Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Trends Genet ; 40(3): 213-227, 2024 03.
Article in English | MEDLINE | ID: mdl-38320882

ABSTRACT

Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , Temperature , Genotype , Climate Change
2.
PLoS Biol ; 22(4): e3002593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603520

ABSTRACT

Understanding the evolution of coral endosymbiosis requires a predictive framework that integrates life-history theory and ecology with cell biology. The time has come to bridge disciplines and use a model systems approach to achieve this aim.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Symbiosis , Ecology , Coral Reefs , Biological Evolution
3.
Proc Natl Acad Sci U S A ; 121(17): e2307214121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621123

ABSTRACT

Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia's hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation planning.


Subject(s)
Anthozoa , DNA, Environmental , Animals , Coral Reefs , Ecosystem , DNA, Environmental/genetics , Biodiversity , Anthozoa/genetics , Fishes , DNA Barcoding, Taxonomic
4.
PLoS Genet ; 20(2): e1011129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346089

ABSTRACT

Lewontin's paradox, the observation that levels of genetic diversity (π) do not scale linearly with census population size (Nc) variation, is an evolutionary conundrum. The most extreme mismatches between π and Nc are found for highly abundant marine invertebrates. Yet, the influences of new mutations on π relative to extrinsic processes such as Nc fluctuations are unknown. Here, we provide the first germline mutation rate (µ) estimate for a marine invertebrate in corallivorous crown-of-thorns sea stars (Acanthaster cf. solaris). We use high-coverage whole-genome sequencing of 14 parent-offspring trios alongside empirical estimates of Nc in Australia's Great Barrier Reef to jointly examine the determinants of π in populations undergoing extreme Nc fluctuations. The A. cf. solaris mean µ was 9.13 x 10-09 mutations per-site per-generation (95% CI: 6.51 x 10-09 to 1.18 x 10-08), exceeding estimates for other invertebrates and showing greater concordance with vertebrate mutation rates. Lower-than-expected Ne (~70,000-180,000) and low Ne/Nc values (0.0047-0.048) indicated weak influences of population outbreaks on long-term π. Our findings are consistent with elevated µ evolving in response to reduced Ne and generation time length, with important implications for explaining high mutational loads and the determinants of genetic diversity in marine invertebrate taxa.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , Mutation Rate , Germ-Line Mutation/genetics , Population Density , Starfish/genetics
5.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38243377

ABSTRACT

For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.


Subject(s)
Anthozoa , Coral Reefs , Animals , DNA Methylation , Anthozoa/genetics , Acclimatization/genetics , Adaptation, Physiological
6.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38152864

ABSTRACT

Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.


Subject(s)
Anthozoa , Cnidaria , Sea Anemones , Animals , Cnidaria/genetics , Gene Regulatory Networks , Larva/genetics , Anthozoa/genetics , Sea Anemones/genetics , Neurons
7.
BMC Genomics ; 25(1): 226, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424480

ABSTRACT

Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 'omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our new de-novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other 'omics analyses to aid in the conservation of this species.


Subject(s)
Anthozoa , Transcriptome , Animals , Sequence Analysis, DNA/methods , Anthozoa/genetics , Genome , Caribbean Region , High-Throughput Nucleotide Sequencing/methods
8.
J Mol Evol ; 92(3): 217-257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662235

ABSTRACT

The coral Acropora spp., known for its reef-building abilities, is a simultaneous hermaphroditic broadcast spawning species. Acropora spp. release gametes into seawater, activating sperm motility. This activation is mediated by adenylyl cyclase (AC) and protein kinase A (PKA). Notably, membrane-permeable cAMP (8-bromo-cAMP) promotes sperm motility activation of Acropora florida. While the signal transduction for PKA-dependent motility activation is highly conserved among animals, the downstream signaling of PKA remains unclear. In this study, we used mass spectrometry (MS) analyses to identify sperm proteins in the coral Acropora digitifera, as well as the serine/threonine residues of potential PKA substrates, and then, we investigated the conservation of these proteins from corals to vertebrates. We identified 148 sperm proteins of A. digitifera with typical PKA recognition motifs, namely RRXT and RRXS. We subsequently used ORTHOSCOPE to screen for orthologs encoding these 148 proteins from corals to vertebrates. Among the isolated orthologs, we identified positive selection in 48 protein-encoding genes from 18 Acropora spp. Subsequently, we compared the conservation rates of the PKA phosphorylation motif residues between the orthologs under positive and purifying selections. Notably, the serine residues of the orthologs under positive selection were more conserved. Therefore, adaptive evolution might have occurred in the orthologs of PKA substrate candidates from corals to vertebrates, accompanied by phosphorylation residue conservation. Collectively, our findings suggest that while PKA signal transduction, including substrates in sperm, may have been conserved, the substrates may have evolved to adapt to diverse fertilization conditions, such as synchronous broadcast spawning.


