Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 776
Filter
Add more filters

Publication year range
1.
Reprod Biol Endocrinol ; 20(1): 47, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35260167

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of polycyclic aromatic hydrocarbons (PAHs) other than bisphenol A (BPA) and BPA substitutes on placental cells. METHODS: HTR-8/SVneo cells were treated with anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and 4,4-(9-fluorenylidene)diphenol, which is used as a substitute for BPA-free products. After confirming the dose response for each reagent using the prepared cells, the cells were incubated for 24, 48, and 72 h. Cell viability was confirmed using the XTT assay. Each experiment was performed with the minimum number of samples (n = 3) required for statistical analysis. The results were analyzed using t-tests; p < 0.05 was considered statistically significant. RESULTS: After treatment with anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and 4,4-(9-fluorenylidene)diphenol, the absorbance measured using the XTT assay decreased significantly with increasing concentration. The absorbance decreased significantly over time following treatment with each endocrine disruptor at the concentration confirmed by the dose-response analysis. CONCLUSIONS: This study showed that anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and 4,4-(9-fluorenylidene)diphenol-a BPA substitute-affect cell viability and necrosis in the placental cell line. The study indicates the serious effects of PAHs that negatively affect pregnancy but were previously unknown. Further, this study would serve as a reference for the identification of harmful PAHs during pregnancy prognosis in women who are more susceptible to PAH exposure.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Polycyclic Aromatic Hydrocarbons/pharmacology , Anthracenes/pharmacology , Benzhydryl Compounds/pharmacology , Benzo(a)pyrene/pharmacology , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Fluorenes/pharmacology , Humans , Phenols/pharmacology , Placenta/cytology , Pregnancy , Time Factors
2.
Lipids Health Dis ; 21(1): 13, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057794

ABSTRACT

BACKGROUND: Benzo [a] pyrene (BaP), a potent carcinogen, has been proved that it has toxicological effects via activation the aryl hydrocarbon receptor (AhR) pathway. AhR can participate in regulating lipogenesis and lipolysis. This topic will verify whether BaP regulates lipid metabolism via AhR. METHODS: (1) C57BL/6 mice were gavaged with BaP for 12 weeks to detect serum lipids, glucose tolerance, and insulin resistance. Morphological changes in white adipose tissue (WAT) were detected by Hematoxylin and Eosin staining. The mRNA expression levels of adipogenesis-related factors included recombinant human CCAAT/enhancer binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid binding protein 4 (FABP4) and inflammatory factors included nuclear factor kappa-B (NF-κB), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α) were detected using PCR. (2) Neutral lipid content changes in differentiated 3 T3-L1 adipocytes treated with BaP with and w/o AhR inhibitor were detected by Oil red staining. The protein expression levels of adipogenesis- and decomposition-related factors included PPARγ coactivator-1 alpha (PGC-1α), and peroxisome proliferation-activated receptor alpha (PPARα) were detected using western blotting. The mRNA expression levels of inflammatory factors were detected using PCR. RESULTS: (1) BaP inhibited body weight gain, decreased lipid content, increased lipid levels, and decreased glucose tolerance and insulin tolerance in mice; (2) BaP reduced the expressions of C/EBPα, PPARγ, FABP4, PGC-1α, and PPARα and increased the expressions of NF-κB, MCP-1, and TNF-α by activating AhR. CONCLUSION: BaP inhibit fat synthesis and oxidation while inducing inflammation by activating AhR, leading to WAT dysfunction and causing metabolic complications.


Subject(s)
Benzo(a)pyrene/pharmacology , Lipid Metabolism/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, White/anatomy & histology , Adipose Tissue, White/drug effects , Animals , Dose-Response Relationship, Drug , Glucose Tolerance Test , Insulin Resistance , Lipids/blood , Mice , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon/drug effects
3.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209168

ABSTRACT

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.


Subject(s)
Antioxidants/pharmacology , Benzo(a)pyrene/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/chemistry , Benzo(a)pyrene/chemistry , Biomarkers , Disease Susceptibility , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Humans , Lipid Peroxidation/drug effects , Molecular Structure , Oxidants/chemistry , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
4.
Mol Carcinog ; 60(10): 684-701, 2021 10.
Article in English | MEDLINE | ID: mdl-34320692

ABSTRACT

ERCC1 is a gene for repairing DNA damage whose function is related to carcinogenic-induced tumorigenesis and the effectiveness of platinum therapies. Circular RNAs (circRNAs) are products of posttranscriptional regulation with pleiotropic effects on the pathogenesis of lung cancer. We aim to identify that specific circRNAs derived from ERCC1 can regulate key biological processes involved in the development of lung cancer. We performed bioinformatics analysis, in vitro experiments, and analyzed clinical samples, to determine the biological features of a certain ERCC1-derived circRNA termed as hsa_circ_0051488 in benzo[a]pyrene diol epoxide-induced malignant transformed cell and lung cancer cell. The well-established model of transformed cells provided an ideal platform for analyzing the molecular characteristics of this circRNA in the malignant transformation of lung epithelial cell, which supports that hsa_circ_0051488 functions in the onset and growth of lung squamous cell carcinoma (LUSC). Further analysis indicates that the absence of hsa_circ_0051488 promoted the proliferation of cells with the malignant phenotype. Extensive experiments confirm that hsa_circ_0051488 is present in the cytoplasm and functioned as a competing endogenous RNA. In particular, hsa_circ_0051488 binds to mir-6717-5p, thereby modulating the expression of SATB2 gene, a lung cancer suppressor. Furthermore, our in silico experiments indicate that SATB2 can inhibit multiple tumor pathways and its expression positively correlated with the tumor suppressor gene CRMP1. These findings suggest a possible regulatory mechanism of hsa_circ_0051488 in LUSC, and that the newly discovered hsa_circ_0051488/miR-6717-5p/SATB2 axis may be a potential route for therapeutic intervention of LUSC.


Subject(s)
Benzo(a)pyrene/pharmacology , Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Lung Neoplasms/genetics , RNA, Circular/genetics , Benzo(a)pyrene/adverse effects , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation/drug effects , Humans , RNA Interference , Signal Transduction/drug effects
5.
Microvasc Res ; 137: 104179, 2021 09.
Article in English | MEDLINE | ID: mdl-34051271

ABSTRACT

Exposure to polycyclic aromatic hydrocarbons (PAHs) contributes to development and exacerbation of atherosclerosis and cardiovascular disease. However, the underlying molecular mechanisms remain elusive. In the current study, the effect of benzo(α)pyrene (BaP) in human umbilical vein endothelial cells (HUVECs) was investigated, including its impact on apoptosis, cell viability, oxidative stress and inflammatory cytokine release. The role of aryl hydrocarbon receptor (AhR) and NF-κB signaling pathways involved in BaP-induced oxidative stress and inflammation was further investigated. Exposure to BaP induced cell apoptosis and terminal oxidative stress and inflammation responses in HUVECs. BaP also increased the expression of ICAM-1 and VCAM-1. Furthermore, BaP treatment of HUVECs activated AhR and NF-κB signaling pathways, and promoted reactive oxygen species generation and inflammatory cytokine release. The current findings suggest that BaP induced inflammatory cytokine release from HUVECs through oxidative stress accompanied with AhR and NF-κB pathway activation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Benzo(a)pyrene/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Receptors, Aryl Hydrocarbon/agonists , Antigens, CD/metabolism , Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Adhesion Molecules/metabolism , Cells, Cultured , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction
6.
Adv Exp Med Biol ; 1300: 151-160, 2021.
Article in English | MEDLINE | ID: mdl-33523433

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widely spread persistent environmental toxicants. Its typical representative benzo[a]pyrene (BaP) is a human carcinogen. BaP can pass through the placental barrier and is finally metabolized into benzo[a]pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE). BPDE can form DNA adducts, which directly affect the female reproductive health. Based on the special physiological functions of trophoblast cells and its important effect on normal pregnancy, this chapter describes the toxicity and molecular mechanism of BPDE-induced dysfunctions of trophoblast cells. By affecting the invasion, migration, apoptosis, proliferation, inflammation, and hormone secretion of trophoblast cells, BPDE causes diseases such as choriocarcinoma, intrauterine growth restriction, eclampsia, and abortion. In the end, it is expected to provide a scientific basis and prevention approach for women's reproductive health and decision-making basis for the formulation of environmental health standards.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide , Trophoblasts , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology , Benzo(a)pyrene/pharmacology , Carcinogens/pharmacology , DNA Adducts , Female , Humans , Pregnancy
7.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948252

ABSTRACT

Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP-BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.


Subject(s)
Benzo(a)pyrene/pharmacology , Benzo(a)pyrene/toxicity , Epigenesis, Genetic/drug effects , 5-Methylcytosine/metabolism , Animals , Benzo(a)pyrene/metabolism , Biotin/metabolism , Carcinogenesis/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/physiology , Epigenomics/methods , Female , Histone Deacetylases/metabolism , Humans , Pregnancy , Prenatal Exposure Delayed Effects
8.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681617

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat meat samples and their potential effects on gene expressions related to CRC. Extraction and clean-up of meat samples were performed using QuEChERS method, and PAHs were detected using GC-MS. Nine different PAHs were found in meat samples. Interestingly, roast turkey contained the highest total PAH content, followed by salami meat. Hams of varying levels of smokedness showed a proportional increase of phenanthrene (PHEN), anthracene (ANTH), and fluorene (FLU). Triple-smoked ham samples showed significantly higher levels of these PAHs compared to single-smoked ham. These three PAHs plus benzo[a]pyrene (B[a]P), being detected in three meat samples, were chosen as treatments to investigate in vitro gene expression changes in human colon cells. After PAH treatment, total RNA was extracted and rtPCR was performed, investigating gene expression related to CRC. B[a]P decreased mRNA expression of TP53. In addition, at high concentrations, B[a]P significantly increased KRAS expression. Treatments with 1 µM PHEN, 25 µM, and 10 µM FLU significantly increased KRAS mRNA expression in vitro, implying the potential basis for PAH-induced colorectal carcinogenesis. Opposingly, the ANTH treatment led to increased TP53 and APC expression and decreased KRAS expression, suggesting an anti-carcinogenic effect. To conclude, PAHs are common in ready-to-eat meat samples and are capable of significantly modifying the expression of key genes related to CRC.


Subject(s)
Gene Expression Regulation , Meat/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Benzo(a)pyrene/analysis , Benzo(a)pyrene/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cooking , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation/drug effects , Humans , Meat Products/analysis , Polycyclic Aromatic Hydrocarbons/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Molecules ; 26(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513835

ABSTRACT

Cervical cancer, as the most frequent cancer in women globally and accounts almost 14% in India. It can be prevented or treated with vaccines, radiation, chemotherapy, and brachytherapy. The chemotherapeutic agents cause adverse post effects by the destruction of the neighboring normal cells or altering the properties of the cells. In order to reduce the severity of the side effects caused by the chemically synthesized therapeutic agents, the current research developed an anti-cancer agent dimer of epicatechin (DoE), a natural bioactive secondary metabolite (BSM) mediated from an endophytic fungus Curvularia australiensis FC2AP. The investigation has initiated with the evaluation of inhibiting the angiogenesis which is a main activity in metastasis, and it was assessed through Hen's Egg Test on Chorio Allantoic Membrane (HET-CAM) test; the BSM inhibited the growth of blood vessels in the developing chick embryo. Further the DoE was evaluated for its acute toxicity levels in albino mice, whereas the survival dose was found to be 1250 mg/kg and the lethal dose was 1500 mg/kg body weight of albino mice; hematological, biochemical, and histopathological analyses were assessed. The anti-inflammatory responses of the DoE were evaluated in carrageenan induced Wistar rats and the reduction of inflammation occurred in a dose-dependent manner. By fixing the effective dose for anti-inflammation analysis, the DoE was taken for the anti-cervical cancer analysis in benzo (a) pyrene induced female Sprague-Dawley rats for 60 days trial. After the stipulated days, the rats were taken for hematological antioxidants, lipid peroxidation (LPO), member bound enzymes, cervical histopathological and carcinogenic markers analyses. The results specified that the DoE has the capability of reducing the tumor in an efficient way. This is the first report of flavonoid-DoE production from an endophytic fungus C. australiensis has the anticancer potentiality and it can be stated as anti-cancer drug.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Catechin/pharmacology , Curvularia/chemistry , Uterine Cervical Neoplasms/drug therapy , Animals , Antioxidants/physiology , Benzo(a)pyrene/pharmacology , Chick Embryo , Chickens , Disease Models, Animal , Female , India , Inflammation/drug therapy , Lipid Peroxidation/drug effects , Mice , Rats , Rats, Sprague-Dawley , Rats, Wistar
10.
Cell Biol Int ; 44(12): 2427-2437, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32808713

ABSTRACT

Benzo[a]pyrene (B[a]P), a potent carcinogen, has been proved that it can induce apoptosis via activation of the aryl hydrocarbon receptor (AhR) pathway. The metabolite of tryptophan 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous activator of AhR, plays bifunctional roles in cell growth and apoptosis. However, whether and how FICZ can reduce the toxicity of B[a]P and the mechanism underlying this remain unclear. In this study, FICZ interfered with the toxicity of B[a]P in mouse hepatocarcinoma cell line Hepa1-6. The results of the MTT assay indicated that FICZ and B[a]P made opposite effects on cell proliferation. The scratch-wound healing assay showed that B[a]P (1 µM for 24 hr) exposure triggered cell migration and that was inhibited by FICZ (10 nM). In addition, FICZ ameliorated B[a]P-induced apoptosis by inhibiting reactive oxygen species generation and caspase-3 activation, as well as increasing reduced glutathione level in mitochondria. Furthermore, gene expression analyses indicated that FICZ competed with B[a]P, which reduced the transcriptional activation of the cyp1a1 and cyp1b1 genes, as well as Bcl2 and P53. Accordingly, the interaction between FICZ and B[a]P in the AhR pathway inhibited apoptosis in a mitochondrial-dependent manner, suggesting that endogenous compound may reduce the toxicity of exogenous pollutant in vivo and providing an available way to improve health condition related to the hepatic metabolic disorder.


Subject(s)
Apoptosis/drug effects , Carbazoles/pharmacology , Mitochondria/metabolism , Animals , Benzo(a)pyrene/adverse effects , Benzo(a)pyrene/pharmacology , Carbazoles/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/genetics , Liver Neoplasms/metabolism , Mice , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Aryl Hydrocarbon/metabolism
11.
Biochem Genet ; 58(4): 551-565, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32504241

ABSTRACT

Cytochrome P4501A (CYP1A) has been used as a specific biomarker for monitoring water contamination such as PAHs, PCBs and dioxins. In the present study, the cyp1a gene of Gambusia affinis was cloned and sequenced and their expressions under PAHs exposure were characterized. The newly identified cyp1a encodes a protein with 521 amino acids that shared 96-80% identity with other Cyprinodontiformes fishes. RT-PCR analysis revealed that the basal mRNA level of cyp1a was highly expressed in liver and intestine. The expression level of cyp1a was significantly induced by exposure to 100 µg/L 3, 4-Benzopyrene (BaP) for 5 days in the muscle, testis, brain, liver and intestine of adult male fish. Except in the testis, the induced mRNA level of cyp1a ultimately decreased after prolonging the exposure time to 25 days. As for testis, the induced mRNA level of cyp1a was maintained at a high level during the entire exposure time under 100 µg/L BaP exposure. Furthermore, the expression of cyp1a increased with exposure time under a relatively low exposure concentrations 1 µg/L. Regarding the effects of other PAHs, D(a,h)A, BbF, and BaA showed a statistically significant effect of induction on mRNA level of cyp1a in the muscle, testis, brain, liver and intestine.


Subject(s)
Cyprinodontiformes/genetics , Cytochrome P-450 CYP1A1/genetics , Gene Expression/drug effects , Polycyclic Aromatic Hydrocarbons/pharmacology , RNA, Messenger/genetics , Water Pollutants, Chemical/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Benzo(a)pyrene/pharmacology , Cyprinodontiformes/metabolism , Cytochrome P-450 CYP1A1/chemistry , Cytochrome P-450 CYP1A1/metabolism , Intestinal Mucosa/metabolism , Liver/metabolism , Male , Phylogeny , RNA, Messenger/chemistry , Testis/metabolism , Time Factors
12.
J Cell Physiol ; 234(7): 11119-11129, 2019 07.
Article in English | MEDLINE | ID: mdl-30443902

ABSTRACT

Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg-1 ·day -1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and ß-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and ß-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/ß-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.


Subject(s)
Apoptosis/drug effects , Benzo(a)pyrene/pharmacology , Endometrium/cytology , Stromal Cells/drug effects , Wnt-5a Protein/metabolism , Animals , Female , Gene Expression Regulation/drug effects , Humans , Mice , Pregnancy , Stromal Cells/metabolism , Wnt-5a Protein/genetics
13.
Chem Res Toxicol ; 32(6): 1259-1267, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30938511

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.


Subject(s)
Benzo(a)pyrene/pharmacology , Glutathione Transferase/metabolism , Animals , Benzo(a)pyrene/chemistry , Enzyme Induction/drug effects , Female , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred Strains , Molecular Probes/chemistry , Molecular Structure , Proteomics , RNA, Messenger/drug effects , RNA, Messenger/metabolism
14.
Nutr Cancer ; 71(3): 508-523, 2019.
Article in English | MEDLINE | ID: mdl-30857437

ABSTRACT

Our understanding of dose-related effects of polymeric black tea polyphenols (PBPs), the most abundant polyphenols in black tea, is limited. In the present study, the effect of various doses of black tea (0.75, 1.5, and 3%)-derived PBP-rich extract on biochemical parameters and lung carcinogenicity in A/J mice was investigated. Pretreatment with PBPs showed the dose-related decrease in B(a)P-induced expression and activity of CYP1A1 in the liver while CYP1A2 expression and activity in the lung. Dose-dependent significant increase in PBP-mediated over-expression and activity of GSTs (alpha in the liver while pi in the lung) were observed in polyphenol-treated groups. Significant dose-related decrease in number and intensity of BPDE-DNA adducts were observed in liver and lung. Black tea (1.5%, 3%)-derived PBPs showed dose-mediated decrease in lung tumor incidence and multiplicity which was further correlated with different molecular markers like cell proliferation and apoptosis in B(a)P and NNK model. In conclusion, dose-dependent chemopreventive effects of PBPs, both anti-initiating (induction of phase II and inhibition of carcinogen-induced phase-I enzymes leading to decrease in BPDE-DNA adducts) and anti-promoting (decreased cell proliferation and increased apoptosis lowering incidence and/or multiplicity of lung lesions), were observed in A/J mice without significant toxicity.


Subject(s)
Benzo(a)pyrene/pharmacology , Carcinogenesis/drug effects , Lung Neoplasms/prevention & control , Nitrosamines/pharmacology , Polyphenols/administration & dosage , Tea/chemistry , Animals , Anticarcinogenic Agents/administration & dosage , Camellia sinensis/chemistry , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1A2 Inhibitors/administration & dosage , DNA Adducts/analysis , Dose-Response Relationship, Drug , Glutathione Transferase/drug effects , Liver/enzymology , Lung/enzymology , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Male , Mice , Plant Extracts/administration & dosage
15.
J Biochem Mol Toxicol ; 33(12): e22374, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31702096

ABSTRACT

The main purpose of the current study is to reveal the anticancer action of limonin against benzo(a)pyrene [B(a)P]-treated lung carcinogenesis in Swiss albino mice and A549 lung cancer cells. B(a)P was orally supplemented (50 mg/kg body weight) twice a week for four weeks induction of lung cancer in mice. The lung weight, body weight, incidence of tumor, lipid peroxidation, carcinoembryonic antigen (CEA), enzymatic and nonenzymatic antioxidants (superoxide dismutase, GPx, glutathione, glutathione reductase, catalase, and glutathione S-transferase), serum marker enzymes (aryl hydroxylase, lactate dehydrogenase, 5'-nucleotidases, and γ-glutamyl transpeptidase), and inflammatory mediators (interleukin-1ß, interleukin-6, and tumor necrosis factor-α) were estimated. Moreover, a histopathological study of lung tissues was supported by the biochemical analysis. Furthermore, the anticancer activity of limonin on A549 cells was measured by cell viability, production of reactive oxygen species (ROS), apoptotic morphological changes by AO/EtBr staining. Additionally, the status of apoptosis protein (caspase-9 and -3) expressions was analyzed by the colorimetric analysis. B(a)P-induced mice showed increased lipid peroxidation, CEA, serum marker enzymes and inflammatory cytokines levels with simultaneously decreased in the nonenzymatic and enzymatic antioxidants levels. Limonin supplements significantly reverted back to all these changes in this manner, showing the efficiency of anticancer effect. Furthermore, our in vitro study also supported the anticancer effect of the treatment of limonin-enhanced apoptosis by loss of cell viability, improved ROS production, apoptotic morphological changes, and apoptosis protein expression were analyzed. Overall, these results suggest the anticancer potential of limonin against B(a)P-induced lung cancer in Swiss albino mice and A549 lung cancer cells.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , Benzo(a)pyrene/pharmacology , Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Limonins/therapeutic use , Lung Neoplasms/prevention & control , A549 Cells , Animals , Benzo(a)pyrene/administration & dosage , Carcinoembryonic Antigen/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Humans , Lipid Peroxidation/drug effects , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tumor Burden
16.
Biochemistry (Mosc) ; 84(10): 1197-1203, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31694515

ABSTRACT

Here, we suggested that the epigenetic mechanism of benzo(a)pyrene (BP) action might be based on the aryl hydrocarbon receptor (AhR)-mediated transcription of the target genes, including miRNAs, that have the dioxin response element (DRE) in their promoters. The effect of BP on the expression of the oncogenic miR-483-3p, its host gene IGF2, and target gene IGF1 in primary hepatocytes and in the liver of Wistar female rats was investigated. The activation of AhR was confirmed using selective AhR inhibitor CH-223191 and by evaluating expression of the target CYP1A1 gene. The lack of coordination between the expression of miR-483-3p and its host gene IGF2 was revealed, which may be due to the presence of the binding site for the estrogen receptor alpha (ERα), which is a negative expression regulator. Our results confirm the existence of the AhR-mediated pathway in the regulation of expression of miR-483-3p, IGF1, and IGF2 under BP exposure, which is of considerable interest for understanding the epigenetic mechanisms of the carcinogenic effect of BP.


Subject(s)
Benzo(a)pyrene/pharmacology , Hepatocytes/drug effects , Liver/drug effects , MicroRNAs/antagonists & inhibitors , Animals , Cells, Cultured , Computational Biology , Female , Hepatocytes/metabolism , Liver/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Rats, Wistar
17.
Lipids Health Dis ; 18(1): 214, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31823816

ABSTRACT

OBJECTIVE: To study whether minimal doses of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and lipoxin A4 (LXA4) and brain-derived neurotrophic factor (BDNF), when used in combination can protect RIN5F cells from chemical-induced cytotoxicity. As a corollary, to know whether plasma BDNF and LXA4 are altered in STZ-induced type 2 DM animals. MATERIALS AND METHODS: RIN5F cells, alloxan (AL), streptozotocin (STZ), doxorubicin (DB), and benzo(a)pyrene (BP) were used in this study. Chemical-induced apoptosis and changes in antioxidants, lipid peroxides and nitric oxide (NO) and LXA4 and BDNF levels in RIN5F cells were studied. Alterations in plasma concentrations of BDNF and LXA4 in STZ-induced type 2 diabetes animals was estimated. RESULTS: BDNF, LXA4 and AA, EPA and DHA protected (P < 0.001 and P < 0.01 respectively) against AL/STZ/DB/BP-induced toxicity to RIN5F cells in vitro. AL/ STZ/DB/BP inhibited BDNF and LXA4 production by RIN5F cells and were restored to normal by AA, EPA and DHA. Sub-optimal doses of BDNF, LXA4, AA and EPA when used in combination protected against cytotoxic action of AL/STZ/DB/BP on RIN5F cells in vitro by restoring LXA4/BDNF levels and altered antioxidant/lipid peroxides/NO levels (P < 0.01) to normal. STZ (65 mg/kg)-induced type 2 diabetes mellitus animals showed reduced plasma BDNF and LXA4 levels (P < 0.001). DISCUSSION: AL/STZ/DB/BP-induced cytotoxicity to RIN5F cells in vitro can be prevented by BDNF, LXA4 and AA. AL/STZ/DB/BP are cytotoxic, possibly, by suppressing the production of LXA4 and BDNF in RIN5F cells. STZ-induced type 2 DM animals have decreased plasma levels of LXA4 and BDNF. CONCLUSION: The results of the present study suggest that BDNF, LXA4, EPA, DHA, AA, GLA and BDNF protect pancreatic ß cells from the cytotoxic action of various chemicals and prevent development of diabetes mellitus. LXA4 seems to be the mediator of these cytoprotective actions of BDNF and PUFAs suggesting a close interaction exists among these molecules (BDNF, PUFAs and LXA4). Hence, methods developed to deliver a combination of PUFAs (especially AA), LXA4 and BDNF may prevent development of diabetes mellitus (both type 1 and type 2).


Subject(s)
Brain-Derived Neurotrophic Factor/administration & dosage , Cell Death/drug effects , Diabetes Mellitus, Type 2/pathology , Fatty Acids, Unsaturated/administration & dosage , Insulin-Secreting Cells/pathology , Lipoxins/administration & dosage , Alloxan/pharmacology , Animals , Arachidonic Acid/pharmacology , Benzo(a)pyrene/pharmacology , Brain-Derived Neurotrophic Factor/blood , Cell Line, Tumor , Cytotoxins , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/blood , Doxorubicin/pharmacology , Drug Interactions , Insulin-Secreting Cells/drug effects , Insulinoma , Lipoxins/blood , Pancreatic Neoplasms , Rats , Rats, Wistar , Streptozocin/pharmacology
18.
Biochem Biophys Res Commun ; 503(3): 2132-2138, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30122317

ABSTRACT

Cytochromes p450 (CYPs) metabolize thousands of endogenous and exogenous chemicals, including toxic compounds and drugs. The primary cells have relative short life span and are not able to sustain levels of metabolic enzymes CYPs expression and activity long enough in vitro. The immortalized cell lines are also not ideal for toxicity testing because of their low levels of CYPs expression. In this study, we established human normal bronchial epithelial cells using conditional reprogramming (CR) technique from three human donors (named as CR-HNBE1-3). These CR cells can proliferate continuously in defined culture system over 50 PDs within 2 months. The CR-HNBE cells exhibited the normal diploid karyotype, normal response to DNA damage and normal differentiation potential under the matrigel 3D culture condition. The CR-HNBE cells express the basal epithelial marker cytokeratin 14 (CK14) and epithelial secretory marker Mucin 5AC. Most importantly, CR-HNBE cells express comparable levels of CYP1B1 and CYP2E1 as those in lung tissue. These CR cells also express comparable mRNA of CYP1A1/CYP1A2, CYP2B6/CYP2C9/CYP2D6 and CYP3A4/CYP3A5 compared to the lung tissue. The basal activity of CYP1A1/CYP1B1 in these CR cells was 3-6 folds higher than that of 16HBE cells (an immortalized cell line widely used in toxicology field). Our data also demonstrated that Benzo(a)pyrene (BaP) induced up to 100 folds of mRNA expression of CYP1A1 or CYP1A2 in CR-HNBE cells. The activity of CYP1A1/CYP1B1 was induced by BaP up to 7-8 folds in CR-HNBE cells, while the activity of CYP1A1/CYP1B1 was induced maximum 2.5 folds in 16HBE cells. Taken together, CR-HNBE cells express comparable levels of CYPs and are sensitive to BaP induction, and will serve a sensitive, physiological and valuable in vitro toxicity testing model. This is the first report that normal human airway cells can be propagated for a long time and maintain comparable levels of CYPs.


Subject(s)
Benzo(a)pyrene/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Epithelial Cells/drug effects , Benzo(a)pyrene/metabolism , Bronchi , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Humans , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Structure-Activity Relationship
19.
Int J Mol Sci ; 19(3)2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29534036

ABSTRACT

(1) Objective: Highlight the in vitro effects of 3T3-L1 cell exposure to polychlorinated biphenyls (PCB118 and 153) or benzo(a)pyrene (BaP) alone or as a cocktail on adipogenesis (ADG) by focusing on changes in lipid metabolism and inflammatory-related genes expression (INFG) and ADG-related genes expression (ADGG); (2) Results: Treatment from the early stage of cell differentiation by BaP alone or in combination with PCBs decreased the expression of some of the ADGG (PPARγGlut-4, FAS, Lipin-1a, Leptin, and Adiponectin). BaP enhanced the INFG, especially MCP-1 and TNFα. Co-exposure to BaP and PCB153 showed a synergistic effect on TNFα and IL6 expression. Treatment with BaP and PCBs during only the maturation period up-regulated the INFG (IL6, TNFα, CXCL-10 & MCP-1). PCB118 alone also enhanced TNFα, CXCL-10, and PAI-1 expression. The change in MCP-1 protein expression was in agreement with that of the gene. Finally, the BaP-induced up-regulation of the xenobiotic responsive element (XRE)-controlled luciferase activity was impaired by PCB153 but not by PCB118; (3) Conclusion: BaP and PCBs down-regulate a part of ADGG and enhance INFG. The direct regulatory effect of PCBs on both ADGG and INFG is usually rather lower than that of BaP and synergistic or antagonistic cocktail effects are clearly observed.


Subject(s)
Adipogenesis/drug effects , Benzo(a)pyrene/pharmacology , Cytokines/metabolism , Environmental Pollutants/pharmacology , Polychlorinated Biphenyls/pharmacology , 3T3 Cells , Animals , Cytokines/genetics , Down-Regulation , Drug Antagonism , Drug Synergism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Inflammation/metabolism , Leptin/genetics , Leptin/metabolism , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Response Elements
20.
Fish Physiol Biochem ; 44(1): 95-108, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28822029

ABSTRACT

In the present study, full-length CYP1A cDNA from Catla catla (Catla) has been identified, and its real-time quantitative reverse transcription PCR (qRT-PCR) expression has been evaluated in different tissues, developmental stages (0, 3, 6, 12 and 24 h and 5, 7 and 9 days post-fertilization) and copper sulphate and benzo(a)pyrene (BaP)-treated 5-day post-fertilization (dpf) larvae (6 to 6.5 mm). Various structural, comparative and phylogenetic analyses of the deduced amino acid sequence revealed that the identified gene of Catla belongs to the CYP1A1 subfamily. Among different tissues of Catla, the highest CYP1A expression was observed in the kidney followed by the liver, muscle, gill, intestine and brain. CYP1A mRNA expression was detected during all the larval developmental stages, including the unfertilized egg with the highest expression on 9 dpf. BaP (3.5 ppb) and copper sulphate (sublethal dose 0.516 ppm) challenge test for 96 h to Catla larvae revealed the highest CYP1A1 expression at 48 h post-challenge. CYP1A1 transcript also showed a concentration-dependent increase in expression following exposure at 1.75 and 3.5 ppb of BaP for 48 h. Its expression profiling indicates that it is functional at early developmental stages. It can also be used to develop a specific biomarker tool for monitoring environmental pollution.


Subject(s)
Benzo(a)pyrene/pharmacology , Copper Sulfate/pharmacology , Cypriniformes/genetics , Cytochrome P-450 CYP1A1/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Cypriniformes/growth & development , Cytochrome P-450 CYP1A1/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Larva/genetics , Larva/metabolism , Models, Molecular , Phylogeny , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL