Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mar Drugs ; 22(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276650

ABSTRACT

Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.


Subject(s)
Ascophyllum , Seaweed , Child , Humans , Ascophyllum/chemistry , Alginates , Carbohydrates , Polyphenols , Seaweed/chemistry , Flavonoids
2.
BMC Plant Biol ; 23(1): 635, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072956

ABSTRACT

BACKGROUND: Due to the important economic role of pistachio (Pistacia vera L.) the cultivation of this valuable crop has been extended. Various abiotic stresses harm the growth and performance of pistachio. Seaweed extract containing various substances such as pseudo-hormones that stimulate growth, nutritional elements, and anti-stress substances can cause more resistance to abiotic stresses, and increase the quantity and the quality of the fruit. The present study was conducted to evaluate the effect of foliar application of Ascophyllum nodosum (L.) Le Jol. seaweed extract on some biochemical traits related to abiotic stress in Pistacia vera L. cv. Kaleh-Ghoochi. The first factor of foliar spraying treatment included A. nodosum seaweed extract at four levels (0, 1, 2, and 3 g/L), and the second factor was the time of spraying solution which was done at three times (1- at the beginning of pistachio kernel growth period at the end of June, 2- at the stage of full kernel development at the end of August, and 3- Spraying in both late June and August). RESULTS: The results showed that all investigated traits were significant under the treatment of seaweed extract compared with the control. The seaweed extract concentrations had a significant effect on all traits except soluble carbohydrates, but the time of consumption of seaweed extract on soluble carbohydrates, protein, peroxidase, ascorbate peroxidase, and superoxide dismutase enzymes was significant, while had no significant effect on the rest of the traits. According to the interaction effect of time and concentration of consumption of seaweed extract, the highest values of the biochemical characters were as follows: total phenol content: 168.30 mg CAE/g DW, flavonoid content: mg CE/g DW, catalase: 12.66 µmol APX min- 1 mg- 1 protein, superoxide dismutase: 231.4 µmol APX min- 1 mg- 1 protein, and ascorbate peroxidase: 39.53 µmol APX min- 1 mg- 1 protein. CONCLUSIONS: Based on the results of this study, it seems that it is possible to use fertilizers containing A. nodosum seaweed extract with a concentration of 3 g/L in August to increase the tolerance of the pistachio cultivar "Kaleh-Ghoochi" to abiotic stresses.


Subject(s)
Ascophyllum , Pistacia , Seaweed , Ascophyllum/chemistry , Ascorbate Peroxidases , Stress, Physiological , Plant Extracts/pharmacology , Superoxide Dismutase , Carbohydrates
3.
Phytopathology ; 113(6): 1084-1092, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36598344

ABSTRACT

Arachidonic acid (AA) is an oomycete-derived microbe-associated molecular pattern (MAMP) capable of eliciting robust defense responses and inducing resistance in plants. Similarly, Ascophylum nodosum extract (ANE) from the brown seaweed A. nodosum, a plant biostimulant that contains AA, can also prime plants for defense against pathogen challenges. A previous parallel study comparing the transcriptomes of AA- and ANE-root-treated tomatoes demonstrated significant overlap in transcriptional profiles, a shared induced resistance phenotype, and changes in the accumulation of various defense-related phytohormones. In this work, untargeted metabolomic analysis via liquid chromatography-mass spectrometry was conducted to investigate the local and systemic metabolome-wide remodeling events elicited by AA and ANE root treatment in tomatoes. Our study demonstrated AA and ANE's capacity to locally and systemically alter the metabolome of tomatoes with enrichment of chemical classes and accumulation of metabolites associated with defense-related secondary metabolism. AA- and ANE-root-treated plants showed enrichment of fatty acyl-glycosides and strong modulation of hydroxycinnamic acids and derivatives. Identification of specific metabolites whose accumulation was affected by AA and ANE treatment revealed shared metabolic changes related to ligno-suberin biosynthesis and the synthesis of phenolic compounds. This study highlights the extensive local and systemic metabolic changes in tomatoes induced by treatment with a fatty acid MAMP and a seaweed-derived plant biostimulant with implications for induced resistance and crop improvement.


