Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.549
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 38: 25-48, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35395166

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) represents a large multisubunit E3-ubiquitin ligase complex that controls the unidirectional progression through the cell cycle by the ubiquitination of specific target proteins, marking them for proteasomal destruction. Although the APC/C's role is largely conserved among eukaryotes, its subunit composition and target spectrum appear to be species specific. In this review, we focus on the plant APC/C complex, whose activity correlates with different developmental processes, including polyploidization and gametogenesis. After an introduction into proteolytic control by ubiquitination, we discuss the composition of the plant APC/C and the essential nature of its core subunits for plant development. Subsequently, we describe the APC/C activator subunits and interactors, most being plant specific. Finally, we provide a comprehensive list of confirmed and suspected plant APC/C target proteins. Identification of growth-related targets might offer opportunities to increase crop yield and resilience of plants to climate change by manipulating APC/C activity.


Subject(s)
Anaphase , Plants , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Plants/genetics , Plants/metabolism , Ubiquitination , Ubiquitins/metabolism
2.
Nat Rev Mol Cell Biol ; 24(8): 543-559, 2023 08.
Article in English | MEDLINE | ID: mdl-36964313

ABSTRACT

The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.


Subject(s)
M Phase Cell Cycle Checkpoints , Spindle Apparatus , Animals , Spindle Apparatus/metabolism , Kinetochores/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Microtubules/metabolism , Chromosome Segregation , Cell Cycle Proteins/genetics , Mammals/genetics
3.
Cell ; 171(4): 918-933.e20, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29033132

ABSTRACT

Posttranslational modification with ubiquitin chains controls cell fate in all eukaryotes. Depending on the connectivity between subunits, different ubiquitin chain types trigger distinct outputs, as seen with K48- and K63-linked conjugates that drive protein degradation or complex assembly, respectively. Recent biochemical analyses also suggested roles for mixed or branched ubiquitin chains, yet without a method to monitor endogenous conjugates, the physiological significance of heterotypic polymers remained poorly understood. Here, we engineered a bispecific antibody to detect K11/K48-linked chains and identified mitotic regulators, misfolded nascent polypeptides, and pathological Huntingtin variants as their endogenous substrates. We show that K11/K48-linked chains are synthesized and processed by essential ubiquitin ligases and effectors that are mutated across neurodegenerative diseases; accordingly, these conjugates promote rapid proteasomal clearance of aggregation-prone proteins. By revealing key roles of K11/K48-linked chains in cell-cycle and quality control, we establish heterotypic ubiquitin conjugates as important carriers of biological information.


Subject(s)
Antibodies, Bispecific/analysis , Signal Transduction , Ubiquitin/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle , Humans , Mitosis , Protein Biosynthesis , Ubiquitination
4.
Cell ; 165(6): 1440-1453, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27259151

ABSTRACT

Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Biocatalysis , Cryoelectron Microscopy , Humans , Models, Molecular , Saccharomyces cerevisiae Proteins/chemistry , Structure-Activity Relationship , Ubiquitination
5.
Cell ; 166(1): 167-80, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27368103

ABSTRACT

Proliferating cells must cross a point of no return before they replicate their DNA and divide. This commitment decision plays a fundamental role in cancer and degenerative diseases and has been proposed to be mediated by phosphorylation of retinoblastoma (Rb) protein. Here, we show that inactivation of the anaphase-promoting complex/cyclosome (APC(Cdh1)) has the necessary characteristics to be the point of no return for cell-cycle entry. Our study shows that APC(Cdh1) inactivation is a rapid, bistable switch initiated shortly before the start of DNA replication by cyclin E/Cdk2 and made irreversible by Emi1. Exposure to stress between Rb phosphorylation and APC(Cdh1) inactivation, but not after APC(Cdh1) inactivation, reverted cells to a mitogen-sensitive quiescent state, from which they can later re-enter the cell cycle. Thus, APC(Cdh1) inactivation is the commitment point when cells lose the ability to return to quiescence and decide to progress through the cell cycle.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Cdh1 Proteins/metabolism , Cell Cycle , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , F-Box Proteins/metabolism , Humans , Mitogens/toxicity , Phosphorylation , Retinoblastoma Protein/metabolism
6.
Mol Cell ; 83(10): 1549-1551, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37207623

ABSTRACT

Cell cycle and metabolism are intimately intertwined, but how metabolites directly regulate cell-cycle machinery remains elusive. Liu et al.1 reveal that glycolysis end-product lactate directly binds and inhibits the SUMO protease SENP1 to govern the E3 ligase activity of the anaphase-promoting complex, leading to efficient mitotic exit in proliferative cells.


Subject(s)
Anaphase , Lactic Acid , Mitosis , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism
7.
Cell ; 157(4): 767-9, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24813601

ABSTRACT

The anaphase-promoting complex/cyclosome targets proteins for degradation by catalyzing homotypic ubiquitin chains of different linkage types. In this issue of Cell, Meyer and Rape diversify the degradation signals by demonstrating that the APC/C and its cognate E2 conjugating enzymes enhance the rate of substrate degradation by decorating them with branched Lys11 and Lys48 ubiquitin chains.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Humans
8.
Cell ; 157(4): 910-21, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24813613

ABSTRACT

Posttranslational modification of cell-cycle regulators with ubiquitin chains is essential for eukaryotic cell division. Such chains can be connected through seven lysine residues or the amino terminus of ubiquitin, thereby allowing the assembly of eight homogenous and multiple mixed or branched conjugates. Although functions of homogenous chain types have been described, physiological roles of branched structures are unknown. Here, we report that the anaphase-promoting complex (APC/C) efficiently synthesizes branched conjugates that contain multiple blocks of K11-linked chains. Compared to homogenous chains, the branched conjugates assembled by the APC/C strongly enhance substrate recognition by the proteasome, thereby driving degradation of cell-cycle regulators during early mitosis. Our work, therefore, identifies an enzyme and substrates for modification with branched ubiquitin chains and points to an important role of these conjugates in providing an improved signal for proteasomal degradation.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , HeLa Cells , Humans , NIMA-Related Kinases , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
9.
Nature ; 616(7958): 790-797, 2023 04.
Article in English | MEDLINE | ID: mdl-36921622

ABSTRACT

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins , Cell Cycle , Lactic Acid , Humans , Anaphase , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Lactic Acid/metabolism , Mitosis
10.
Annu Rev Biochem ; 82: 387-414, 2013.
Article in English | MEDLINE | ID: mdl-23495935

ABSTRACT

The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.


Subject(s)
Cell Cycle Checkpoints/physiology , Cell Cycle/physiology , Ligases/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Anaphase-Promoting Complex-Cyclosome , Animals , Humans
11.
EMBO J ; 43(19): 4324-4355, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39143240

ABSTRACT

The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Cyclin B1 , Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Humans , HeLa Cells , Proteolysis , Cryoelectron Microscopy , Mitosis
12.
EMBO J ; 43(5): 666-694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279026

ABSTRACT

The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Neoplasms , Humans , Anaphase-Promoting Complex-Cyclosome/genetics , Dyneins , Kinesins/genetics , Kinetochores , Mitosis , Neoplasms/genetics
13.
EMBO J ; 42(20): e114288, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37728253

ABSTRACT

Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.


Subject(s)
Saccharomyces cerevisiae Proteins , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Meiosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Anaphase , Saccharomyces cerevisiae/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , RNA-Binding Proteins/metabolism
14.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546043

ABSTRACT

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Subject(s)
M Phase Cell Cycle Checkpoints , Meiosis , Animals , Female , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Oocytes/metabolism , Ubiquitins/metabolism
15.
Nat Rev Mol Cell Biol ; 16(2): 82-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25604195

ABSTRACT

The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Mitosis/physiology , Cell Cycle Proteins/metabolism , Chromosome Segregation/physiology , Cytokinesis/physiology , Humans
16.
Cell ; 151(3): 603-18, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23101628

ABSTRACT

Whereas proliferating cells enter M phase shortly after DNA replication, the first M phase of meiosis is preceded by an extended prophase in which homologous chromosomes undergo recombination. Exit from prophase I is controlled by the recombination checkpoint (RC), which, in yeast, represses the meiosis-specific transcription factor Ndt80 required for the expression of B-type cyclins and other M phase regulators. We show that an extended prophase I additionally requires the suppression of latent, mitotic cell-cycle controls by the anaphase-promoting complex (APC/C) and its meiosis-specific activator Ama1, which trigger the degradation of M phase regulators and Ndd1, a subunit of a mitotic transcription factor. ama1Δ mutants exit from prophase I prematurely and independently of the RC, which results in recombination defects and chromosome missegregation. Thus, control of prophase I by meiotic mechanisms depends on the suppression of the alternative, mitotic mechanisms by a meiosis-specific form of the APC/C.


Subject(s)
Cell Cycle Proteins/metabolism , Meiosis , Prophase , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase-Promoting Complex-Cyclosome , Cdc20 Proteins , Chromosome Segregation , Chromosomes, Fungal/metabolism , DNA-Binding Proteins/metabolism , Metaphase , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Spindle Apparatus , Transcription Factors/metabolism
17.
Proc Natl Acad Sci U S A ; 121(37): e2413089121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39231204

ABSTRACT

The ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) and its regulatory protein Cdc20 play important roles in the control of different stages of mitosis. APC/C associated with Cdc20 is active and promotes metaphase-anaphase transition by targeting for degradation inhibitors of anaphase initiation. Earlier in mitosis, premature action of APC/C is prevented by the mitotic checkpoint (or spindle assembly checkpoint) system, which ensures that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. The active mitotic checkpoint system promotes the assembly of a Mitotic Checkpoint Complex (MCC), which binds to APC/C and inhibits its activity. The interaction of MCC with APC/C is strongly enhanced by Cdc20 bound to APC/C. While the association of Cdc20 with APC/C was known to be essential for both these stages of mitosis, it was not known how Cdc20 remains bound in spite of ongoing processes, phosphorylation and ubiquitylation, that stimulate its release from APC/C. We find that MCC strongly inhibits the release of Cdc20 from APC/C by the action of mitotic protein kinase Cdk1-cyclin B. This is not due to protection from phosphorylation of specific sites in Cdc20 that affect its interaction with APC/C. Rather, MCC stabilizes the binding to APC/C of partially phosphorylated forms of Cdc20. MCC also inhibits the autoubiquitylation of APC/C-bound Cdc20 and its ubiquitylation-promoted release from APC/C. We propose that these actions of MCC to maintain Cdc20 bound to APC/C in mitosis are essential for the control of mitosis during active mitotic checkpoint and in subsequent anaphase initiation.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Cdc20 Proteins , M Phase Cell Cycle Checkpoints , Mitosis , Cdc20 Proteins/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Humans , Mitosis/physiology , M Phase Cell Cycle Checkpoints/physiology , HeLa Cells , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Ubiquitination , Phosphorylation , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Protein Binding , Spindle Apparatus/metabolism
18.
Proc Natl Acad Sci U S A ; 121(30): e2319574121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39024113

ABSTRACT

Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Humans , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Cell Line, Tumor , S Phase/drug effects , Pyridines/pharmacology , Piperazines/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics , Cell Cycle Checkpoints/drug effects , Cyclins/metabolism , Cyclins/genetics , F-Box Proteins
19.
J Cell Sci ; 137(3)2024 02 01.
Article in English | MEDLINE | ID: mdl-38206091

ABSTRACT

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Subject(s)
Cell Cycle Proteins , Cyclins , Animals , Cell Cycle , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Mitosis , Cdc20 Proteins/metabolism , Mammals/metabolism
20.
Plant Cell ; 35(2): 910-923, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36503931

ABSTRACT

DNA replication stress threatens genome stability and affects plant growth and development. How plants resolve replication stress is poorly understood. The protein kinase WEE1-mediated cell cycle arrest is required for replication stress responses. The E3 ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/Cullin 1/F-box (SCF) are essential regulators of the cell cycle. Here, we show that APC/CCDC20 mediates the degradation of SCFFBL17 during replication stress responses in Arabidopsis thaliana. Biochemically, WEE1 interacts with and phosphorylates the APC/C co-activator APC10, which enhances the interaction between F-BOX-LIKE17 (FBL17) and CELL DIVISION CYCLE 20 (CDC20), an activator of APC/C. Both APC10 and CDC20 are required for the polyubiquitination and degradation of FBL17. Genetically, silencing CDC20 or APC10 confers plant hypersensitivity to replication stress, which is suppressed by loss of FBL17. Collectively, our study suggests that WEE1 activates APC/C to inhibit FBL17, providing insight into replication stress responses in plants.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Ubiquitin-Protein Ligases/metabolism , Cdc20 Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL