ABSTRACT
The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.
Subject(s)
Lignin , Microbial Consortia , Lignin/metabolism , Microbial Consortia/physiology , Animals , Ants/metabolism , Ants/microbiology , Ecosystem , Proteomics/methods , Proteome/metabolism , SymbiosisABSTRACT
Obligate endosymbiosis, in which distantly related species integrate to form a single replicating individual, represents a major evolutionary transition in individuality1-3. Although such transitions are thought to increase biological complexity1,2,4-6, the evolutionary and developmental steps that lead to integration remain poorly understood. Here we show that obligate endosymbiosis between the bacteria Blochmannia and the hyperdiverse ant tribe Camponotini7-11 originated and also elaborated through radical alterations in embryonic development, as compared to other insects. The Hox genes Abdominal A (abdA) and Ultrabithorax (Ubx)-which, in arthropods, normally function to differentiate abdominal and thoracic segments after they form-were rewired to also regulate germline genes early in development. Consequently, the mRNAs and proteins of these Hox genes are expressed maternally and colocalize at a subcellular level with those of germline genes in the germplasm and three novel locations in the freshly laid egg. Blochmannia bacteria then selectively regulate these mRNAs and proteins to make each of these four locations functionally distinct, creating a system of coordinates in the embryo in which each location performs a different function to integrate Blochmannia into the Camponotini. Finally, we show that the capacity to localize mRNAs and proteins to new locations in the embryo evolved before obligate endosymbiosis and was subsequently co-opted by Blochmannia and Camponotini. This pre-existing molecular capacity converged with a pre-existing ecological mutualism12,13 to facilitate both the horizontal transfer10 and developmental integration of Blochmannia into Camponotini. Therefore, the convergence of pre-existing molecular capacities and ecological interactions-as well as the rewiring of highly conserved gene networks-may be a general feature that facilitates the origin and elaboration of major transitions in individuality.
Subject(s)
Ants/embryology , Ants/microbiology , Bacteria , Biological Evolution , Gene Expression Regulation, Developmental/genetics , Individuality , Symbiosis/genetics , Animals , Ants/cytology , Ants/genetics , Embryonic Development/genetics , Female , Genes, Homeobox/genetics , Maternal Inheritance/genetics , Oocytes/cytology , Oocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolismABSTRACT
The black carpenter ant (Camponotus pennsylvanicus) is a pest species found widely throughout North America. From a single individual I used long-read nanopore sequencing to assemble a phased diploid genome of 306 Mb and 60X coverage, with quality assessed by a 97.0% BUSCO score, improving upon other ant assemblies. The mitochondrial genome reveals minor rearrangements from other ants. The reads also allowed assembly of parasitic and symbiont genomes. I include a complete Wolbachia bacterial assembly with a size of 1.2 Mb, as well as a commensal symbiont Blochmannia pennsylvanicus, at 791 kb. DNA methylation and hydroxymethylation were measured at base-pair resolution level from the same reads and confirmed extremely low levels seen in the Formicidae family. There was moderate heterozygosity, with 0.16% of bases being biallelic from the parental haplotypes. Protein prediction yielded 14 415 amino acid sequences with 95.8% BUSCO score and 86% matching to previously known proteins. All assemblies were derived from a single MinION flow cell generating 20 Gb of sequence for a cost of $1047 including consumable reagents. Adding fixed costs for equipment brings the total for an ant-sized genome to less than $5000. All analyses were performed in 1 week on a single desktop computer.
Creating reference animal genomes is typically a large, expensive process. Here I sequenced the genome of the black carpenter ant for only $1000 as a sole researcher in just one week. Along with the nuclear genome, I assembled the mitochondrial genome and two commensal bacteria species living within the ant. Nanopore technology also enabled epigenetic measurements from the same ant and replicated other studies showing very low DNA methylation. The reference genome compared favorably to other ant species in continuity and protein prediction accuracy. This method will allow other low-resource labs to create high quality genome assemblies with a low cost.
Subject(s)
Ants , Genome, Insect , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Animals , Humans , Ants/genetics , Ants/microbiology , Diploidy , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/methods , Symbiosis , Wolbachia/genetics , Wolbachia/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/physiologyABSTRACT
Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis, a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.
