases/genetics , Neurogenesis/genetics , Psychomotor Disorders/genetics , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Animals , Antiporters/genetics , Antiporters/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Cell Count , Cerebral Cortex/growth & development , Cerebral Cortex/pathology , Disease Models, Animal , Dwarfism/metabolism , Dwarfism/pathology , Epilepsy/metabolism , Epilepsy/pathology , Gene Expression Regulation, Developmental , Germ-Line Mutation , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/pathology , Male , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Neurons/metabolism , Neurons/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Prosencephalon/growth & development , Prosencephalon/metabolism , Prosencephalon/pathology , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology , Rats , Rats, Transgenic , Signal Transduction , Tumor Suppressor Proteins/deficiency , WW Domain-Containing Oxidoreductase/deficiency
20.
Am J Hum Genet ; 96(5): 709-19, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25865492

ABSTRACT

Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2's isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development.


Subject(s)
Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Hereditary Central Nervous System Demyelinating Diseases/genetics , Microcephaly/genetics , Mitochondrial Diseases/genetics , Psychomotor Disorders/genetics , Pyrroline Carboxylate Reductases/genetics , Amino Acid Transport Systems, Acidic/genetics , Antiporters/genetics , Female , Genotype , Hereditary Central Nervous System Demyelinating Diseases/pathology , Homozygote , Humans , Male , Microcephaly/pathology , Mitochondrial Diseases/pathology , Mutation , Phenotype , Psychomotor Disorders/pathology , delta-1-Pyrroline-5-Carboxylate Reductase
SELECTION OF CITATIONS
SEARCH DETAIL