Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.493
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Nature ; 626(7998): 367-376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092041

ABSTRACT

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Subject(s)
Embryonic Development , Germ Layers , Hematopoiesis , Yolk Sac , Humans , Embryo Implantation , Endoderm/cytology , Endoderm/embryology , Germ Layers/cytology , Germ Layers/embryology , Yolk Sac/cytology , Yolk Sac/embryology , Mesoderm/cytology , Mesoderm/embryology , Induced Pluripotent Stem Cells/cytology , Amnion/cytology , Amnion/embryology , Embryoid Bodies/cytology , Cell Lineage , Developmental Biology/methods , Developmental Biology/trends
2.
Nature ; 626(7998): 357-366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052228

ABSTRACT

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Subject(s)
Embryonic Development , Germ Layers , Pluripotent Stem Cells , Humans , Cell Differentiation , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Pluripotent Stem Cells/cytology , Interleukin-6/metabolism , Gastrula/cytology , Gastrula/embryology , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
3.
Nature ; 631(8019): 170-178, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768632

ABSTRACT

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Subject(s)
Cellular Reprogramming , Epigenesis, Genetic , Germ Cells , In Vitro Techniques , Female , Humans , Male , Amnion/cytology , Bone Morphogenetic Proteins/metabolism , Cellular Reprogramming/genetics , DNA Methylation/genetics , Germ Cells/metabolism , Germ Cells/cytology , MAP Kinase Signaling System , Mitosis/genetics , Mixed Function Oxygenases/deficiency , Oogenesis/genetics , Oogonia/cytology , Oogonia/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic/genetics , Spermatogenesis/genetics , Spermatogonia/cytology , Spermatogonia/metabolism , Gene Expression Regulation, Developmental
4.
Nature ; 587(7833): 246-251, 2020 11.
Article in English | MEDLINE | ID: mdl-33177663

ABSTRACT

New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies1-3. For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database4 increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies5 are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus6, a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far.


Subject(s)
Genome/genetics , Genomics/methods , Sequence Alignment/methods , Software , Vertebrates/genetics , Amnion , Animals , Computer Simulation , Genomics/standards , Haplotypes , Humans , Quality Control , Sequence Alignment/standards , Software/standards
5.
Nature ; 584(7819): 98-101, 2020 08.
Article in English | MEDLINE | ID: mdl-32581357

ABSTRACT

Formation of the body of vertebrate embryos proceeds sequentially by posterior addition of tissues from the tail bud. Cells of the tail bud and the posterior presomitic mesoderm, which control posterior elongation1, exhibit a high level of aerobic glycolysis that is reminiscent of the metabolic status of cancer cells experiencing the Warburg effect2,3. Glycolytic activity downstream of fibroblast growth factor controls WNT signalling in the tail bud3. In the neuromesodermal precursors of the tail bud4, WNT signalling promotes the mesodermal fate that is required for sustained axial elongation, at the expense of the neural fate3,5. How glycolysis regulates WNT signalling in the tail bud is currently unknown. Here we used chicken embryos and human tail bud-like cells differentiated in vitro from induced pluripotent stem cells to show that these cells exhibit an inverted pH gradient, with the extracellular pH lower than the intracellular pH, as observed in cancer cells6. Our data suggest that glycolysis increases extrusion of lactate coupled to protons via the monocarboxylate symporters. This contributes to elevating the intracellular pH in these cells, which creates a favourable chemical environment for non-enzymatic ß-catenin acetylation downstream of WNT signalling. As acetylated ß-catenin promotes mesodermal rather than neural fate7, this ultimately leads to activation of mesodermal transcriptional WNT targets and specification of the paraxial mesoderm in tail bud precursors. Our work supports the notion that some tumour cells reactivate a developmental metabolic programme.


Subject(s)
Amnion/embryology , Glycolysis , Wnt Proteins/metabolism , Acetylation , Animals , Body Patterning , Chick Embryo , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Mesoderm/metabolism , beta Catenin/metabolism
6.
Nature ; 577(7791): 537-542, 2020 01.
Article in English | MEDLINE | ID: mdl-31830756

ABSTRACT

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms1,2 that do not recapitulate the in vivo conditions3-5. Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


Subject(s)
Cell Culture Techniques/methods , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Development , Primitive Streak/cytology , Primitive Streak/embryology , Amnion/cytology , Amnion/embryology , Blastocyst/cytology , Cell Differentiation , Cell Lineage , Cell Polarity , Collagen , Drug Combinations , Epithelium/embryology , Gastrulation , Germ Layers/cytology , Germ Layers/embryology , Humans , Laminin , Proteoglycans , RNA-Seq , Single-Cell Analysis , Transcription Factors/metabolism , Transcriptome , Trophoblasts/cytology , Yolk Sac/cytology , Yolk Sac/embryology
7.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36125063