Subject(s)
Ants , Hypocreales , Parasites , Animals , Ants/genetics , Ants/microbiology , Phylogeny , Symbiosis/genetics , Hypocreales/geneticsABSTRACT
BACKGROUND: Fungi and ants belong to the most important organisms in terrestrial ecosystems on Earth. In nutrient-poor niches of tropical rainforests, they have developed steady ecological relationships as a successful survival strategy. In tropical ant-plant mutualisms worldwide, where resident ants provide the host plants with defense and nutrients in exchange for shelter and food, fungi are regularly found in the ant nesting space, inhabiting ant-made dark-colored piles ("patches"). Unlike the extensively investigated fungus-growing insects, where the fungi serve as the primary food source, the purpose of this ant-fungi association is less clear. To decipher the roles of fungi in these structures within ant nests, it is crucial to first understand the dynamics and drivers that influence fungal patch communities during ant colony development. RESULTS: In this study, we investigated how the ant colony age and the ant-plant species affect the fungal community in the patches. As model we selected one of the most common mutualisms in the Tropics of America, the Azteca-Cecropia complex. By amplicon sequencing of the internal transcribed spacer 2 (ITS2) region, we analyzed the patch fungal communities of 93 Azteca spp. colonies inhabiting Cecropia spp. trees. Our study demonstrates that the fungal diversity in patches increases as the ant colony grows and that a change in the prevalent fungal taxa occurs between initial and established patches. In addition, the ant species significantly influences the composition of the fungal community in established ant colonies, rather than the host plant species. CONCLUSIONS: The fungal patch communities become more complex as the ant colony develops, due to an acquisition of fungi from the environment and a substrate diversification. Our results suggest a successional progression of the fungal communities in the patches during ant colony growth and place the ant colony as the main driver shaping such communities. The findings of this study demonstrate the unexpectedly complex nature of ant-plant mutualisms in tropical regions at a micro scale.
Subject(s)
Ants , Fungi , Mycobiome , Symbiosis , Ants/microbiology , Ants/physiology , Animals , Fungi/genetics , Fungi/physiology , Fungi/classification , Cecropia Plant/microbiology , MyrmecophytesABSTRACT
BACKGROUND: Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. RESULTS: Stable isotope profiling (δ13C and δ15N) showed that the isotopic niches of granivorous Messor ants and Messor-specialized Neoasterolepisma exhibit a remarkable overlap within an ant nest. Trophic experiments and gut dissections further supported that these specialized Neoasterolepisma silverfish transitioned to a diet that includes plant seeds. In contrast, the isotopic niches of generalist Neoasterolepisma silverfish and generalist nicoletiid silverfish were clearly different from their ant hosts within the shared nest environment. The impact of the myrmecophilous lifestyle on feeding ecology was also evident in the internal silverfish microbiome. Compared to generalists, Messor-specialists exhibited a higher bacterial density and a higher proportion of heterofermentative lactic acid bacteria. Moreover, the nest environment explained the infection profile (or the 16S rRNA genotypes) of Weissella bacteria in Messor-specialized silverfish and the ant hosts. CONCLUSIONS: Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.
Subject(s)
Ants , Feeding Behavior , Symbiosis , Animals , Ants/physiology , Ants/microbiology , Feeding Behavior/physiology , Phylogeny , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Perciformes/physiology , Perciformes/microbiologyABSTRACT
Pseudonocardia species comprise a genus of filamentous, sporulating bacteria belonging to the phylum Actinomycetota, formerly Actinobacteria. They are found in marine and freshwater sediments and soils and associated with marine animals, insects, and plants. To date, they have mostly been studied because of their mutually beneficial symbiosis with fungus-growing ants in the tribe Attini. They have also attracted interest due to their biosynthetic capabilities, including the production of variably glycosylated polyenes and other novel antifungal compounds, and for their capacity to grow on a variety of hydrocarbons. The majority of clinically used antibiotics are derived from the specialised metabolites of filamentous actinomycete bacteria and most of these come from the genus Streptomyces. However, in the quest for novel chemistry there is increasing interest in studying other filamentous actinomycete genera, including Pseudonocardia. Here we outline the biological properties, genome size and structure and key features of the genus Pseudonocardia, namely their specialised metabolites and ecological roles.
Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/biosynthesis , Animals , Symbiosis , Actinomycetales/metabolism , Actinomycetales/genetics , Actinomycetales/classification , Genome, Bacterial , Ants/microbiology , Insecta/microbiologyABSTRACT
Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant, Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCE: Microbial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context.
Subject(s)
Ants , Microbiota , Sarraceniaceae , Animals , Sarraceniaceae/microbiology , Sarraceniaceae/metabolism , Ants/microbiology , Arthropods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Coleoptera/microbiology , RNA, Ribosomal, 16S/genetics , Ecosystem , Food ChainABSTRACT
The evolution of animals and their gut symbionts is a complex phenomenon, obscured by lability and diversity. In social organisms, transmission of symbionts among relatives may yield systems with more stable associations. Here, we study the history of a social insect symbiosis involving cephalotine ants and their extracellular gut bacteria, which come predominantly from host-specialized lineages. We perform multi-locus phylogenetics for symbionts from nine bacterial orders, and map prior amplicon sequence data to lineage-assigned symbiont genomes, studying distributions of rigorously defined symbionts across 20 host species. Based on monophyly and additional hypothesis testing, we estimate that these specialized gut bacteria belong to 18 distinct lineages, of which 15 have been successfully isolated and cultured. Several symbiont lineages showed evidence for domestication events that occurred later in cephalotine evolutionary history, and only one lineage was ubiquitously detected in all 20 host species and 48 colonies sampled with amplicon 16S rRNA sequencing. We found evidence for phylogenetically constrained distributions in four symbionts, suggesting historical or genetic impacts on community composition. Two lineages showed evidence for frequent intra-lineage co-infections, highlighting the potential for niche divergence after initial domestication. Nearly all symbionts showed evidence for occasional host switching, but four may, more often, co-diversify with their hosts. Through our further assessment of symbiont localization and genomic functional profiles, we demonstrate distinct niches for symbionts with shared evolutionary histories, prompting further questions on the forces underlying the evolution of hosts and their gut microbiomes.
Subject(s)
Ants , Domestication , Phylogeny , RNA, Ribosomal, 16S , Symbiosis , Animals , Symbiosis/genetics , Ants/microbiology , Ants/genetics , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/classification , Biological EvolutionABSTRACT
Knowledge of viral biodiversity within insects, particularly within ants, is extremely limited with only a few environmental viruses from invasive ant species identified to date. This study documents and explores the viral communities in ants. We comprehensively profile the metagenomes of a phylogenetically broad group of 35 ant species with varied ecological traits and report the discovery of 3710 novel and unique ant-associated viral genomes. These previously unknown viruses discovered within this study constitute over 95% of all currently described ant viruses, significantly increasing our knowledge of the ant virosphere. The identified RNA and DNA viruses fill gaps in insect-associated viral phylogenies and uncover evolutionary histories characterized by both frequent host switching and co-divergence. Many ants also host diverse bacterial communities, and we discovered that approximately one-third of these new ant-associated viruses are bacteriophages. Two ecological categories, bacterial abundance in the host and habitat degradation are both correlated with ant viral diversity and help to structure viral communities within ants. These data demonstrate that the ant virosphere is remarkably diverse phylogenetically and genomically and provide a substantial foundation for studies in virus ecology and evolution within eukaryotes. We highlight the importance of studying insect-associated viruses in natural ecosystems in order to more thoroughly and effectively understand host-microbe evolutionary dynamics.
Subject(s)
Ants , Biodiversity , Phylogeny , Ants/virology , Ants/microbiology , Ants/genetics , Animals , Genome, Viral/genetics , Metagenome/genetics , DNA Viruses/genetics , DNA Viruses/classification , Bacteria/genetics , Bacteria/virology , Bacteria/classification , RNA Viruses/genetics , RNA Viruses/classification , Ecosystem , Bacteriophages/genetics , Bacteriophages/classification , Virome/geneticsABSTRACT
Leafcutter ants are dominant herbivores in the Neotropics and rely on a fungus (Leucoagaricus gongylophorus) to transform freshly gathered leaves into a source of nourishment rather than consuming the vegetation directly. Here we report two virus-like particles that were isolated from L. gongylophorus and observed using transmission electron microscopy. RNA sequencing identified two +ssRNA mycovirus strains, Leucoagaricus gongylophorus tymo-like virus 1 (LgTlV1) and Leucoagaricus gongylophorus magoulivirus 1 (LgMV1). Genome annotation of LgTlV1 (7401 nt) showed conserved domains for methyltransferase, endopeptidase, viral RNA helicase, and RNA-dependent RNA polymerase (RdRp). The smaller genome of LgMV1 (2636 nt) contains one open reading frame encoding an RdRp. While we hypothesize these mycoviruses function as symbionts in leafcutter farming systems, further study will be needed to test whether they are mutualists, commensals, or parasites.
Subject(s)
Ants , Fungal Viruses , Genome, Viral , RNA, Viral , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Fungal Viruses/physiology , Animals , Ants/microbiology , Ants/virology , RNA, Viral/genetics , Phylogeny , Open Reading Frames , Symbiosis , RNA-Dependent RNA Polymerase/genetics , Microscopy, Electron, Transmission , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA Viruses/physiology , Agaricales/virology , Agaricales/geneticsABSTRACT
Wolbachia is a widespread maternally transmitted endosymbiotic bacteria with diverse phenotypic effects on its insect hosts, ranging from parasitic to mutualistic. Wolbachia commonly infects social insects, where it faces unique challenges associated with its host's caste-based reproductive division of labor and colony living. Here, we dissect the benefits and costs of Wolbachia infection on life-history traits of the invasive pharaoh ant, Monomorium pharaonis, which are relatively short lived and show natural variation in Wolbachia infection status between colonies. We quantified the effects of Wolbachia infection on the lifespan of queen and worker castes, the egg-laying rate of queens across queen lifespan, and the metabolic rates of whole colonies and colony members. Infected queens laid more eggs than uninfected queens but had similar metabolic rates and lifespans. Interestingly, infected workers outlived uninfected workers. At the colony level, infected colonies were more productive as a consequence of increased queen egg-laying rates and worker longevity, and infected colonies had higher metabolic rates during peak colony productivity. While some effects of infection, such as elevated colony-level metabolic rates, may be detrimental in more stressful natural conditions, we did not find any costs of infection under relatively benign laboratory conditions. Overall, our study emphasizes that Wolbachia infection can have beneficial effects on ant colony growth and worker survival in at least some environments.
Subject(s)
Ants , Longevity , Wolbachia , Animals , Wolbachia/physiology , Ants/microbiology , Ants/physiology , Female , Oviposition/physiology , Symbiosis , Ovum/microbiology , Ovum/physiology , ReproductionABSTRACT
Some parasitic fungi can increase fitness by modifying the behavior of their hosts. These behaviors are known as extended phenotypes because they favor parasitic gene propagation. Here, we studied three lineages of Ophiocordyceps, a fungus that infects ants, altering their conduct before death. According to fungal strategy, ants may die in leaf litter, with entwined legs in branches, under the moss mat, or biting plant tissue. It is critical for parasites that the corpses stay at these places because Ophiocordyceps exhibit iteroparity, possibly releasing spores in multiple life cycles. Thus, we assumed substrate cadaver permanence as a fungi reproductive proxy and corpse height as a proxy of cadaver removal. We hypothesize that biting vegetation and dying in higher places may increase the permanence of ant corpses while avoiding possible corpse predation on the forest floor. We monitored over a year more than 4000 zombie ants in approximately 15 km2 of undisturbed tropical forest in central Amazonia. Our results show a longer permanence of corpses with increasing ground height, suggesting that the parasites may have better chances of releasing spores and infecting new hosts at these places. We found that the zombie ants that last longer on the substrate die under the moss mat in tree trunks, not necessarily biting vegetation. The biting behavior appears to be the most derived and complex mechanism among Ophiocordyceps syndromes. Our results put these findings under a new perspective, proposing that seemingly less complex behavioral changes are ecologically equivalent and adaptative for other parasite lineages.
Subject(s)
Ants , Phenotype , Ants/physiology , Ants/microbiology , Ants/parasitology , Animals , Hypocreales/physiology , Brazil , Behavior, Animal/physiology , Host-Parasite Interactions/physiologyABSTRACT
Social insects, such as ants, are preferred host organisms of pathogens and parasites because colonies are densely populated, and the number of potential hosts is high in the same place and time. Within a colony, individuals are exposed differentially to risks according to their function and age. Thus, older individuals forage and are therefore the most exposed to infection, predation, or physical stress, while young workers mostly stay inside the sheltered nest being less exposed. Immune investment is considered to be dependent on an individual's age and pathogen pressure. Long-term exposure to a parasite could affect the immune activity of individuals in an intriguing way that interferes with the age-dependent decline in immunocompetence. However, there are only few cases in which such interferences can be studied. The myrmecopathogenic fungus Rickia wasmannii, which infects entire colonies without killing the workers, is a suitable candidate for such studies. We investigated the general immunocompetence of Myrmica scabrinodis ant workers associated with non-lethal fungal infection by measuring the levels of active phenoloxidase (PO) and total PO (PPO) (reflecting the amount of both active and inactive forms of the enzyme) in two age classes. The level of PO proved to be higher in infected workers than in uninfected ones, while the level of PPO increased with age but was not affected by infection. Overall, these results indicate that a long-term infection could go hand in hand with increased immune activity of ant workers, conferring them higher level of protection.
Subject(s)
Ants , Mycoses , Parasites , Animals , Ants/microbiology , Predatory Behavior , Stress, PhysiologicalABSTRACT
The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.
Subject(s)
Ants , Coleoptera , Microbiota , Animals , Ants/genetics , Ants/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Larva , Bacteria/genetics , SymbiosisABSTRACT
Symbiotic Actinobacteria help fungus-growing ants suppress fungal pathogens through the production of antifungal compounds. Trachymyrmex ants of the southwest desert of the United States inhabit a unique niche far from the tropical rainforests in which most fungus-growing ant species are found. These ants may not encounter the specialist fungal pathogen Escovopsis known to threaten colonies of other fungus-growing ants. It is unknown whether Actinobacteria associated with these ants antagonize contaminant fungi and, if so, what the chemical basis of such antagonism is. We find that Pseudonocardia and Amycolatopsis strains isolated from three desert specialist Trachymyrmex species do antagonize diverse contaminant fungi isolated from field-collected ant colonies. We did not isolate the specialist fungal pathogen Escovopsis in our sampling. We trace strong antifungal activity from Amycolatopsis isolates to the molecule ECO-0501, an antibiotic that was previously under preclinical development as an antibacterial agent. In addition to suppression of contaminant fungi, we find that this molecule has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche. By studying interspecies interactions in a previously unexplored niche, we have uncovered novel bioactivity for a structurally unique antibiotic. IMPORTANCE Animal hosts often benefit from chemical defenses provided by microbes. These molecular defenses are a potential source of novel antibiotics and offer opportunities for understanding how antibiotics are used in ecological contexts with defined interspecies interactions. Here, we recover contaminant fungi from nests of Trachymyrmex fungus-growing ants of the southwest desert of the United States and find that they are suppressed by Actinobacteria isolated from these ants. The antibiotic ECO-0501 is an antifungal agent used by some of these Amycolatopsis bacterial isolates. This antibiotic was previously investigated in preclinical studies and known only for antibacterial activity.
Subject(s)
Actinobacteria , Ants , Hypocreales , Animals , Antifungal Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Ants/microbiology , Amycolatopsis , Symbiosis , FungiABSTRACT
The bacterial communities that colonize the cadaver environment of insects infected and killed by parasitic fungi can be selected by the sympatric fungi and provide novel impacts. In this study, we found that Bacillus cereus/thuringiensis predominate the bacterial community in Dolichoderus thoracicus ant cadavers colonized by O. pseudolloydii. The most predominant bacterial strains in these ant cadavers were hemolytic and able to produce hydrolytic enzymes for digesting the ant tissue. A relatively intense lethal effect on the co-cultured nematode was displayed by a hemolytic strain. Moreover, the antagonistic effect against pathogenic fungi detected in the bacteria sympatric with O. pseudolloydii was reported here. Naphthoquinones have been shown to confer antibacterial activities and produced by the ant-pathogenic Ophiocordyceps fungi. However, our results did not show the naphthoquinone tolerance we expected to be detected in the bacteria from the ant infected by O. pseudolloydii. The bacterial diversity in the samples associated with O. pseudolloydii infected ants as revealed in this study will be a step forward to the understanding of the roles playing by the microbial community in the native habitats of O. pseudolloydii.