Subject(s)
Anthozoa , Cyclic AMP-Dependent Protein Kinases , Evolution, Molecular , Spermatozoa , Animals , Male , Anthozoa/genetics , Anthozoa/physiology , Anthozoa/enzymology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Spermatozoa/metabolism , Spermatozoa/physiology , Phylogeny , Signal Transduction , Sperm Motility/genetics , Sperm Motility/physiology
9.
Proc Biol Sci ; 291(2021): 20232626, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654652

ABSTRACT

Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.


Subject(s)
Anthozoa , Biological Evolution , Luminescence , Phylogeny , Animals , Anthozoa/genetics
10.
BMC Microbiol ; 24(1): 288, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095694

ABSTRACT

BACKGROUND: Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS: This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS: A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS: Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.


Subject(s)
Anthozoa , Disease Resistance , Vibrio , Anthozoa/microbiology , Anthozoa/genetics , Anthozoa/immunology , Animals , Vibrio/genetics , Disease Resistance/genetics , Symbiosis/genetics , Microbiota/genetics , Coral Reefs , High-Throughput Nucleotide Sequencing
11.
Mol Ecol ; 33(4): e17246, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153177

ABSTRACT

Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms' performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light dependent with a sessile and modular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Epigenome , Adaptation, Physiological , Phenotype , Transcriptome/genetics , Coral Reefs , Acclimatization/genetics
12.
Mol Ecol ; 33(16): e17468, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39046252

ABSTRACT

The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.


Subject(s)
Anthozoa , Chromosome Inversion , Coral Reefs , Polymorphism, Single Nucleotide , Anthozoa/genetics , Chromosome Inversion/genetics , Animals , Polymorphism, Single Nucleotide/genetics , Selection, Genetic , Gene Frequency , Genetic Load , Mutation , Genetics, Population
13.
Mol Ecol ; 33(8): e17318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488669

ABSTRACT

Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coral Oculina arbuscula and its symbiont Breviolum psygmophilum to characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbiotic O. arbuscula were exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated with B. psygmophilum cultured from O. arbuscula to characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) in O. arbuscula regardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospite B. psygmophilum both down-regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest that O. arbuscula hosts may buffer environments of B. psygmophilum symbionts; however, we outline the future work needed to confirm this hypothesis.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Symbiosis/genetics , Stress, Physiological/genetics , Hot Temperature , Gene Expression , Coral Reefs , Dinoflagellida/genetics
14.
Mol Ecol ; 33(9): e17342, 2024 May.
Article in English | MEDLINE | ID: mdl-38584356

ABSTRACT

Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbAncr), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.


Subject(s)
Anthozoa , Coral Reefs , Dinoflagellida , Symbiosis , Dinoflagellida/genetics , Symbiosis/genetics , Animals , Anthozoa/microbiology , Anthozoa/genetics , Australia , Temperature , Phylogeny
15.
Mol Phylogenet Evol ; 195: 108063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493988

ABSTRACT

Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse but increasingly threatened ecosystems. The reef-building coral genus Acropora may have undergone substantial speciation during the Pleistocene climate and sea-level changes. Here, we aimed to evaluate the speciation history of four morphologically similar tabular Acropora species (Acropora aff. hyacinthus, A. cf. bifurcata, A. cf. cytherea, and A. cf. subulata) using an integrative approach with morphology, genetic, and reproduction methodology. Extensive morphological analyses showed that these four species are distinct and exhibited high gamete incompatibility, preventing hybridization. Furthermore, population structure and principal component analyses with SNPs (>60,000) indicated that these species were genetically distinct, and the ABBA-BABA test did not support introgression among these species. Many of their coding and noncoding RNA sequences showed high genetic variance at loci with high Fst values along the genome. Comparison of these orthologs with those of other Acropora species suggested that many of these genes are under positive selection, which could be associated with spawning time, gamete, and morphological divergence. Our findings show that the speciation of tabular Acropora occurred without hybridization, and the divergence accompanying the rapid evolution of genes in species-rich Acropora could be associated with speciation.


Subject(s)
Anthozoa , Ecosystem , Animals , Phylogeny , Anthozoa/genetics , Genetic Drift , Hybridization, Genetic , Genetic Speciation
16.
Heredity (Edinb) ; 132(6): 275-283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38538721

ABSTRACT

Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.