Subject(s)
Ascophyllum , Oomycetes , Solanum lycopersicum , Solanum lycopersicum/genetics , Ascophyllum/chemistry , Arachidonic Acid , Plant Diseases , Metabolome
4.
Mar Drugs ; 21(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37233509

ABSTRACT

The present study investigates the molecular characteristics of fucoidan obtained from the brown Irish seaweed Ascophyllum nodosum, employing hydrothermal-assisted extraction (HAE) followed by a three-step purification protocol. The dried seaweed biomass contained 100.9 mg/g of fucoidan, whereas optimised HAE conditions (solvent, 0.1N HCl; time, 62 min; temperature, 120 °C; and solid to liquid ratio, 1:30 (w/v)) yielded 417.6 mg/g of fucoidan in the crude extract. A three-step purification of the crude extract, involving solvents (ethanol, water, and calcium chloride), molecular weight cut-off filter (MWCO; 10 kDa), and solid-phase extraction (SPE), resulted in 517.1 mg/g, 562.3 mg/g, and 633.2 mg/g of fucoidan (p < 0.05), respectively. In vitro antioxidant activity, as determined by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays, revealed that the crude extract exhibited the highest antioxidant activity compared to the purified fractions, commercial fucoidan, and ascorbic acid standard (p < 0.05). The molecular attributes of biologically active fucoidan-rich MWCO fraction was characterised by quadruple time of flight mass spectrometry and Fourier-transform infrared (FTIR) spectroscopy. The electrospray ionisation mass spectra of purified fucoidan revealed quadruply ([M+4H]4+) and triply ([M+3H]3+) charged fucoidan moieties at m/z 1376 and m/z 1824, respectively, and confirmed the molecular mass 5444 Da (~5.4 kDa) from multiply charged species. The FTIR analysis of both purified fucoidan and commercial fucoidan standard exhibited O-H, C-H, and S=O stretching which are represented by bands at 3400 cm-1, 2920 cm-1, and 1220-1230 cm-1, respectively. In conclusion, the fucoidan recovered from HAE followed by a three-step purification process was highly purified; however, purification reduced the antioxidant activity compared to the crude extract.


Subject(s)
Ascophyllum , Seaweed , Antioxidants/chemistry , Ascophyllum/chemistry , Seaweed/chemistry , Ireland , Polysaccharides/chemistry , Spectrometry, Mass, Electrospray Ionization
5.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446599

ABSTRACT

Seaweeds have gained considerable attention in recent years due to their potential health benefits and high contents of bioactive compounds. This review focuses on the exploration of seaweed's health-promoting properties, with particular emphasis on phlorotannins, a class of bioactive compounds known for their antioxidant and antidiabetic properties. Various novel and ecofriendly extraction methods, including solid-liquid extraction, ultrasound-assisted extraction, and microwave-assisted extraction are examined for their effectiveness in isolating phlorotannins. The chemical structure and isolation of phlorotannins are discussed, along with methods for their characterization, such as spectrophotometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and chromatography. Special attention is given to the antioxidant activity of phlorotannins. The inhibitory capacities of polyphenols, specifically phlorotannins from Ascophyllum nodosum against digestive enzymes, such as α-amylase and α-glucosidase, are explored. The results suggest that polyphenols from Ascophyllum nodosum seaweed hold significant potential as enzyme inhibitors, although the inhibitory activity may vary depending on the extraction conditions and the specific enzyme involved. In conclusion, seaweed exhibits great potential as a functional food ingredient for promoting health and preventing chronic diseases. Overall, this review aims to condense a comprehensive collection of high-yield, low-cost, and ecofriendly extraction methods for obtaining phlorotannins with remarkable antioxidant and antidiabetic capacities.


Subject(s)
Ascophyllum , Seaweed , Antioxidants/chemistry , Seaweed/chemistry , Ascophyllum/chemistry , Hypoglycemic Agents/pharmacology , Polyphenols/pharmacology , Polyphenols/chemistry , Vegetables
6.
Mar Drugs ; 20(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736143

ABSTRACT

Ascophyllum nodosum contains many valuable compounds, including polyphenols, peptides, and carotenoids that have been shown to exhibit biological activities. These compounds are not a priority ingredient in seaweed meal products for the current users. Hence, the aim of the study was to investigate the chemical and bioactive characteristics of A. nodosum as affected by seasonal variation and evaluate the potential benefits of alternative processing and the utilization of side streams for product development. The analysis of raw materials, press liquid, and press cake from alternative processing and the commercial seaweed meal at different harvesting periods indicated that the chemical composition is linked to the reproductive state of the algae. Phenolic content and ORAC activity increased following the seaweed's fertile period, making alternative processing more promising in July and October compared to June. Several valuable ingredients were obtained in the press liquid, including polyphenols, which can be used in the development of new high-value bioactive products. The suggested alternative processing does not have a negative effect on the composition and quality of the current seaweed meal products. Hence, the extraction of valuable ingredients from the fresh biomass during the processing of seaweed meal could be a feasible option to increase the value and sustainability of seaweed processing.