Subject(s)
Ants , Bacillus thuringiensis , Bacillus , Animals , Ants/microbiology , InsectaABSTRACT
Bacteria can live in a variety of interkingdom communities playing key ecological roles. The microbiome of leaf-cutting attine ant colonies are a remarkable example of such communities, as they support ants' metabolic processes and the maintenance of ant-fungus gardens. Studies on this topic have explored the bacterial community of the whole fungus garden, without discerning bacterial groups associated with the nutrient storage structures (gongylidia) of ant fungal cultivars. Here we studied bacteria isolated from the surface of gongylidia in the cultivars of Atta sexdens and Acromyrmex coronatus, to assess whether the bacterial community influences the biology of the fungus. A total of 10 bacterial strains were isolated from gongylidia (Bacillus sp., Lysinibacillus sp., Niallia sp., Staphylococcus sp., Paenibacillus sp., Pantoea sp., Staphylococcus sp., and one Actinobacteria). Some bacterial isolates increased gongylidia production and fungal biomass while others had inhibitory effects. Eight bacterial strains were confirmed to form biofilm-like structures on the fungal cultivar hyphae. They also showed auxiliary metabolic functions useful for the development of the fungal garden such as phosphate solubilization, siderophore production, cellulose and chitin degradation, and antifungal activity against antagonists of the fungal cultivar. Bacteria-bacteria interaction assays revealed heterogeneous behaviors including synergism and competition, which might contribute to regulate the community structure inside the garden. Our results suggest that bacteria and the ant fungal cultivar interact directly, across a continuum of positive and negative interactions within the community. These complex relationships could ultimately contribute to the stability of the ant-fungus mutualism.
Subject(s)
Actinobacteria , Ants , Animals , Ants/microbiology , Bacteria , Hyphae , Cellulose , SymbiosisABSTRACT
The leaf-cutting ant Acromyrmex crassispinus is considered an important pest in forest plantations in southern Brazil. This work aimed to study the fungal community associated with A. crassispinus colonies, subjected to treatments with subdoses of granulated baits (sulfluramid), which might reduce the ability of the ants to care for their symbiotic fungus and other fungi (maybe biocontrol fungi) would take over, to prospect for potential biological control agents. Samplings of fungus gardens and dead ants allowed the identification of 195 fungal isolates, distributed in 29 families, 36 genera, and 53 species. The most frequent genera were Trichoderma (49.2%), Penicillium (13.8%), Chaetomium (6.2%), and Fusarium (3.6%). This is the first study that conducted a survey of antagonistic and entomopathogenic fungi to A. crassispinus and its symbiotic fungus, reporting for the first time the occurrence of potential biological control agents. Escovopsis weberi, Fusarium oxysporum, Rhizomucor variabilis, Trichoderma atroviride, Trichoderma harzianum, Trichoderma koningiopsis, and Trichoderma spirale are considered some of the potential biocontrol organisms.
Subject(s)
Ants , Mycobiome , Penicillium , Humans , Animals , Ants/microbiology , Fungi , Biological Control Agents , Brazil , SymbiosisABSTRACT
The fungus gardening-ant system is considered a complex, multi-tiered symbiosis, as it is composed of ants, their fungus, and microorganisms associated with either ants or fungus. We examine the bacterial microbiome of Trachymyrmex septentrionalis and Mycetomoellerius turrifex ants and their symbiotic fungus gardens, using 16S rRNA Illumina sequencing, over a region spanning approximately 350 km (east and central Texas). Typically, microorganisms can be acquired from a parent colony (vertical transmission) or from the environment (horizontal transmission). Because the symbiosis is characterized by co-dispersal of the ants and fungus, elements of both ant and fungus garden microbiome could be characterized by vertical transmission. The goals of this study were to explore how both the ant and fungus garden bacterial microbiome are acquired. The main findings were that different mechanisms appear to explain the structure the microbiomes of ants and their symbiotic fungus gardens. Ant associated microbiomes had a strong host ant signature, which could be indicative of vertical inheritance of the ant associated bacterial microbiome or an unknown mechanism of active uptake or screening. On the other hand, the bacterial microbiome of the fungus garden was more complex in that some bacterial taxa appear to be structured by the ant host species, whereas others by fungal lineage or the environment (geographic region). Thus bacteria in fungus gardens appear to be acquired both horizontally and vertically.