Subject(s)
Anthozoa , Dinoflagellida , Genetic Variation , Larva , Symbiosis , Animals , Larva/genetics , Larva/physiology , Anthozoa/genetics , Anthozoa/physiology , Symbiosis/genetics , Dinoflagellida/genetics , Dinoflagellida/physiology , Coral Reefs , Thermotolerance/genetics , Climate Change , Female , Selection, Genetic
17.
Ecotoxicol Environ Saf ; 273: 116143, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430582

ABSTRACT

Coral reefs are essential for marine ecology and biodiversity. Global climate change has resulted in severe coral reef degradation, partly via coral bleaching, which is caused by rising sea temperatures and solar light intensity. In this study, we examined the impact of strong light (300 µmol.m-2.s-1) and high temperature (33°C) on the growth, immunity, and gene expression of Galaxea fascicularis. Strong light caused coral bleaching in the absence of high sea temperatures, while no obvious bleaching was observed under high temperature alone. The effect of strong light on calcification rate of G. fascicularis is significantly weaker than that of high temperature. Both strong light and high temperatures significantly affected the immune enzyme activity of G. fascicularis symbionts, with the former having a strong effect on their photosystem. Temperature affected the digestive system, replication and repair, and cell growth and death of coral hosts, as indicated by transcriptomics analysis. These results provide a valuable for strategies to mitigate coral bleaching. TEASER: We explored the effects of strong light exposure and high temperature on coral reefs and their symbiont algae.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Temperature , Transcriptome , Coral Reefs , Light
18.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125787

ABSTRACT

The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.


Subject(s)
Anthozoa , Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Anthozoa/genetics , Anthozoa/classification , Animals , Base Composition
19.
Sci Rep ; 14(1): 4936, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472289

ABSTRACT

Many countries with tropical reef systems face hard choices preserving coral reefs in the face of climate change on limited budgets. One approach to maximising regional reef resilience is targeting management efforts and resources at reefs that export large numbers of larvae to other reefs. However, this requires reef connectivity to be quantified. To map coral connectivity in the Seychelles reef system we carried out a population genomic study of the Porites lutea species complex using 241 sequenced colonies from multiple islands. To identify oceanographic drivers of this connectivity and quantify variability, we further used a 2 km resolution regional ocean simulation coupled with a larval dispersal model to predict the flow of coral larvae between reef sites. Patterns of admixture and gene flow are broadly supported by model predictions, but the realised connectivity is greater than that predicted from model simulations. Both methods detected a biogeographic dispersal barrier between the Inner and Outer Islands of Seychelles. However, this barrier is permeable and substantial larval transport is possible across Seychelles, particularly for one of two putative species found in our genomic study. The broad agreement between predicted connectivity and observed genetic patterns supports the use of such larval dispersal simulations in reef system management in Seychelles and the wider region.


Subject(s)
Anthozoa , Coral Reefs , Animals , Seychelles , Anthozoa/genetics , Genetics, Population , Larva
20.
Sci Rep ; 14(1): 6437, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499737

ABSTRACT

Intra-colonial genetic variability (IGV), the presence of more than one genotype in a single colony, has been increasingly studied in scleractinians, revealing its high prevalence. Several studies hypothesised that IGV brings benefits, but few have investigated its roles from a genetic perspective. Here, using genomic data (SNPs), we investigated these potential benefits in populations of the coral Pocillopora acuta from Reunion Island (southwestern Indian Ocean). As the detection of IGV depends on sequencing and bioinformatics errors, we first explored the impact of the bioinformatics pipeline on its detection. Then, SNPs and genes variable within colonies were characterised. While most of the tested bioinformatics parameters did not significantly impact the detection of IGV, filtering on genotype depth of coverage strongly improved its detection by reducing genotyping errors. Mosaicism and chimerism, the two processes leading to IGV (the first through somatic mutations, the second through fusion of distinct organisms), were found in 7% and 12% of the colonies, respectively. Both processes led to several intra-colonial allelic differences, but most were non-coding or silent. However, 7% of the differences were non-silent and found in genes involved in a high diversity of biological processes, some of which were directly linked to responses to environmental stresses. IGV, therefore, appears as a source of genetic diversity and genetic plasticity, increasing the adaptive potential of colonies. Such benefits undoubtedly play an important role in the maintenance and the evolution of scleractinian populations and appear crucial for the future of coral reefs in the context of ongoing global changes.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , Genotype , Genome/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL