Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.907
Filter
Add more filters

Publication year range
1.
PLoS Comput Biol ; 20(6): e1012219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900787

ABSTRACT

The unique structure of the human foot is seen as a crucial adaptation for bipedalism. The foot's arched shape enables stiffening the foot to withstand high loads when pushing off, without compromising foot flexibility. Experimental studies demonstrated that manipulating foot stiffness has considerable effects on gait. In clinical practice, altered foot structure is associated with pathological gait. Yet, experimentally manipulating individual foot properties (e.g. arch height or tendon and ligament stiffness) is hard and therefore our understanding of how foot structure influences gait mechanics is still limited. Predictive simulations are a powerful tool to explore causal relationships between musculoskeletal properties and whole-body gait. However, musculoskeletal models used in three-dimensional predictive simulations assume a rigid foot arch, limiting their use for studying how foot structure influences three-dimensional gait mechanics. Here, we developed a four-segment foot model with a longitudinal arch for use in predictive simulations. We identified three properties of the ankle-foot complex that are important to capture ankle and knee kinematics, soleus activation, and ankle power of healthy adults: (1) compliant Achilles tendon, (2) stiff heel pad, (3) the ability to stiffen the foot. The latter requires sufficient arch height and contributions of plantar fascia, and intrinsic and extrinsic foot muscles. A reduced ability to stiffen the foot results in walking patterns with reduced push-off power. Simulations based on our model also captured the effects of walking with anaesthetised intrinsic foot muscles or an insole limiting arch compression. The ability to reproduce these different experiments indicates that our foot model captures the main mechanical properties of the foot. The presented four-segment foot model is a potentially powerful tool to study the relationship between foot properties and gait mechanics and energetics in health and disease.


Subject(s)
Foot , Gait , Humans , Foot/physiology , Foot/anatomy & histology , Gait/physiology , Biomechanical Phenomena , Adult , Male , Computer Simulation , Models, Biological , Muscle, Skeletal/physiology , Female , Computational Biology , Walking/physiology , Ankle/physiology , Ankle/anatomy & histology
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850217

ABSTRACT

This study aimed to investigate the effects of high-definition transcranial direct current stimulation on ankle force sense and underlying cerebral hemodynamics. Sixteen healthy adults (8 males and 8 females) were recruited in the study. Each participant received either real or sham high-definition transcranial direct current stimulation interventions in a randomly assigned order on 2 visits. An isokinetic dynamometer was used to assess the force sense of the dominant ankle; while the functional near-infrared spectroscopy was employed to monitor the hemodynamics of the sensorimotor cortex. Two-way analyses of variance with repeated measures and Pearson correlation analyses were performed. The results showed that the absolute error and root mean square error of ankle force sense dropped more after real stimulation than after sham stimulation (dropped by 23.4% vs. 14.9% for absolute error, and 20.0% vs. 10.2% for root mean square error). The supplementary motor area activation significantly increased after real high-definition transcranial direct current stimulation. The decrease in interhemispheric functional connectivity within the Brodmann's areas 6 was significantly correlated with ankle force sense improvement after real high-definition transcranial direct current stimulation. In conclusion, high-definition transcranial direct current stimulation can be used as a potential intervention for improving ankle force sense. Changes in cerebral hemodynamics could be one of the explanations for the energetic effect of high-definition transcranial direct current stimulation.


Subject(s)
Ankle , Spectroscopy, Near-Infrared , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Young Adult , Ankle/physiology , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Motor Cortex/physiology , Transcranial Direct Current Stimulation/methods , Cross-Over Studies
3.
J Physiol ; 602(17): 4237-4250, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39159310

ABSTRACT

Motoneuronal persistent inward currents (PICs) are facilitated by neuromodulatory inputs but are highly sensitive to local inhibitory circuits. Estimates of PICs are reduced by group Ia reciprocal inhibition, and increased with the diffuse actions of neuromodulators released during remote muscle contraction. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty participants performed triangular ramps of both co-contraction (simultaneous dorsiflexion and plantar flexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface EMG activity recorded from tibialis anterior using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics. Discharge rate at recruitment and peak discharge rate were modestly reduced (∼6% change; P < 0.001; d = 0.22) and increased (∼2% change; P = 0.001, d = -0.19), respectively, in the entire dataset but no changes were observed when motor units were tracked across conditions. The largest effects during co-contraction were that estimates of PICs (ΔF) were reduced by ∼20% (4.47 vs. 5.57 pulses per second during isometric dorsiflexion; P < 0.001, d = 0.641). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behaviour. KEY POINTS: Voluntary co-contraction is a unique motor behaviour that concurrently provides excitatory and inhibitory synaptic input to motoneurons. Co-contraction of agonist-antagonist pairs alters agonist motor unit discharge characteristics, consistent with reductions in persistent inward current magnitude.


Subject(s)
Ankle , Motor Neurons , Muscle Contraction , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Motor Neurons/physiology , Male , Adult , Female , Muscle Contraction/physiology , Ankle/physiology , Young Adult , Electromyography , Action Potentials/physiology , Isometric Contraction/physiology
4.
Exp Physiol ; 109(5): 729-737, 2024 May.
Article in English | MEDLINE | ID: mdl-38488678

ABSTRACT

Due to Achilles tendon compliance, passive ankle stiffness is insufficient to stabilise the body when standing. This results in 'paradoxical' muscle movement, whereby calf muscles tend to shorten during forward body sway. Natural variation in stiffness may affect this movement. This may have consequences for postural control, with compliant ankles placing greater reliance upon active neural control rather than stretch reflexes. Previous research also suggests ageing reduces ankle stiffness, possibly contributing to reduced postural stability. Here we determine the relationship between ankle stiffness and calf muscle movement during standing, and whether this is associated with postural stability or age. Passive ankle stiffness was measured during quiet stance in 40 healthy volunteers ranging from 18 to 88 years of age. Medial gastrocnemius muscle length was also recorded using ultrasound. We found a significant inverse relationship between ankle stiffness and paradoxical muscle movement, that is, more compliant ankles were associated with greater muscle shortening during forward sway (r ≥ 0.33). This was seen during both quiet stance as well as voluntary sway. However, we found no significant effects of age upon stiffness, paradoxical motion or postural sway. Furthermore, neither paradoxical muscle motion nor ankle stiffness was associated with postural sway. These results show that natural variation in ankle stiffness alters the extent of paradoxical calf muscle movement during stance. However, the absence of a clear relationship to postural sway suggests that neural control mechanisms are more than capable of compensating for a lack of inherent joint stiffness.


Subject(s)
Ankle , Muscle, Skeletal , Postural Balance , Humans , Muscle, Skeletal/physiology , Adult , Aged , Middle Aged , Male , Female , Postural Balance/physiology , Young Adult , Aged, 80 and over , Ankle/physiology , Adolescent , Movement/physiology , Achilles Tendon/physiology , Achilles Tendon/diagnostic imaging , Ankle Joint/physiology , Aging/physiology , Leg/physiology , Posture/physiology
5.
J Biomech Eng ; 146(9)2024 09 01.
Article in English | MEDLINE | ID: mdl-38581371

ABSTRACT

Understanding the natural biomechanics of walking at different speeds and activities is crucial to develop effective assistive devices for persons with lower-limb impairments. While continuous measures such as joint angle and moment are well-suited for biomimetic control of robotic systems, whole-stride summary metrics are useful for describing changes across behaviors and for designing and controlling passive and semi-active devices. Dynamic mean ankle moment arm (DMAMA) is a whole-stride measure representing the moment arm of the ground reaction impulse about the ankle joint-effectively, how "forefoot-dominated" or "hindfoot-dominated" a movement is. DMAMA was developed as a target and performance metric for semi-active devices that adjust once per stride. However, for implementation in this application, DMAMA must be characterized across various activities in unimpaired individuals. In our study, unimpaired participants walked at "slow," "normal," and "fast" self-selected speeds on level ground and at a normal self-selected speed while ascending and descending stairs and a 5-degree incline ramp. DMAMA measured from these activities displayed a borderline-significant negative sensitivity to walking speed, a significant positive sensitivity to ground incline, and a significant decrease when ascending stairs compared to descending. The data suggested a nonlinear relationship between DMAMA and walking speed; half of the participants had the highest average DMAMA at their "normal" speed. Our findings suggest that DMAMA varies substantially across activities, and thus, matching DMAMA could be a valuable metric to consider when designing biomimetic assistive lower-limb devices.


Subject(s)
Walking , Humans , Walking/physiology , Male , Biomechanical Phenomena , Female , Adult , Mechanical Phenomena , Ankle Joint/physiology , Young Adult , Ankle/physiology , Arm/physiology
6.
Int J Sports Med ; 45(4): 292-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37871643

ABSTRACT

Ankle destabilizing devices were developed to improve the recruitment of the evertor muscles. Nevertheless, the activity of lower-leg muscles has never been compared to each other during functional tests performed with destabilization. The objectives were i) to compare the electromyographic activity between the lower-leg muscles during four functional tests performed with ankle destabilization, and ii) to determine sex-related differences in neuromuscular activation. Twenty-six healthy volunteers (13 males, 13 females) performed the modified Star Excursion Balance Test (mSEBT), unipedal balance and weight-bearing inversion and eversion tests with a destabilizing device, while recording electromyographic activity of the peroneus longus and brevis, tibialis anterior, gastrocnemius lateralis and gluteus medius. The activity of peroneal muscles was significantly greater than other muscles during all functional tests. Furthermore, the anterior direction of the mSEBT was the one implying the greatest activity of the peroneus longus muscle compared to the posteromedial (p=0.003) or posterolateral (p<0.001) directions. Finally, no significant sex-related differences in neuromuscular activity were reported. This study highlights the effectiveness of the destabilizing device to involve specifically the peroneal muscles when performing various functional tests. This device should be used by clinicians to be more specific to the stabilizers of the ankle joint during functional exercises.


