Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115.442
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38733990

ABSTRACT

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Subject(s)
Medulla Oblongata , Spinal Cord , Sympathetic Nervous System , Animals , Male , Mice , Locomotion/physiology , Medulla Oblongata/physiology , Mice, Inbred C57BL , Motor Neurons/physiology , Neurons/physiology , Sleep, REM/physiology , Spinal Cord/physiology , Sympathetic Nervous System/physiology , Behavior, Animal , Cell Count , Muscle, Skeletal
2.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37683635

ABSTRACT

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Subject(s)
Ants , Animals , Ants/physiology , Blood-Brain Barrier , Brain/metabolism , Drosophila , Social Behavior , Behavior, Animal
3.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37321218

ABSTRACT

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Subject(s)
Ants , Animals , Ants/genetics , Brain/physiology , Odorants , Pheromones , Smell/physiology , Behavior, Animal
4.
Cell ; 186(12): 2574-2592.e20, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37192620

ABSTRACT

Serotonin influences many aspects of animal behavior. But how serotonin acts on its diverse receptors across the brain to modulate global activity and behavior is unknown. Here, we examine how serotonin release in C. elegans alters brain-wide activity to induce foraging behaviors, like slow locomotion and increased feeding. Comprehensive genetic analyses identify three core serotonin receptors (MOD-1, SER-4, and LGC-50) that induce slow locomotion upon serotonin release and others (SER-1, SER-5, and SER-7) that interact with them to modulate this behavior. SER-4 induces behavioral responses to sudden increases in serotonin release, whereas MOD-1 induces responses to persistent release. Whole-brain imaging reveals widespread serotonin-associated brain dynamics, spanning many behavioral networks. We map all sites of serotonin receptor expression in the connectome, which, together with synaptic connectivity, helps predict which neurons show serotonin-associated activity. These results reveal how serotonin acts at defined sites across a connectome to modulate brain-wide activity and behavior.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Serotonin/metabolism , Caenorhabditis elegans Proteins/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Behavior, Animal/physiology , Brain/metabolism
5.
Cell ; 185(25): 4737-4755.e18, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493753

ABSTRACT

Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.


Subject(s)
Behavior, Animal , Dogs , Animals , Dogs/genetics , Dogs/physiology , Genetic Variation , Phenotype , Pedigree
6.
Cell ; 184(10): 2733-2749.e16, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33861952

ABSTRACT

Significant evidence supports the view that dopamine shapes learning by encoding reward prediction errors. However, it is unknown whether striatal targets receive tailored dopamine dynamics based on regional functional specialization. Here, we report wave-like spatiotemporal activity patterns in dopamine axons and release across the dorsal striatum. These waves switch between activational motifs and organize dopamine transients into localized clusters within functionally related striatal subregions. Notably, wave trajectories were tailored to task demands, propagating from dorsomedial to dorsolateral striatum when rewards are contingent on animal behavior and in the opponent direction when rewards are independent of behavioral responses. We propose a computational architecture in which striatal dopamine waves are sculpted by inference about agency and provide a mechanism to direct credit assignment to specialized striatal subregions. Supporting model predictions, dorsomedial dopamine activity during reward-pursuit signaled the extent of instrumental control and interacted with reward waves to predict future behavioral adjustments.


Subject(s)
Axons/metabolism , Behavior, Animal , Corpus Striatum/metabolism , Dopamine/metabolism , Reward , Animals , Female , Male , Mice , Mice, Mutant Strains
7.
Cell ; 184(14): 3717-3730.e24, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214471

ABSTRACT

Neural activity underlying short-term memory is maintained by interconnected networks of brain regions. It remains unknown how brain regions interact to maintain persistent activity while exhibiting robustness to corrupt information in parts of the network. We simultaneously measured activity in large neuronal populations across mouse frontal hemispheres to probe interactions between brain regions. Activity across hemispheres was coordinated to maintain coherent short-term memory. Across mice, we uncovered individual variability in the organization of frontal cortical networks. A modular organization was required for the robustness of persistent activity to perturbations: each hemisphere retained persistent activity during perturbations of the other hemisphere, thus preventing local perturbations from spreading. A dynamic gating mechanism allowed hemispheres to coordinate coherent information while gating out corrupt information. Our results show that robust short-term memory is mediated by redundant modular representations across brain regions. Redundant modular representations naturally emerge in neural network models that learned robust dynamics.


Subject(s)
Frontal Lobe/physiology , Nerve Net/physiology , Aging/physiology , Animals , Behavior, Animal , Cerebrum/physiology , Choice Behavior , Female , Light , Male , Mice , Models, Neurological , Motor Cortex/physiology , Neurons/physiology
8.
Cell ; 184(24): 5854-5868.e20, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34822783

ABSTRACT

Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.