ABSTRACT

The early specification and rapid growth of extraembryonic membranes are distinctive hallmarks of primate embryogenesis. These complex tasks are resolved through an intricate combination of signals controlling the induction of extraembryonic lineages and, at the same time, safeguarding the pluripotent epiblast. Here, we delineate the signals orchestrating primate epiblast and amnion identity. We encapsulated marmoset pluripotent stem cells into agarose microgels and identified culture conditions for the development of epiblast- and amnion-spheroids. Spatial identity mapping authenticated spheroids generated in vitro by comparison with marmoset embryos in vivo. We leveraged the microgel system to functionally interrogate the signalling environment of the post-implantation primate embryo. Single-cell profiling of the resulting spheroids demonstrated that activin/nodal signalling is required for embryonic lineage identity. BMP4 promoted amnion formation and maturation, which was counteracted by FGF signalling. Our combination of microgel culture, single-cell profiling and spatial identity mapping provides a powerful approach to decipher the essential cues for embryonic and extraembryonic lineage formation in primate embryogenesis.


Subject(s)
Microgels , Activins , Amnion , Animals , Callithrix , Cell Differentiation , Germ Layers , Sepharose
8.
Nature ; 573(7774): 421-425, 2019 09.
Article in English | MEDLINE | ID: mdl-31511693

ABSTRACT

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.


Subject(s)
Amnion/embryology , Germ Layers/embryology , Models, Biological , Pluripotent Stem Cells/cytology , Amnion/cytology , Cell Differentiation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , Germ Layers/cytology , Humans , Pregnancy , Primitive Streak/cytology
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046053

ABSTRACT

Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration. A biomimetic injectable hydrogel using amnion membrane (AM) was developed which can self-assemble in situ and retain the stem cells at the target site. In the present study, we evaluated the efficacy of intraarticular injections of AM hydrogels with and without ADSCs in reducing inflammation and cartilage degeneration in a collagenase-induced OA rat model. A week after the induction of OA, rats were treated with control (phosphate-buffered saline), ADSCs, AM gel, and AM-ADSCs. Inflammation and cartilage regeneration was evaluated by joint swelling, analysis of serum by cytokine profiling and Raman spectroscopy, gross appearance, and histology. Both AM and ADSC possess antiinflammatory and chondroprotective properties to target the sites of inflammation in an osteoarthritic joint, thereby reducing the inflammation-mediated damage to the articular cartilage. The present study demonstrated the potential of AM hydrogel to foster cartilage tissue regeneration, a comparable regenerative effect of AM hydrogel and ADSCs, and the synergistic antiinflammatory and chondroprotective effects of AM and ADSC to regenerate cartilage tissue in a rat OA model.


Subject(s)
Adipose Tissue/cytology , Amnion , Hydrogels , Osteoarthritis/therapy , Stem Cell Transplantation , Stem Cells/metabolism , Amnion/chemistry , Animals , Cell Differentiation , Cells, Cultured , Chromatography, Liquid , Cytokines/metabolism , Hydrogels/chemistry , Immunohistochemistry , Injections, Intra-Articular , Mass Spectrometry , Osteoarthritis/etiology , Osteoarthritis/pathology , Rats , Spectrum Analysis, Raman , Stem Cell Transplantation/methods , Stem Cells/cytology , Treatment Outcome
10.
Biol Reprod ; 110(2): 329-338, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37903065

ABSTRACT

Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased ß-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced ß-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1ß confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.


Subject(s)
Amnion , Interleukin-8 , Female , Humans , Infant, Newborn , Pregnancy , Amnion/metabolism , beta-Galactosidase , Cellular Senescence , Culture Media, Conditioned/pharmacology , Epithelial Cells/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Streptococcus agalactiae/metabolism , Interleukin-1
11.
Biol Reprod ; 111(2): 351-360, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718142

ABSTRACT

Recurrent spontaneous abortion is thought to be mostly triggered by immune-related causes. Mesenchymal stem cells, which exhibit the traits of multi-directional differentiation capacity and low immunogenicity, have recently been recommended as a viable treatment for spontaneous abortion-prone mice to increase the success of pregnancy. Amniotic membrane tissue is a byproduct of pregnancy and delivery that has a wide range of potential uses due to its easy access to raw materials and little ethical constraints. To construct an abortion-prone mouse model for this investigation, CBA/J female mice were coupled with male DBA/2 mice, while CBA/J female mice were paired with male BALB/c mice as a control. The identical volume of human amniotic mesenchymal stem cells or phosphate buffer was injected intraperitoneally on the 4.5th day of pregnancy. CBA/J female mice were sacrificed by cervical dislocation on the 13.5th day of pregnancy, the embryo absorption rate was calculated, and the uterus, decidua tissues and placenta were gathered for examination. Through detection, it was discovered that human amniotic mesenchymal stem cells significantly increased the expression of interleukin 10 and transforming growth factor beta, while they significantly decreased the expression of interleukin 1 beta and interleukin 6, improved vascular formation and angiogenesis, and minimized the embryo absorption rate and inflammatory cell infiltration in the recurrent spontaneous abortion + human amniotic mesenchymal stem cells group. In any case, human amniotic mesenchymal stem cells regulate inflammatory factors and cell balance at the maternal-fetal interface, which result in a reduction in the rate of embryo absorption and inflammatory infiltration and provide an innovative perspective to the clinical therapy of recurrent spontaneous abortion.


Subject(s)
Abortion, Habitual , Amnion , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred BALB C , Mice, Inbred CBA , Mice, Inbred DBA , Pregnancy Outcome , Animals , Female , Pregnancy , Mice , Humans , Abortion, Habitual/therapy , Amnion/cytology , Male , Mesenchymal Stem Cell Transplantation/methods , Inflammation/pathology , Placenta , Disease Models, Animal
12.
Exp Eye Res ; 244: 109919, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729254

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.


Subject(s)
Amnion , Exosomes , Forkhead Box Protein O3 , Mesenchymal Stem Cells , Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Retinal Degeneration , Retinal Pigment Epithelium , Signal Transduction , Humans , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Amnion/cytology , Culture Media, Conditioned/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/etiology , Forkhead Box Protein O3/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Apoptosis , Cells, Cultured , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial , Blotting, Western , Animals , Cell Survival , Hydrogen Peroxide/toxicity
13.
Biomed Microdevices ; 26(3): 32, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963644

ABSTRACT

Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.


Subject(s)
Amniotic Fluid , Extraembryonic Membranes , Lab-On-A-Chip Devices , Humans , Amniotic Fluid/cytology , Extraembryonic Membranes/cytology , Extraembryonic Membranes/metabolism , Amnion/cytology , Amnion/metabolism , Cell Survival , Epithelial Cells/cytology , Epithelial Cells/metabolism , Motion , Oxidative Stress , Models, Biological , Microphysiological Systems
14.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822356

ABSTRACT

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Subject(s)
Amnion , Cell Transdifferentiation , Endometrium , Mesenchymal Stem Cells , Paracrine Communication , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endometrium/cytology , Endometrium/metabolism , Animals , Amnion/cytology , Amnion/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Coculture Techniques , Tissue Adhesions/pathology , Tissue Adhesions/metabolism
15.
Mol Biol Rep ; 51(1): 746, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874663

ABSTRACT

BACKGROUND: Human Amniotic Membrane (hAM) is endowed with several biological activities and might be considered an optimal tool in surgical treatment for different ophthalmic pathologies. We pioneered the surgical use of hAM to treat retinal pathologies such as macular holes, tears, and retinal detachments, and to overcome photoreceptor damage in age-related macular degeneration. Although hAM contributed to improved outcomes, the mechanisms of its effects are not yet fully understood. The characterization and explanation of the effects of hAM would allow the adoption of this new natural product in different retinal pathologies, operative contexts, and hAM formulations. At this end, we studied the properties of a hAM extract (hAME) on the ARPE-19 cells. METHODS AND RESULTS: A non-denaturing sonication-based technique was developed to obtain a suitable hAME. Viability, proliferation, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) were studied in hAME-treated ARPE-19 cells. The hAME was able to increase ARPE-19 cell viability even in the presence of oxidative stress (H2O2, TBHP). Moreover, hAME prevented the expression of EMT features, such as EMT-related proteins, fibrotic foci formation, and migration induced by different cytokines. CONCLUSIONS: Our results demonstrate that the hAME retains most of the properties observed in the whole tissue by others. The hAME, other than providing a manageable research tool, could represent a cost-effective and abundant drug to treat retinal pathologies in the future.


Subject(s)
Amnion , Apoptosis , Cell Proliferation , Cell Survival , Oxidative Stress , Retinal Pigment Epithelium , Humans , Amnion/cytology , Amnion/drug effects , Cell Line , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Cell Survival/drug effects , Apoptosis/drug effects , Oxidative Stress/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Tissue Extracts/pharmacology
16.
Prenat Diagn ; 44(3): 317-324, 2024 03.
Article in English | MEDLINE | ID: mdl-38168862

ABSTRACT

OBJECTIVE: To compare the biomechanical properties of fetal preterm membranes (20 + 0 weeks to 30 + 0 weeks) to those of the term (37 + 0 to 41 + 0 weeks). METHOD: Amnion and chorion were manually separated and samples were cut to the required geometry. Rectangular samples with (mode 1) and without (uniaxial) a notch, were tested for tearing energy, critical elongation, and tangent stiffness. Suture retention and inter-suture distance testing investigated the effect of suture placement. RESULTS: From the 15 preterm and 10 term placentas studied, no notable differences were observed in uniaxial testing. Mode 1 fracture testing showed a difference in tearing energy between the preterm and term chorion (0.025 ± 0.005 vs. 0.017 ± 0.005 J/m-1 ; p = 0.027) but not in the amnion (0.030 ± 0.017 vs. 0.029 ± 0.009 J/m-1 ; p = 0.895). Both preterm amnion and chorion showed a higher critical elongation compared with term (1.229 ± 0.057 vs. 1.166 ± 0.046; p = 0.019 and 1.307 ± 0.049 vs. 1.218 ± 0.058; p = 0.012). Preterm amnion had a higher suture retention strength than its term counterpart (0.189 ± 0.065 vs. 0.121 ± 0.031 N; p = 0.023). In inter-suture distance tests, no significant interaction was observed beyond 3 mm, but the preterm chorion showed less interaction at 1-2 mm distances. CONCLUSION: Preterm membranes have equivalent or superior tensile properties to term membranes. The chorion appears to contribute to the mechanical integrity of fetal membranes, particularly in preterm stages.


Subject(s)
Amnion , Extraembryonic Membranes , Humans , Pregnancy , Female , Infant, Newborn , Chorion , Placenta
17.
Prenat Diagn ; 44(2): 158-166, 2024 02.
Article in English | MEDLINE | ID: mdl-38009470

ABSTRACT

Fetal lower urinary tract obstruction (LUTO) is a severe malformation associated with an up to 80% mortality risk as well as significant renal and pulmonary morbidity in survivors. Fetal vesico-amniotic shunts (VAS) bypass the bladder obstruction, improve amniotic fluid volume and enhance in-utero pulmonary development. VAS has been shown to reduce respiratory morbidity and mortality in the neonatal period without proven benefit on long-term renal and bladder function. Clinically available shunts are associated with an up to 80% dislodgement rate, leading to repeat invasive procedures which increase fetal and maternal risks. We developed a novel "Vortex" shunt, which incorporates enhanced fixation to reduce dislodgement, a one-way valve to optimize in-utero bladder function, and enhanced sonographic echogenicity that optimizes the accurate deployment. Following the validation of these characteristics in initial benchtop experiments we have moved to feasibility studies in the fetal lamb model. We hope that the Vortex shunt may ultimately facilitate shunt deployment, reduce dislodgement risk, improve neonatal morbidity and mortality, and decrease the significant healthcare expenditures associated with long-term morbidity in LUTO survivors. In this manuscript, we review the natural history of LUTO, the risks and benefits of clinically available fetal shunts, and our development and early validation experiments.


Subject(s)
Urethral Obstruction , Urinary Bladder Neck Obstruction , Female , Animals , Sheep , Pregnancy , Urinary Bladder/diagnostic imaging , Urinary Bladder/surgery , Urethral Obstruction/surgery , Amnion/surgery , Urinary Bladder Neck Obstruction/surgery , Amniotic Fluid , Ultrasonography, Prenatal
18.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736214

ABSTRACT

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Subject(s)
Adipose Tissue , Cell Differentiation , Fibrin , Insulin , Stem Cells , Humans , Cell Differentiation/drug effects , Fibrin/chemistry , Fibrin/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Insulin/metabolism , Cells, Cultured , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/metabolism , Decellularized Extracellular Matrix/pharmacology , Amnion/cytology , Amnion/metabolism , Amnion/chemistry
19.
Acta Obstet Gynecol Scand ; 103(9): 1829-1837, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38973223

ABSTRACT

INTRODUCTION: Treatment of oligohydramnios in the mid-trimester is challenging, because of the high incidence of adverse perinatal outcomes mainly due to bronchopulmonary dysplasia. Antenatal amnioinfusion has been proposed as a possible treatment for oligohydramnios with intact amnions, but there are few relevant studies. This study aimed to evaluate the effectiveness of transabdominal amnioinfusion in the management of oligohydramnios without fetal lethal malformations in the second and early third trimesters. MATERIAL AND METHODS: It is a historical cohort study. A total of 79 patients diagnosed with oligohydramnios at 18-32 weeks gestation were enrolled. In the amnioinfusion group (n = 39), patients received transabdominal amnioinfusion with the assistance of real-time ultrasound guidance. In the expectant group (n = 41), patients were treated with 3000 mL of intravenous isotonic fluids daily. The perioperative complications and perinatal outcomes were analyzed. RESULTS: Compared with the expectant group, the delivery latency was significantly prolonged, and the rate of cesarean delivery was significantly reduced in the amnioinfusion group (p < 0.05). Although the rate of intrauterine fetal death was significantly reduced, the incidence of spontaneous miscarriage, premature rupture of membranes (PROMs), and threatened preterm labor were significantly higher in the amnioinfusion group than in the expectant group (p < 0.05). There was no significant difference in terms of perinatal mortality (28.9% vs. 41.4%, p > 0.05). Multivariate logistic regression revealed that amnioinfusion (odds ratio [OR] 0.162, 95% confidence interval [CI] 0.04-0.61, p = 0.008) and gestational age at diagnosis (OR 0.185, 95% CI 0.04-0.73, p = 0.016) were independently associated with neonatal adverse outcomes. Further subgrouping showed that amnioinfusion significantly reduced the frequency of bronchopulmonary hypoplasia for patients ≤26 weeks (26.7% vs. 75.0%, p = 0.021). The rates of other neonatal complications were similar in both groups. CONCLUSIONS: Amnioinfusion has no significant effect on improving the perinatal mortality of oligohydramnios in the second and early third trimesters. It may lead to a relatively high rate of PROM and spontaneous abortion. However, amnioinfusion may significantly improve the latency period, the rate of cesarean delivery, and neonatal outcomes of oligohydramnios, especially for women ≤26 weeks with high risk of neonatal bronchopulmonary hypoplasia.


Subject(s)
Oligohydramnios , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Humans , Female , Oligohydramnios/therapy , Pregnancy , Adult , Amniotic Fluid , Pregnancy Outcome , Infant, Newborn , Cohort Studies , Watchful Waiting , Cesarean Section , Treatment Outcome , Gestational Age , Amnion , Ultrasonography, Prenatal
20.
Retina ; 44(6): 974-981, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38324737

ABSTRACT

PURPOSE: To compare the surgical results of vitrectomy with untreated or pretreated lyophilized human amniotic membrane grafts covering in treating retinal detachment related to posterior retinal breaks above chorioretinal atrophy in pathologic myopia. METHODS: Nineteen patients with retinal detachment related to macular hole (MH) located above macular atrophy and/or posterior paravascular retinal breaks (PRBs) located above patchy chorioretinal atrophy in pathologic myopia were included. The eyes of these patients underwent vitrectomy with untreated lyophilized human amniotic membrane covering (n = 10) or perfluorocarbon liquid (PFCL)-assisted pretreated lyophilized human amniotic membrane covering (n = 9; grafts were pretreated in 0.125% indocyanine green and 50% hypertonic glucose solution for 15-20 minutes). The closure of the MH or PRBs, reattachment of the retina, and best-corrected visual acuity were measured postoperatively. RESULTS: Postoperatively, graft dislocation or shift was only found in two eyes (20%) in the untreated group. The closure rate of the MH or PRBs was 80% (8/10) and 100% (9/9) in the untreated group and the pretreated group, respectively. The occurrence rate of excessive gliosis was 40% and 11% in the untreated group and the pretreated group, respectively. In both groups, best-corrected visual acuity was improved and the retinal reattachment rate was 100% at the final visit. CONCLUSION: Perfluorocarbon liquid-assisted pretreated lyophilized human amniotic membrane graft covering was effective in treating retinal detachment related to MH and/or PRBs situated above macular atrophy or patchy chorioretinal atrophy in pathologic myopia. This technique appeared to reduce graft dislocation or shift, promote the closures of MHs/PRBs, and reduce the occurrence of gliosis.


Subject(s)
Amnion , Myopia, Degenerative , Retinal Detachment , Retinal Perforations , Visual Acuity , Vitrectomy , Humans , Myopia, Degenerative/complications , Female , Male , Amnion/transplantation , Retinal Perforations/surgery , Retinal Perforations/diagnosis , Retinal Perforations/etiology , Middle Aged , Retinal Detachment/surgery , Retinal Detachment/etiology , Retinal Detachment/diagnosis , Aged , Vitrectomy/methods , Freeze Drying , Retrospective Studies , Adult , Tomography, Optical Coherence , Fluorocarbons/administration & dosage , Atrophy
SELECTION OF CITATIONS
SEARCH DETAIL