Subject(s)
Ankle Joint , Ankle , Male , Female , Humans , Ankle/physiology , Ankle Joint/physiology , Electromyography , Lower Extremity/physiology , Muscle, Skeletal/physiology
7.
J Neuroeng Rehabil ; 21(1): 119, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003459

ABSTRACT

The ankle-foot prosthesis aims to compensate for the missing motor functions by fitting the motion characteristics of the human ankle, which contributes to enabling the lower-limb amputees to take care of themselves and improve mobility in daily life. To address the problems of poor bionic motion of the ankle-foot prosthesis and the lack of natural interaction among the patient, prosthesis, and the environment, we developed a complex reverse-rolling conjugate joint based on the human ankle-foot structure and motion characteristics, the rolling joint was used to simulate the rolling-sliding characteristics of the knee joint. Meanwhile, we established a segmental dynamics model of the prosthesis in the stance phase, and the prosthetic structure parameters were obtained with the optimal prosthetic structure dimensions and driving force. In addition, a carbon fiber energy-storage foot was designed based on the human foot profile, and the dynamic response of its elastic strain energy at different thicknesses was simulated and analyzed. Finally, we integrated a bionic ankle-foot prosthesis and experiments were conducted to verify the bionic nature of the prosthetic joint motion and the energy-storage characteristics of the carbon fiber prosthetic foot. The proposed ankle-foot prosthesis provides ambulation support to assist amputees in returning to social life normally and has the potential to help improve clinical viability to reduce medical rehabilitation costs.


Subject(s)
Ankle , Artificial Limbs , Bionics , Foot , Prosthesis Design , Humans , Ankle/physiology , Foot/physiology , Amputees/rehabilitation , Ankle Joint/physiology , Biomechanical Phenomena
8.
J Neuroeng Rehabil ; 21(1): 67, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689255

ABSTRACT

BACKGROUND: Foot and ankle unloading is essential in various clinical contexts, including ulcers, tendon ruptures, and fractures. Choosing the right assistive device is crucial for functionality and recovery. Yet, research on the impact of devices beyond crutches, particularly ankle-foot orthoses (AFOs) designed to unload the ankle and foot, is limited. This study investigates the effects of three types of devices-forearm crutches, knee crutch, and AFO-on biomechanical, metabolic, and subjective parameters during walking with unilateral ankle-foot unloading. METHODS: Twenty healthy participants walked at a self-selected speed in four conditions: unassisted able-bodied gait, and using three unloading devices, namely forearm crutches, iWalk knee crutch, and ZeroG AFO. Comprehensive measurements, including motion capture, force plates, and metabolic system, were used to assess various spatiotemporal, kinematic, kinetic, and metabolic parameters. Additionally, participants provided subjective feedback through questionnaires. The conditions were compared using a within-subject crossover study design with repeated measures ANOVA. RESULTS: Significant differences were found between the three devices and able-bodied gait. Among the devices, ZeroG exhibited significantly faster walking speed and lower metabolic cost. For the weight-bearing leg, ZeroG exhibited the shortest stance phase, lowest braking forces, and hip and knee angles most similar to normal gait. However, ankle plantarflexion after push-off using ZeroG was most different from normal gait. IWalk and crutches caused significantly larger center-of-mass mediolateral and vertical fluctuations, respectively. Participants rated the ZeroG as the most stable, but more participants complained it caused excessive pressure and pain. Crutches were rated with the highest perceived exertion and lowest comfort, whereas no significant differences between ZeroG and iWalk were found for these parameters. CONCLUSIONS: Significant differences among the devices were identified across all measurements, aligning with previous studies for crutches and iWalk. ZeroG demonstrated favorable performance in most aspects, highlighting the potential of AFOs in enhancing gait rehabilitation when unloading is necessary. However, poor comfort and atypical sound-side ankle kinematics were evident with ZeroG. These findings can assist clinicians in making educated decisions about prescribing ankle-foot unloading devices and guide the design of improved devices that overcome the limitations of existing solutions.


Subject(s)
Ankle , Foot , Walking , Humans , Biomechanical Phenomena , Male , Walking/physiology , Female , Adult , Ankle/physiology , Foot/physiology , Foot Orthoses , Self-Help Devices , Young Adult , Crutches , Cross-Over Studies , Gait/physiology
9.
J Neuroeng Rehabil ; 21(1): 87, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38807221

ABSTRACT

BACKGROUND: The talocrural joint and the subtalar joint are the two major joints of the ankle-joint complex. The position and direction of the exosuit force line relative to these two joint axes can influence ankle motion. We aimed to understand the effects of different force-lines on ankle multidimensional motion. METHODS: In this article, three assistance force line schemes for ankle exosuits were proposed: perpendicular to the talocrural joint axis (PT), intersecting with the subtalar joint axis (IS), and parallel to the triceps surae (PTS). A theoretical model was proposed to calculate the exosuit's assistance moment. Seven participants completed four experimental tests of ankle plantarflexion, including three passive motions assisted by the PT, PTS and IS schemes, and one active motion without exosuit assistance (Active). RESULTS: The simulation results demonstrated that all three exosuits were able to produce significant moments of ankle plantarflexion. Among these, the PT scheme exhibited the highest moments in all dimensions, followed by the PTS and IS schemes. The experimental findings confirmed the effectiveness of all three exosuit schemes in assisting ankle plantarflexion. Additionally, as the assistive force lines approached the subtalar joint, there was a decrease in ankle motion assisted by the exosuits in non-plantarflexion directions, along with a reduction in the average distance of ankle angle curves relative to active ankle motion. Furthermore, the linear correlation coefficients between inversion and plantarflexion, adduction and plantarflexion, and adduction and inversion gradually converged toward active ankle plantarflexion motion. CONCLUSIONS: Our research indicates that the position of the exosuit force line to the subtalar joint has a significant impact on ankle inversion and adduction. Among all three schemes, the IS, which has the closest distance to the subtalar joint axes, has the greatest kinematic similarity to active ankle plantarflexion and might be a better choice for ankle assistance and rehabilitation.


Subject(s)
Ankle Joint , Humans , Ankle Joint/physiology , Male , Biomechanical Phenomena , Adult , Exoskeleton Device , Young Adult , Range of Motion, Articular/physiology , Female , Movement/physiology , Models, Theoretical , Ankle/physiology
10.
J Neuroeng Rehabil ; 21(1): 105, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38907255

ABSTRACT

BACKGROUND: The ankle is usually highly effective in modulating the swing foot's trajectory to ensure safe ground clearance but there are few reports of ankle kinetics and mechanical energy exchange during the gait cycle swing phase. Previous work has investigated ankle swing mechanics during normal walking but with developments in devices providing dorsiflexion assistance, it is now essential to understand the minimal kinetic requirements for increasing ankle dorsiflexion, particularly for devices employing energy harvesting or utilizing lighter and lower power energy sources or actuators. METHODS: Using a real-time treadmill-walking biofeedback technique, swing phase ankle dorsiflexion was experimentally controlled to increase foot-ground clearance by 4 cm achieved via increased ankle dorsiflexion. Swing phase ankle moments and dorsiflexor muscle forces were estimated using AnyBody modeling system. It was hypothesized that increasing foot-ground clearance by 4 cm, employing only the ankle joint, would require significantly higher dorsiflexion moments and muscle forces than a normal walking control condition. RESULTS: Results did not confirm significantly increased ankle moments with augmented dorsiflexion, with 0.02 N.m/kg at toe-off reducing to zero by the end of swing. Tibialis Anterior muscle force incremented significantly from 2 to 4 N/kg after toe-off, due to coactivation with the Soleus. To ensure an additional 4 cm mid swing foot-ground clearance, an estimated additional 0.003 Joules/kg is required to be released immediately after toe-off. CONCLUSION: This study highlights the interplay between ankle moments, muscle forces, and energy demands during swing phase ankle dorsiflexion, offering insights for the design of ankle assistive technologies. External devices do not need to deliver significantly greater ankle moments to increase ankle dorsiflexion but, they should offer higher mechanical power to provide rapid bursts of energy to facilitate quick dorsiflexion transitions before reaching Minimum Foot Clearance event. Additionally, for ankle-related bio-inspired devices incorporating artificial muscles or humanoid robots that aim to replicate natural ankle biomechanics, the inclusion of supplementary Tibialis Anterior forces is crucial due to Tibialis Anterior and Soleus co-activation. These design strategies ensures that ankle assistive technologies are both effective and aligned with the biomechanical realities of human movement.


Subject(s)
Ankle Joint , Ankle , Muscle, Skeletal , Self-Help Devices , Humans , Biomechanical Phenomena , Male , Adult , Female , Ankle Joint/physiology , Ankle/physiology , Muscle, Skeletal/physiology , Walking/physiology , Gait/physiology , Young Adult , Foot/physiology , Equipment Design , Biofeedback, Psychology/instrumentation , Biofeedback, Psychology/methods , Kinetics
11.
J Neuroeng Rehabil ; 21(1): 126, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069629

ABSTRACT

BACKGROUND: Passive-dynamic ankle-foot orthoses (PD-AFOs) are often prescribed to address plantar flexor weakness during gait, which is commonly observed after stroke. However, limited evidence is available to inform the prescription guidelines of PD-AFO bending stiffness. This study assessed the extent to which PD-AFOs customized to match an individual's level of plantar flexor weakness influence walking function, as compared to No AFO and their standard of care (SOC) AFO. METHODS: Mechanical cost-of-transport, self-selected walking speed, and key biomechanical variables were measured while individuals greater than six months post-stroke walked with No AFO, with their SOC AFO, and with a stiffness-customized PD-AFO. Outcomes were compared across these conditions using a repeated measures ANOVA or Friedman test (depending on normality) for group-level analysis and simulation modeling analysis for individual-level analysis. RESULTS: Twenty participants completed study activities. Mechanical cost-of-transport and self-selected walking speed improved with the stiffness-customized PD-AFOs compared to No AFO and SOC AFO. However, this did not result in a consistent improvement in other biomechanical variables toward typical values. In line with the heterogeneous nature of the post-stroke population, the response to the PD-AFO was highly variable. CONCLUSIONS: Stiffness-customized PD-AFOs can improve the mechanical cost-of-transport and self-selected walking speed in many individuals post-stroke, as compared to No AFO and participants' standard of care AFO. This work provides initial efficacy data for stiffness-customized PD-AFOs in individuals post-stroke and lays the foundation for future studies to enable consistently effective prescription of PD-AFOs for patients post-stroke in clinical practice. TRIAL REGISTRATION: NCT04619043.


Subject(s)
Foot Orthoses , Stroke Rehabilitation , Walking Speed , Humans , Male , Female , Middle Aged , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Walking Speed/physiology , Aged , Biomechanical Phenomena , Stroke/complications , Stroke/physiopathology , Ankle/physiology , Walking/physiology , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology
12.
J Neuroeng Rehabil ; 21(1): 132, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090725

ABSTRACT

BACKGROUND: Ankle-foot orthoses (AFOs) are commonly used by children with cerebral palsy (CP), but traditional solutions are unable to address the heterogeneity and evolving needs amongst children with CP. One key limitation lies in the inability of current passive devices to customize the torque-angle relationship, which is essential to adapt the support to the specific individual needs. Powered alternatives can provide customized behavior, but often face challenges with reliability, weight, and cost. Overall, clinicians find certain barriers that hinder their prescription. In recent work, the Variable Stiffness Orthosis (VSO) was developed, enabling stiffness customization without the need for motors or sophisticated control. METHODS: This work evaluates a pediatric version of the VSO (inGAIT-VSO) by investigating its impact on the walking performance of children with CP and its potential to be used as a tool for assessing the effect of variable stiffness on pathological gait. Data was collected for three typical developing (TD) children and six pediatric participants with CP over two sessions involving walking/balance tasks and questionnaires. RESULTS: The sensors of the inGAIT-VSO provided useful information to assess the impact of the device. Increasing the stiffness of the inGAIT-VSO significantly reduced participants' dorsiflexion and plantarflexion. Despite reduced range of motion, the peak restoring torque increased with stiffness. Overall the participants' gait pattern was altered by reducing crouch gait, preventing drop-foot and supporting body weight. Participants with CP exhibited significantly lower (p < 0.05) physiological cost when walking with the inGAIT-VSO compared to normal condition (own AFO or shoes only). Generally, the device did not impair walking and balance of the participants compared to normal conditions. According to the questionnaire results, the inGAIT-VSO was easy to use and participants reported positive experiences. CONCLUSION: The inGAIT-VSO stiffnesses significantly affected participants' plantarflexion and dorsiflexion and yielded objective data regarding walking performance in pathological gait (e.g. ankle angle, exerted torque and restored assistive energy). These effects were captured by the sensors integrated in the device without using external equipment. The inGAIT-VSO shows promise for customizing AFO stiffness and aiding clinicians in selecting a personalized stiffness based on objective metrics.


Subject(s)
Ankle , Cerebral Palsy , Foot Orthoses , Walking , Humans , Cerebral Palsy/rehabilitation , Cerebral Palsy/physiopathology , Child , Male , Walking/physiology , Female , Ankle/physiopathology , Ankle/physiology , Adolescent , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Equipment Design , Biomechanical Phenomena , Postural Balance/physiology , Foot/physiopathology
13.
J Sports Sci ; 42(11): 1011-1021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39023311

ABSTRACT

The aim of our study was to compare the force steadiness and the discharge characteristics of motor units in the tibialis anterior (TA) during ankle dorsiflexion and foot adduction produced by submaximal isometric contractions with the dominant and non-dominant foot. Fifteen young men performed maximal and submaximal contractions at five target forces with both legs, and motor unit activity in TA was recorded using high-density electromyography. Maximal force and the fluctuations in force during submaximal contractions were similar between the two legs (p > 0.05). Motor unit activity was characterized by measures of mean discharge rate (MDR), coefficient of variation for interspike interval (CoV for ISI), and standard deviation of the filtered cumulative spike train (SD of fCST). There were no statistically significant differences in motor unit activity between legs during ankle dorsiflexion. In contrast, the MDR and the CoV for ISI but not the SD of fCST, were greater for the non-dominant foot compared with the dominant foot during foot adduction. Nonetheless, these differences in motor unit activity were not sufficient to influence the force fluctuations during the submaximal contractions. These results indicate that control of the force produced by TA during the two actions was not influenced by limb dominance.


Subject(s)
Ankle , Electromyography , Foot , Isometric Contraction , Muscle, Skeletal , Humans , Male , Foot/physiology , Muscle, Skeletal/physiology , Young Adult , Isometric Contraction/physiology , Ankle/physiology , Functional Laterality/physiology , Ankle Joint/physiology , Adult , Biomechanical Phenomena
14.
J Sports Sci ; 42(5): 404-414, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38602304

ABSTRACT

The purpose was to compare two non-laboratory based running retraining programs on lower limb and trunk kinematics in recreational runners. Seventy recreational runners (30 ± 7.3 years old, 40% female) were randomised to a barefoot running group (BAR), a group wearing a digital metronome with their basal cadence increased by 10% (CAD), and a control group (CON). BAR and CAD groups included intervals from 15 to 40 min over 10 weeks and 3 days/week. 3D sagittal kinematics of the ankle, knee, hip, pelvis, and trunk were measured before and after the retraining program, at comfortable and high speeds. A 3 × 2 mixed ANOVA revealed that BAR and CAD groups increased knee and hip flexion at footstrike, increased peak hip flexion during stance and flight phase, decreased peak hip extension during flight phase, and increased anterior pelvic tilt at both speeds after retraining. In addition, BAR increased ankle plantar flexion at footstrike and increased anterior trunk tilt. Both retraining programs demonstrated significant moderate to large effect size changes in parameters that could reduce the mechanical risks of injury associated with excessive knee stress, which is of interest to coaches, runners and those prescribing rehabilitation and injury prevention programs.


Subject(s)
Lower Extremity , Pelvis , Running , Torso , Humans , Running/physiology , Biomechanical Phenomena , Female , Male , Torso/physiology , Adult , Lower Extremity/physiology , Pelvis/physiology , Foot/physiology , Young Adult , Knee/physiology , Ankle/physiology , Hip/physiology , Gait/physiology
15.
J Sports Sci ; 42(9): 814-824, 2024 May.
Article in English | MEDLINE | ID: mdl-38874271

ABSTRACT

The primary objective of this study was to investigate the relationship between metatarsophalangeal joint (MTPj) flexion torque and sprint acceleration, cutting and jumping performance, and kinetics. A secondary aim was to explore this relationship when MTP flexion strength was associated with other foot and lower limb neuromuscular outputs. After an initial MTPj flexion torque assessment using a custom-built dynamometer, 52 high-level athletes performed the following tasks on a force platform system: maximal sprint acceleration, 90-degree cutting, vertical and horizontal jumps, and foot-ankle hops. Their foot posture, foot passive stiffness and foot-ankle reactive strength were assessed using the Foot Posture Index, the Arch Height Index Measurement System and the Foot-Ankle Rebound Jump Test. Ankle plantarflexion and knee extension isometric torque were assessed using an isokinetic dynamometer. During maximal speed sprinting, multiple linear regressions suggested a major contribution of MTPj flexion torque, foot passive stiffness and foot-ankle reactive strength to explain 28% and 35% of the total variance in the effective vertical impulse and contact time. Ankle plantarflexor and quadriceps isometric torques were aggregately contributors of acceleration performance and separate contributors of cutting and jumping performance. In conclusion, MTPj flexion torque was more strongly associated with sprinting performance kinetics especially at high-speed.


Subject(s)
Acceleration , Athletic Performance , Foot , Muscle Strength , Running , Torque , Humans , Muscle Strength/physiology , Running/physiology , Athletic Performance/physiology , Foot/physiology , Young Adult , Male , Biomechanical Phenomena , Metatarsophalangeal Joint/physiology , Kinetics , Female , Ankle/physiology , Muscle, Skeletal/physiology , Adolescent , Adult , Posture/physiology
16.
J Sports Sci ; 42(14): 1341-1354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39136418

ABSTRACT

The purpose was to determine the impact of both cognitive constraint and neuromuscular fatigue on landing biomechanics in healthy and chronic ankle instability (CAI) participants. Twenty-three male volunteers (13 Control and 10 CAI) performed a single-leg landing task before and immediately after a fatiguing exercise with and without cognitive constraints. Ground Reaction Force (GRF) and Time to Stabilization (TTS) were determined at landing in vertical, anteroposterior (ap) and mediolateral (ml) axes using a force plate. Three-dimensional movements of the hip, knee and ankle were recorded during landing using a motion capture system. Exercise-induced fatigue decreased ankle plantar flexion and inversion and increased knee flexion. Neuromuscular fatigue decreased vertical GRF and increased ml GRF and ap TTS. Cognitive constraint decreased ankle internal rotation and increased knee and hip flexion during the flight phase of landing. Cognitive constraint increased ml GRF and TTS in all three axes. No interaction between factors (group, fatigue, cognitive) were observed. Fatigue and cognitive constraint induced greater knee and hip flexion, revealing higher proximal control during landing. Ankle kinematic suggests a protective strategy in response to fatigue and cognitive constraints. Finally, these two constraints impair dynamic stability that could increase the risk of ankle sprain.


Subject(s)
Ankle Joint , Cognition , Joint Instability , Lower Extremity , Muscle Fatigue , Humans , Male , Joint Instability/physiopathology , Biomechanical Phenomena , Young Adult , Ankle Joint/physiopathology , Ankle Joint/physiology , Muscle Fatigue/physiology , Lower Extremity/physiology , Lower Extremity/physiopathology , Cognition/physiology , Knee/physiology , Knee/physiopathology , Adult , Plyometric Exercise , Ankle/physiology , Ankle/physiopathology , Time and Motion Studies , Movement/physiology , Ankle Injuries/physiopathology , Knee Joint/physiology , Knee Joint/physiopathology , Hip Joint/physiology , Hip Joint/physiopathology
17.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676029

ABSTRACT

The increasing use of inertial measurement units (IMU) in biomedical sciences brings new possibilities for clinical research. The aim of this paper is to demonstrate the accuracy of the IMU-based wearable Syde® device, which allows day-long and remote continuous gait recording in comparison to a reference motion capture system. Twelve healthy subjects (age: 23.17 ± 2.04, height: 174.17 ± 6.46 cm) participated in a controlled environment data collection and performed a series of gait tasks with both systems attached to each ankle. A total of 2820 strides were analyzed. The results show a median absolute stride length error of 1.86 cm between the IMU-based wearable device reconstruction and the motion capture ground truth, with the 75th percentile at 3.24 cm. The median absolute stride horizontal velocity error was 1.56 cm/s, with the 75th percentile at 2.63 cm/s. With a measurement error to the reference system of less than 3 cm, we conclude that there is a valid physical recovery of stride length and horizontal velocity from data collected with the IMU-based wearable Syde® device.


Subject(s)
Ankle , Gait , Wearable Electronic Devices , Humans , Gait/physiology , Male , Ankle/physiology , Female , Adult , Young Adult , Biomechanical Phenomena/physiology , Accelerometry/instrumentation , Accelerometry/methods , Gait Analysis/methods , Gait Analysis/instrumentation
18.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931570

ABSTRACT

Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO for children with cerebral palsy (CP), the DE-AFO. CP is the most diagnosed neuromotor disorder in the pediatric population. The standard of care for ankle control dysfunction associated with CP, however, is an unmechanized, bulky, and uncomfortable L-shaped conventional AFO. These passive orthoses constrain the ankle's motion and often cause muscle disuse atrophy, skin damage, and adverse neural adaptations. While powered orthoses could enhance natural ankle motion, their reliance on bulky, noisy, and rigid actuators like DC motors limits their acceptability. Our innovation, the DE-AFO, emerged from insights gathered during customer discovery interviews with 185 stakeholders within the AFO ecosystem as part of the NSF I-Corps program. The DE-AFO is a biomimetic robot that employs artificial muscles made from an electro-active polymer called dielectric elastomers (DEs) to assist ankle movements in the sagittal planes. It incorporates a gait phase detection controller to synchronize the artificial muscles with natural gait cycles, mimicking the function of natural ankle muscles. This device is the first of its kind to utilize lightweight, compact, soft, and silent artificial muscles that contract longitudinally, addressing traditional actuated AFOs' limitations by enhancing the orthosis's natural feel, comfort, and acceptability. In this paper, we outline our design approach and describe the three main components of the DE-AFO: the artificial muscle technology, the finite state machine (the gait phase detection system), and its mechanical structure. To verify the feasibility of our design, we theoretically calculated if DE-AFO can provide the necessary ankle moment assistance for children with CP-aligning with moments observed in typically developing children. To this end, we calculated the ankle moment deficit in a child with CP when compared with the normative moment of seven typically developing children. Our results demonstrated that the DE-AFO can provide meaningful ankle moment assistance, providing up to 69% and 100% of the required assistive force during the pre-swing phase and swing period of gait, respectively.


Subject(s)
Ankle , Cerebral Palsy , Foot Orthoses , Robotics , Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Humans , Child , Robotics/methods , Ankle/physiopathology , Ankle/physiology , Elastomers/chemistry , Gait/physiology , Equipment Design , Biomechanical Phenomena
19.
J Sports Sci Med ; 23(2): 418-424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841636

ABSTRACT

To determine how lateral shuffling/lateral shuffle (LS) -induced fatigue affects ankle proprioception and countermovement jump (CMJ) performance. Eighteen male college athletes performed 6 modes of a repeated LS protocol with 2 distances (2.5 and 5 m) and 3 speeds (1.6, 1.8, and 2.0 m/s). After LS, ankle inversion proprioception (AIP) was measured using the active movement extent discrimination apparatus (AMEDA). CMJ, blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) were measured before and after LS. The number of changes of direction (CODs) in each protocol was recorded. LS-induced fatigue was evident in BLa, HR and RPE (all p < 0.05), increasing with shorter shuffle distance and faster speed. RM-ANOVA showed a significant distance main effect on both AIP (p < 0.01) and CMJ (p < 0.05), but the speed main effect was only significant for CMJ (p ≤ 0.001), not AIP (p = 0.87). CMJ performance was correlated with BLa, HR and RPE (r values range from -0.62 to -0.32, all p ≤ 0.001). AIP was only correlated with CODs (r = -0.251, p < 0.01). These results suggested that in LS, shorter distance, regardless of speed, was associated with worse AIP, whereas subsequent CMJ performance was affected by both LS distance and speed. Hence, AIP performance was not related to physiological fatigue, but CMJ performance was. Results imply that LS affects processing proprioceptive input and producing muscular output differently, and that these two aspects of neuromuscular control are affected by physiological fatigue to varying degrees. These findings have implications for injury prevention and performance enhancement.


Subject(s)
Ankle , Athletic Performance , Heart Rate , Lactic Acid , Muscle Fatigue , Proprioception , Humans , Male , Proprioception/physiology , Young Adult , Heart Rate/physiology , Muscle Fatigue/physiology , Ankle/physiology , Athletic Performance/physiology , Lactic Acid/blood , Plyometric Exercise , Physical Exertion/physiology
20.
Article in Zh | MEDLINE | ID: mdl-39075003

ABSTRACT

Objective: To investigate the relationship between ankle stability and associated muscle load around the ankle and the effect of a parachute ankle brace (PAB) on ankle inversion and associated muscle load around the ankle during landing through the simulated paratrooper semi-squat landing field experiment. Methods: In August 2021, 37 male paratroopers were randomly selected as the study objects to perform parachute landing training in the semi-squat posture on the 1.5 m and 2.0 m jump platforms with or without PAB, respectively. The coronal plane tilt angle of ankle joint and the percentage of maximum voluntary contraction (MVC%) of associated muscles around ankle joint during the process were measured and correlation analysis was conducted. And the effect of wearing PAB on the coronal plane tilt angle of ankle joint and the associated muscles around the ankle joint was analyzed. Results: During the semi-squat landing, the MVC% of the tibialis anterior muscle, lateral gastrocnemius muscle and peroneus longus muscle were positively correlated with the ankle coronal plane tilt angle in paratroopers wearing and without wearing PAB, and the correlations were statistically significant (P<0.05). At the same height, compared with those without PAB, the coronal plane tilt angle of the ankle joint decreased during semi-squat landing in paratroopers PAB, and the differences were statistically significant (P<0.05). At the landing moment of the same height, compared with those without PAB, the MVC% of lateral gastrocnemius muscle decreased and the MVC% of peroneus longus muscle increased in paratroopers wearing PAB, and the differences were statistically significant (P<0.05). After the landing moment until the standing stage (100-200 ms) at 1.5 m height, the MVC% of the tibialis anterior muscle decreased in paratroopers wearing PAB compared with those without PAB, and the differences were statistically significant (P<0.05). In the post-standing stage (200 ms) at 2.0 m height, the MVC% of the tibialis anterior muscle decreased in paratroopers wearing PAB compared with those without PAB, and the difference was statistically significant (P<0.05) . Conclusion: Wearing PAB can reduce the ankle coronal plane tilt angle, improve ankle stability, reduce the muscle load of the lateral gastrocnemius muscle at the moment of landing, and reduce the load of the tibialis anterior muscle after landing, but increase the peroneus longus muscle load at the moment of landing.


Subject(s)
Ankle Joint , Muscle, Skeletal , Humans , Male , Ankle Joint/physiology , Muscle, Skeletal/physiology , Young Adult , Posture/physiology , Adult , Braces , Biomechanical Phenomena , Weight-Bearing/physiology , Ankle/physiology
SELECTION OF CITATIONS
SEARCH DETAIL