Subject(s)
Biological Evolution , Hydrozoa/genetics , Models, Animal , Neurosciences , Animals , Animals, Genetically Modified , Behavior, Animal , Feeding Behavior , Gene Targeting , Hydrozoa/physiology , Models, Biological , Nerve Net/physiology , Neurons/metabolism , Neuropeptides/metabolism
9.
Cell ; 184(14): 3748-3761.e18, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34171308

ABSTRACT

Lateral intraparietal (LIP) neurons represent formation of perceptual decisions involving eye movements. In circuit models for these decisions, neural ensembles that encode actions compete to form decisions. Consequently, representation and readout of the decision variables (DVs) are implemented similarly for decisions with identical competing actions, irrespective of input and task context differences. Further, DVs are encoded as partially potentiated action plans through balance of activity of action-selective ensembles. Here, we test those core principles. We show that in a novel face-discrimination task, LIP firing rates decrease with supporting evidence, contrary to conventional motion-discrimination tasks. These opposite response patterns arise from similar mechanisms in which decisions form along curved population-response manifolds misaligned with action representations. These manifolds rotate in state space based on context, indicating distinct optimal readouts for different tasks. We show similar manifolds in lateral and medial prefrontal cortices, suggesting similar representational geometry across decision-making circuits.


Subject(s)
Decision Making , Motion Perception/physiology , Parietal Lobe/physiology , Animals , Behavior, Animal , Judgment , Macaca mulatta , Male , Models, Neurological , Neurons/physiology , Photic Stimulation , Prefrontal Cortex/physiology , Psychophysics , Task Performance and Analysis , Time Factors
10.
Cell ; 184(17): 4564-4578.e18, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34302739

ABSTRACT

The mesencephalic locomotor region (MLR) is a key midbrain center with roles in locomotion. Despite extensive studies and clinical trials aimed at therapy-resistant Parkinson's disease (PD), debate on its function remains. Here, we reveal the existence of functionally diverse neuronal populations with distinct roles in control of body movements. We identify two spatially intermingled glutamatergic populations separable by axonal projections, mouse genetics, neuronal activity profiles, and motor functions. Most spinally projecting MLR neurons encoded the full-body behavior rearing. Loss- and gain-of-function optogenetic perturbation experiments establish a function for these neurons in controlling body extension. In contrast, Rbp4-transgene-positive MLR neurons project in an ascending direction to basal ganglia, preferentially encode the forelimb behaviors handling and grooming, and exhibit a role in modulating movement. Thus, the MLR contains glutamatergic neuronal subpopulations stratified by projection target exhibiting roles in action control not restricted to locomotion.


Subject(s)
Locomotion/physiology , Mesencephalon/anatomy & histology , Animals , Basal Ganglia/metabolism , Behavior, Animal , Female , Integrases/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Optogenetics , Retinol-Binding Proteins, Plasma/metabolism , Spinal Cord/metabolism , Transgenes , Vesicular Glutamate Transport Protein 2/metabolism
11.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34233165

ABSTRACT

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Subject(s)
Microglia/metabolism , Neural Inhibition/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Behavior, Animal , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Parvalbumins/metabolism , Phenotype , Receptors, GABA-B/metabolism , Synapses/physiology , Transcription, Genetic
12.
Cell ; 184(26): 6344-6360.e18, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34890577

ABSTRACT

The anterior insular cortex (aIC) plays a critical role in cognitive and motivational control of behavior, but the underlying neural mechanism remains elusive. Here, we show that aIC neurons expressing Fezf2 (aICFezf2), which are the pyramidal tract neurons, signal motivational vigor and invigorate need-seeking behavior through projections to the brainstem nucleus tractus solitarii (NTS). aICFezf2 neurons and their postsynaptic NTS neurons acquire anticipatory activity through learning, which encodes the perceived value and the vigor of actions to pursue homeostatic needs. Correspondingly, aIC → NTS circuit activity controls vigor, effort, and striatal dopamine release but only if the action is learned and the outcome is needed. Notably, aICFezf2 neurons do not represent taste or valence. Moreover, aIC → NTS activity neither drives reinforcement nor influences total consumption. These results pinpoint specific functions of aIC → NTS circuit for selectively controlling motivational vigor and suggest that motivation is subserved, in part, by aIC's top-down regulation of dopamine signaling.


Subject(s)
Brain Stem/physiology , Insular Cortex/physiology , Motivation , Neural Pathways/physiology , Animals , Behavior, Animal , Dopamine/metabolism , Female , Learning , Male , Mice, Inbred C57BL , Neurons/physiology , Nucleus Accumbens/metabolism , Time Factors
13.
Cell ; 184(4): 912-930.e20, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571430

ABSTRACT

Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.


Subject(s)
Action Potentials/physiology , Stroke/physiopathology , Animals , Behavior, Animal/physiology , Biomechanical Phenomena/physiology , Electric Stimulation , Haplorhini , Motor Cortex/physiopathology , Neural Networks, Computer , Neurons/physiology , Task Performance and Analysis , Time Factors
14.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34363756

ABSTRACT

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Subject(s)
DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Inheritance Patterns/genetics , Memory/physiology , Animals , Avoidance Learning , Behavior, Animal , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Extracellular Vesicles/metabolism , Gene Expression Regulation , Genome , Germ Cells/metabolism , RNA/metabolism , RNA Interference , Virion/metabolism
15.
Cell ; 184(26): 6313-6325.e18, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34942099

ABSTRACT

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.


Subject(s)
Extracellular Space/chemistry , Hyaluronic Acid/pharmacology , Morphogenesis , Organ Specificity , Pressure , Semicircular Canals/cytology , Semicircular Canals/embryology , Actomyosin/metabolism , Animals , Anisotropy , Behavior, Animal , Extracellular Matrix/metabolism , Hyaluronic Acid/biosynthesis , Models, Biological , Morphogenesis/drug effects , Organ Specificity/drug effects , Osmotic Pressure , Semicircular Canals/diagnostic imaging , Stereotyped Behavior , Zebrafish/embryology , Zebrafish Proteins/metabolism
16.
Cell ; 184(23): 5807-5823.e14, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34739833

ABSTRACT

Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.


Subject(s)
Ants/genetics , Ecdysterone/pharmacology , Hierarchy, Social , Insect Proteins/metabolism , Neurons/metabolism , Sesquiterpenes/pharmacology , Social Behavior , Transcriptome/genetics , Animals , Ants/drug effects , Ants/physiology , Behavior, Animal/drug effects , Brain/metabolism , Gene Expression Regulation/drug effects , Genome , Neurons/drug effects , Phenotype , Repressor Proteins/metabolism , Signal Transduction/drug effects , Transcriptome/drug effects
17.
Cell ; 184(3): 709-722.e13, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33482084

ABSTRACT

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.


Subject(s)
Adult Stem Cells/metabolism , Calcium/metabolism , Circadian Rhythm , Intracellular Space/metabolism , Neural Stem Cells/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Behavior, Animal/drug effects , Cell Division/drug effects , Cell Proliferation/drug effects , Circadian Rhythm/drug effects , Cytosol/metabolism , Epidermal Growth Factor/pharmacology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Melatonin/metabolism , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Optogenetics , Signal Transduction/drug effects , Tryptamines/pharmacology
18.
Cell ; 184(1): 243-256.e18, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417861

ABSTRACT

Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.


Subject(s)
Cognition/physiology , Cranial Sutures/physiopathology , Craniosynostoses/physiopathology , Regeneration/physiology , Skull/physiopathology , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Craniosynostoses/genetics , Dura Mater/pathology , Dura Mater/physiopathology , Gelatin/pharmacology , Gene Expression Profiling , Hand Strength , Intracranial Pressure/drug effects , Intracranial Pressure/physiology , Locomotion/drug effects , Mesenchymal Stem Cells/drug effects , Methacrylates/pharmacology , Mice, Inbred C57BL , Motor Activity/drug effects , Organ Size/drug effects , Regeneration/drug effects , Skull/pathology , Twist-Related Protein 1/metabolism , Wnt Signaling Pathway/drug effects
19.
Cell ; 183(7): 2003-2019.e16, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33308478

ABSTRACT

The ability to record transient cellular events in the DNA or RNA of cells would enable precise, large-scale analysis, selection, and reprogramming of heterogeneous cell populations. Here, we report a molecular technology for stable genetic tagging of cells that exhibit activity-related increases in intracellular calcium concentration (FLiCRE). We used FLiCRE to transcriptionally label activated neural ensembles in the nucleus accumbens of the mouse brain during brief stimulation of aversive inputs. Using single-cell RNA sequencing, we detected FLiCRE transcripts among the endogenous transcriptome, providing simultaneous readout of both cell-type and calcium activation history. We identified a cell type in the nucleus accumbens activated downstream of long-range excitatory projections. Taking advantage of FLiCRE's modular design, we expressed an optogenetic channel selectively in this cell type and showed that direct recruitment of this otherwise genetically inaccessible population elicits behavioral aversion. The specificity and minute resolution of FLiCRE enables molecularly informed characterization, manipulation, and reprogramming of activated cellular ensembles.


Subject(s)
Behavior, Animal , Calcium/metabolism , Corpus Striatum/metabolism , Animals , Female , HEK293 Cells , Humans , Kinetics , Male , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Rats , Single-Cell Analysis , Transcriptome/genetics
20.
Cell ; 183(6): 1586-1599.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33159859

ABSTRACT

The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an 'all-optical' combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory.


Subject(s)
Hippocampus/cytology , Place Cells/cytology , Spatial Behavior , Spatial Memory , Animals , Behavior, Animal , Male , Mice, Inbred C57BL , Neurons/metabolism , Opsins/metabolism , Optogenetics , Photons , Reward , Running , Spatial Navigation
SELECTION OF CITATIONS
SEARCH DETAIL