Subject(s)
Ascophyllum , Seaweed , Ascophyllum/chemistry , Phenols , Polyphenols , Rivers , Seaweed/chemistry , Vegetables
7.
Mar Drugs ; 20(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421984

ABSTRACT

The isolation and chemical characterization of phlorotannins has gained special attention in recent years due to their specific health-promoting benefits. Flow-cell ultrasound-assisted extraction (90 W/cm2 of sonication power, 2 min of retention time and 20 g solvent/g algae of liquid-solid ratio) was carried out by using double-distilled water (WE) and acetone:water mixture (AWE) as extraction solvents. The AWE showed a higher total polyphenols content (TPC), carbohydrates (CHOs) and antioxidant activities than WE. However, when the WE was purified by using Amberlite XAD16 column, the purified WE (PWE) showed similar a TPC, decreased CHOs and increased antioxidant activity compared to WE. The oxidation of the PWE extract was evaluated under natural, forced and severe oxidation condition for 120 h. Only severe oxidation conditions were able to significantly reduce TPC and antioxidant activities. PWE was dialyzed (20, 10, 3.5 and 2 kDa). The main bioactive fraction of phlorotannins was obtained from 10 to 20 kDa. CHOs were distributed in fractions below 20 kDa. MALDI-TOF analysis was performed for PWE, PD20 and PD2 extracts to analyze the degree of polymerization of phlorotannins, which ranged from 4 to 17 phloroglucinol units/molecule. Fragmentation patterns allowed the proximate identification of several phlorotannins in Ascophyllum nodosum extracts.


Subject(s)
Ascophyllum , Ascophyllum/chemistry , Antioxidants/chemistry , Renal Dialysis , Polyphenols , Solvents , Plant Extracts/pharmacology , Water
8.
Mar Drugs ; 20(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36286461

ABSTRACT

Preparations of sulfated polysaccharides obtained from brown algae are known as fucoidans. These biopolymers have attracted considerable attention due to many biological activities which may find practical applications. Two Atlantic representatives of Phaeophyceae, namely, Fucus vesiculosus and Ascophyllum nodosum, belonging to the same order Fucales, are popular sources of commercial fucoidans, which often regarded as very similar in chemical composition and biological actions. Nevertheless, these two fucoidan preparations are polysaccharide mixtures which differ considerably in amount and chemical nature of components, and hence, this circumstance should be taken into account in the investigation of their biological properties and structure-activity relationships. In spite of these differences, fractions with carefully characterized structures prepared from both fucoidans may have valuable applications in drug development.


Subject(s)
Ascophyllum , Fucus , Phaeophyceae , Ascophyllum/chemistry , Fucus/chemistry , Sulfates , Phaeophyceae/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
9.
Mar Drugs ; 20(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35323474

ABSTRACT

The objective of the present study was to test whether a brown seaweed extract rich in polyphenols combined with a low-calorie diet would induce additional weight loss and improve blood glucose homeostasis in association with a metabolic and inflammatory response in overweight/obese prediabetic subjects. Fifty-six overweight/obese, dysglycemic, and insulin-resistant men and women completed a randomized, placebo-controlled, double-blind, and parallel clinical trial. Subjects were administrated 500 mg/d of either brown seaweed extract or placebo combined with individualized nutritional advice for moderate weight loss over a period of 12 weeks. Glycemic, anthropometric, blood pressure, heart rate, body composition, lipid profile, gut integrity, and oxidative and inflammatory markers were measured before and at the end of the trial. No effect was observed on blood glucose. We observed significant but small decreases in plasma C-peptide at 120 min during 2 h-OGTT (3218 ± 181 at pre-intervention vs. 2865 ± 186 pmol/L at post-intervention in the brown seaweed group; 3004 ± 199 at pre-intervention vs. 2954 ± 179 pmol/L at post-intervention in the placebo group; changes between the two groups, p = 0.002), heart rate (72 ± 10 at pre-intervention vs. 69 ± 9 (n/min) at post-intervention in the brown seaweed group; 68 ± 9 at pre-intervention vs. 68 ± 8 (n/min) at post-intervention in the placebo group; changes between the two groups, p = 0.01), and an inhibition in the increase of pro-inflammatory interleukin-6 (IL-6) (1.3 ± 0.7 at pre-intervention vs. 1.5 ± 0.7 pg/L at post-intervention in the brown seaweed group; 1.4 ± 1.1 at pre-intervention vs. 2.2 ± 1.6 pg/L at post-intervention in the placebo group; changes between the two groups, p = 0.02) following brown seaweed consumption compared with placebo in the context of moderate weight loss. Although consumption of brown seaweed extract had no effect on body weight or blood glucose, an early attenuation of the inflammatory response was observed in association with marginal changes in metabolic parameters related to the prevention of diabetes type 2.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Ascophyllum/chemistry , Complex Mixtures/therapeutic use , Fucus/chemistry , Overweight/drug therapy , Polyphenols/therapeutic use , Prediabetic State/drug therapy , Seaweed/chemistry , Adolescent , Adult , Aged , Blood Glucose/drug effects , C-Peptide/blood , Diet, Fat-Restricted , Double-Blind Method , Female , Humans , Insulin/blood , Interleukin-6/blood , Lipids/blood , Male , Middle Aged , Overweight/blood , Prediabetic State/blood , Treatment Outcome , Weight Loss/drug effects , Young Adult
10.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540571

ABSTRACT

Drought represents a major threat to plants in natural ecosystems and agricultural settings. The biostimulant Super Fifty (SF), produced from the brown alga Ascophyllum nodosum, enables ecologically friendly stress mitigation. We investigated the physiological and whole-genome transcriptome responses of Arabidopsis thaliana to drought stress after a treatment with SF. SF strongly decreased drought-induced damage. Accumulation of reactive oxygen species (ROS), which typically stifle plant growth during drought, was reduced in SF-primed plants. Relative water content remained high in SF-treated plants, whilst ion leakage, a measure of cell damage, was reduced compared to controls. Plant growth requires a functional shoot apical meristem (SAM). Expression of a stress-responsive negative growth regulator, RESPONSIVE TO DESICCATION 26 (RD26), was repressed by SF treatment at the SAM, consistent with the model that SF priming maintains the function of the SAM during drought stress. Accordingly, expression of the cell cycle marker gene HISTONE H4 (HIS4) was maintained at the SAMs of SF-primed plants, revealing active cell cycle progression after SF priming during drought. In accordance with this, CYCP2;1, which promotes meristem cell division, was repressed by drought but enhanced by SF. SF also positively affected stomatal behavior to support the tolerance to drought stress. Collectively, our data show that SF priming mitigates multiple cellular processes that otherwise impair plant growth under drought stress, thereby providing a knowledge basis for future research on crops.


Subject(s)
Arabidopsis/physiology , Ascophyllum/chemistry , Biological Products/pharmacology , Droughts , Stress, Physiological , Transcriptome , Adaptation, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Seaweed/chemistry
11.
Molecules ; 26(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573121

ABSTRACT

Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.


Subject(s)
Ascophyllum/chemistry , Fucus/chemistry , Metabolic Syndrome/diet therapy , Plant Extracts/therapeutic use , Clinical Trials as Topic , Glycoside Hydrolase Inhibitors/therapeutic use , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/pathology , Plant Extracts/chemistry , Seaweed/chemistry
12.
J Sci Food Agric ; 101(9): 3613-3619, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33275277

ABSTRACT

BACKGROUND: Phytophthora spp., soil-borne oomycetes, cause brown rot (BR) on postharvest lemons. The management of this disease is based on cultural practices and chemical control using inorganic salts of limited efficacy. In the search for new alternatives, the aim of this work was to evaluate the effect of low-toxicity compounds to inhibit the growth of P. citrophthora and to control BR disease on lemons. Sodium bicarbonate, potassium sorbate, polyhexamethylene guanidine, Ascophyllum nodosum extract and a formulation containing phosphite salts plus A. nodosum (P+An) were evaluated. RESULTS: All tested products inhibited mycelial growth, sporangia formation and zoospore germination of P. citrophthora in vitro. In postharvest applications on artificially inoculated lemons, only P+An exhibited a BR curative effect, with incidence reduction of around 60%. When this formulation was applied in field treatments, BR incidence was reduced by 40% on lemons harvested and inoculated up to 30 days post application. CONCLUSION: Our results demonstrate the in vitro direct anti-oomycete effect of low-toxicity compounds and the in vivo efficacy of P+An formulation to control BR, encouraging the incorporation of the latter in the management of citrus BR. © 2020 Society of Chemical Industry.


Subject(s)
Ascophyllum/chemistry , Citrus/microbiology , Fungicides, Industrial/pharmacology , Phytophthora/drug effects , Plant Diseases/microbiology , Plant Extracts/pharmacology , Fruit/microbiology , Guanidines/pharmacology , Phytophthora/growth & development , Sodium Bicarbonate/pharmacology , Sorbic Acid/pharmacology
13.
J Sci Food Agric ; 101(4): 1507-1514, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32851673

ABSTRACT

BACKGROUND: Seaweeds have been eaten in the diets of coastal cultures for centuries; however, consumption of seaweeds has been limited in Western diets owing to undesirable sensory characteristics and lack of familiarity. Apart from healthful bioactive metabolites, seaweeds are good sources of fibre and minerals. They are nearly a complete protein and have a low fat content (mainly mono- or polyunsaturated). The objectives were (i) to investigate if the addition of brown seaweed, Ascophyllum nodosum, or red seaweed, Chondrus crispus, altered the chemical composition and sensory properties of whole-wheat bread; and (ii) to determine what percentage the addition of brown or red seaweed to whole-wheat bread is acceptable to consumers. The two seaweeds were incorporated into separate batches of whole-wheat bread by percentage weight flour at 0% (control), 2%, 4%, 6%, and 8%. RESULTS: The products containing the highest amounts of A. nodosum and C. crispus had the highest ash and total dietary fibre. A. nodosum and C. crispus breads were acceptable at 4% and 2% levels respectively. The attributes of no aftertaste, soft, and chewy drove consumer liking of the whole-wheat bread, whereas attributes dry, dense, strong aftertaste, and saltiness detracted from liking. CONCLUSION: This project's significance is to demonstrate the acceptability of seaweed in a Western population, which may lay the groundwork to encourage and promote the consumption of seaweed or to exemplify seaweed incorporation into foodstuffs. © 2020 Society of Chemical Industry.


Subject(s)
Ascophyllum/chemistry , Bread/analysis , Chondrus/chemistry , Food Additives/chemistry , Seaweed/chemistry , Triticum/chemistry , Ascophyllum/metabolism , Chondrus/metabolism , Consumer Behavior , Flour/analysis , Food Additives/metabolism , Food Handling , Humans , Seaweed/metabolism , Taste
14.
J Sci Food Agric ; 101(2): 459-475, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32648605

ABSTRACT

BACKGROUND: Various strategies are needed to mitigate the negative impact on or to increase fruit quality. The effect of spraying kaolin (K), Ascophyllum nodosum (An) and salicylic acid (SA), in trees with and without irrigation, on quality and sensorial attributes of hazelnut (Grada de Viseu cultivar) was investigated during two consecutive years (2016 and 2017) in a commercial orchard located in Moimenta da Beira, Portugal. RESULTS: The treatments affected positively the biometric parameters nut and kernel weight, length, width, thickness and volume as well as the vitamin E level, antioxidant activity and content of some individual phenolics, such as protocatechuic acid, gallocatechin, catechin and epicatechin. The levels of amino acids in hazelnut kernels decreased in all the assayed treatments, while the kernel colour and sensorial attributes were not affected by the treatments. Hazelnut physical properties (nut and kernels), chemical and phytochemical composition and antioxidant activities were positively related. CONCLUSIONS: The application of K, An and SA improved the hazelnut tree response to climate change, without compromising the hazelnut chemical and sensorial quality. Furthermore, due to the similar observations for the same treatments with and without irrigation, it can be stated that K, An and SA can be efficient and cost-effective tools to mitigate summer stress in rain-fed orchards. © 2020 Society of Chemical Industry.


Subject(s)
Ascophyllum/chemistry , Corylus/drug effects , Kaolin/pharmacology , Nuts/chemistry , Plant Extracts/pharmacology , Salicylic Acid/pharmacology , Adult , Agricultural Irrigation , Corylus/chemistry , Corylus/growth & development , Crop Production , Female , Humans , Male , Middle Aged , Nuts/drug effects , Nuts/growth & development , Phenols/chemistry , Portugal , Seaweed/chemistry , Taste
15.
BMC Plant Biol ; 20(1): 113, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32164536

ABSTRACT

BACKGROUND: Powdery mildew (PM) is an important disease of pea that reduce yield. Ascophyllum nodosum extract (ANE) and chitosan (CHT) are biostimulants used to improve plant health. Efficacy of ANE and CHT was assessed individually and in combination against pea powdery mildew. RESULTS: Combined applications of ANE and CHT had a significant inhibitory effect on pathogen development and it reduced disease severity to 35%, as compared to control (90.5%). The combination of ANE and CHT enhanced the activity of plant defense enzymes; phenylalanine ammonia lyases (PAL), peroxidase (PO) and production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2). Further, the treatment increased the expression of a number of plant defense genes in jasmonic acid (JA) signaling pathway such as LOX1 and COI and salicylic acid (SA)-mediated signaling pathway such as NPR1 and PR1. Other genes involved in defense mechanisms like NADPH oxidase and C4H were also upregulated by the combination treatment. CONCLUSION: The combination of ANE and CHT suppresses pea powdery mildew largely by modulating JA and SA-mediated signaling pathways.


Subject(s)
Ascomycota/physiology , Ascophyllum/chemistry , Chitosan/pharmacology , Pisum sativum/immunology , Plant Diseases/prevention & control , Plant Immunity , Chitosan/administration & dosage , Pisum sativum/drug effects , Plant Diseases/microbiology , Plant Immunity/drug effects
16.
Mar Drugs ; 18(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867333

ABSTRACT

Phenolic components from the edible brown seaweed, Ascophyllum nodosum, have been associated with considerable antioxidant activity but also bioactivities related to human health. This study aims to select and identify the main phlorotannin components from this seaweed which have been previously associated with potential health benefits. Methods to enrich phenolic components then further select phlorotannin components from ethanolic extracts of Ascophyllum nodosum were applied. The composition and phenolic diversity of these extracts were defined using data dependent liquid chromatography mass spectroscopic (LC-MSn) techniques. A series of phlorotannin oligomers with apparent degree of polymerization (DP) from 10 to 31 were enriched by solid phase extraction and could be selected by fractionation on Sephadex LH-20. Evidence was also obtained for the presence of dibenzodioxin linked phlorotannins as well as sulphated phlorotannins and phenolic acids. As well as diversity in molecular size, there was evidence for potential isomers at each DP. MS2 fragmentation analyses strongly suggested that the phlorotannins contained ether linked phloroglucinol units and were most likely fucophlorethols and MS3 data suggested that the isomers may result from branching within the chain. Therefore, application of these LC-MSn techniques provided further information on the structural diversity of the phlorotannins from Ascophyllum, which could be correlated against their reported bioactivities and could be further applied to phlorotannins from different seaweed species.


Subject(s)
Ascophyllum/chemistry , Chromatography, High Pressure Liquid , Phenols/isolation & purification , Spectrometry, Mass, Electrospray Ionization , Tannins/isolation & purification , Molecular Structure , Polymerization , Solid Phase Extraction
17.
Mar Drugs ; 18(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971911

ABSTRACT

We previously demonstrated that fucoidan with a type II structure inhibited postprandial hyperglycemia by suppressing glucose uptake, but the mechanism remains elusive. Here, we aimed to assess whether the effect of glucose absorption inhibition was related to the basic structure of fucoidans and preliminarily clarified the underlying mechanism. Fucoidans with type II structure and type I structure were prepared from Ascophyllumnodosum (AnF) or Laminariajaponica (LjF) and Kjellmaniellacrassifolia (KcF), respectively. The effects of various fucoidans on suppressing postprandial hyperglycemia were investigated using in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model), and in vivo (oral glucose tolerance test, OGTT) assays. The results showed that only AnF with a type II structure, but not LjF or KcF with type I structure, could inhibit the glucose transport in the Caco-2 monolayer and everted gut sac models. A similar result was seen in the OGTT of Kunming mice and leptin receptor-deficient (db/db) mice, where only AnF could effectively inhibit glucose transport into the bloodstream. Furthermore, AnF (400 mg/kg/d) treatment decreased the fasting blood glucose, HbA1c, and fasting insulin levels, while increasing the serum glucagon-like peptide-1 (GLP-1) level in obese leptin receptor-deficient (db/db) mice. Furthermore, surface plasmon resonance (SPR) analysis revealed the specific binding of AnF to Na+/glucose cotransporter 1 (SGLT1), which indicated the effect of AnF on postprandial hyperglycemia could be due to its suppression on SGLT1 activity. Taken together, this study suggests that AnF with a type II structure can be a promising candidate for hyperglycemia treatment.


Subject(s)
Ascophyllum/chemistry , Hyperglycemia/prevention & control , Polysaccharides/pharmacology , Sodium-Glucose Transporter 1/antagonists & inhibitors , Animals , Blood Glucose/metabolism , Caco-2 Cells , Glucose/metabolism , Glucose Tolerance Test , Humans , Laminaria/chemistry , Male , Mice , Mice, Inbred C57BL , Phaeophyceae/chemistry , Polysaccharides/isolation & purification
18.
Mar Drugs ; 18(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963560

ABSTRACT

The Asian coastal communities have used the brown seaweeds Fucus vesiculosus and Ascophyllum nodosum since ancient times. Recently, some in vitro and in vivo studies have demonstrated their abilities in reducing risk factors for metabolic syndrome. Here, we analyzed the protective effect of a phytocomplex extracted from these seaweeds on the deposition of fat in the liver after the administration of a high-fat diet (HFD) to rats for five weeks. The administration of F. vesiculosus and A. nodosum led to significant reductions in microvescicular steatosis and plasma biochemical and lipid parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total and conjugated bilirubin, and triglycerides. Furthermore, the postprandial glycemic peak was delayed and significantly reduced (p < 0.01) by the algal extract administration. In conclusion, this extract is effective in reducing microvescicular steatosis and improving glycemic control, thereby lowering the risk of nonalcoholic fatty liver disease, obesity, and diabetes, diseases related to the consumption of fat and sugar-enriched diets.


Subject(s)
Ascophyllum/chemistry , Diet, Reducing/adverse effects , Fucus/chemistry , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/pharmacology , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Blood Glucose/drug effects , Diet, High-Fat/adverse effects , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/metabolism , Postprandial Period/drug effects , Rats , Rats, Wistar , Seaweed/chemistry , Triglycerides/metabolism
19.
Int J Mol Sci ; 21(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940839

ABSTRACT

Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels.


Subject(s)
Antioxidants/pharmacology , Arabidopsis/drug effects , Ascophyllum/chemistry , Oxidative Stress , Plant Extracts/pharmacology , Transcriptome , Arabidopsis/genetics , Arabidopsis/metabolism , Carbohydrate Metabolism , Gene Expression Regulation, Plant , Herbicides/toxicity , Lipid Metabolism , Paraquat/toxicity
20.
Molecules ; 26(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374856

ABSTRACT

Phlorotannins are bioactive polyphenols in brown macroalgae that make these algae interesting as healthy food. Specific phlorotannins are, however, seldom identified, and extracts from different species are often only analysed for total phenolic content (TPC). In this study, our focus was to identify phlorotannin molecules from Saccharina latissima and Ascophyllum nodosum (a species rich in these compounds) using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2). Water and ethanol (30 and 80% v/v) were used at solid:liquid ratios, extraction times and temperatures, proposed to result in high TPC in extracts from other species. The S. latissima extracts, however, did not allow phlorotannin detection by either UHPLC-UV/Vis or UHPLC-HRMS2, despite a TPC response by the Folin-Ciocalteu assay, pinpointing a problem with interference by non-phenolic compounds. Purification by solid phase extraction (SPE) led to purer, more concentrated fractions and identification of four phlorotannin species in A. nodosum and one in S. latissima by UHPLC-HRMS2, using extracts in ethanol 80% v/v at a solid:liquid ratio of 1:10 for 20 h at 25 °C with an added 10 h at 65 °C incubation of remaining solids. The phlorotannin with the formula C12H10O7 (corresponding to bifuhalol) is the first identified in S. latissima.


Subject(s)
Ascophyllum/chemistry , Chromatography, High Pressure Liquid/methods , Phaeophyceae/chemistry , Tandem Mass Spectrometry/methods , Tannins/analysis , Tannins/chemistry , Tannins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL