Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biochemistry ; 63(13): 1621-1635, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38607680

ABSTRACT

Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.


Subject(s)
Amino Acyl-tRNA Synthetases , Escherichia coli , Molecular Dynamics Simulation , Polyethylene Glycols , Protein Conformation , Polyethylene Glycols/chemistry , Escherichia coli/enzymology , Escherichia coli/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Microscopy, Atomic Force , Catalytic Domain , Molecular Weight
2.
Arch Pharm (Weinheim) ; 357(8): e2400171, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38710636

ABSTRACT

This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Structure-Activity Relationship , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Molecular Structure , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Pyrazines/pharmacology , Pyrazines/chemistry , Pyrazines/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Dose-Response Relationship, Drug
3.
Brain Nerve ; 76(5): 655-659, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741509

ABSTRACT

Anti-aminoacyl tRNA synthetase (ARS) antibodies are the most frequent in idiopathic inflammatory myopathy, notably associated with anti-synthetase syndrome (ASyS), which is characterized by six clinical features: arthritis, myositis, interstitial lung disease (ILD), fever, Raynaud's phenomenon, and mechanical hands. Although patients with ASyS often respond well to initial glucocorticoid (GC) therapy, they tend to have a chronic, recurrent disease course. In anti-ARS-positive patients, the treatment goal involves suppressing disease recurrence and progression while achieving a minimal GC dose. In this regard, the administration and continuation of immunosuppressants, such as calcineurin inhibitors, have been suggested. B-cell depletion therapies are expected to be valuable in patients with refractory ASyS. Moreover, additional antifibrotic agents may be beneficial for patients with progressive fibrosing ILD.


Subject(s)
Amino Acyl-tRNA Synthetases , Myositis , Humans , Myositis/drug therapy , Myositis/immunology , Amino Acyl-tRNA Synthetases/immunology , Amino Acyl-tRNA Synthetases/antagonists & inhibitors
4.
Sci Adv ; 10(28): eado1453, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985862

ABSTRACT

The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.


Subject(s)
Microbiota , Wolbachia , Wolbachia/drug effects , Humans , Animals , Leucine-tRNA Ligase/metabolism , Leucine-tRNA Ligase/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Crystallography, X-Ray , Boron Compounds/pharmacology , Boron Compounds/chemistry , Symbiosis , Models, Molecular
5.
Int J Parasitol Drugs Drug Resist ; 25: 100548, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805932

ABSTRACT

Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC50 < 5 µM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs.


Subject(s)
Amino Acyl-tRNA Synthetases , Antimalarials , Drug Repositioning , Mitomycin , Plasmodium falciparum , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Mitomycin/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/antagonists & inhibitors , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL