Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
Add more filters

Publication year range
1.
Biotechnol Lett ; 46(4): 641-669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687405

ABSTRACT

OBJECTIVES: This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS: 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION: Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.


Subject(s)
Betula , Forests , Rhodotorula , Betula/microbiology , Betula/chemistry , Poland , Rhodotorula/metabolism , Rhodotorula/isolation & purification , Biotechnology/methods , Basidiomycota/metabolism , Basidiomycota/isolation & purification , Carotenoids/metabolism , Carotenoids/chemistry , Plant Bark/microbiology , Plant Bark/chemistry
2.
Molecules ; 29(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274939

ABSTRACT

Despite unquestionable advances in therapy, melanoma is still characterized by a high mortality rate. For years, high expectations have been raised by compounds of natural origin as a component of pharmacotherapy, particularly by triterpenes found in the bark of birch trees. In this study, 3,4-seco-dammara-4(29),20(21),24(25)-trien-3-oic acid (SDT) was isolated from buds of silver birch and its mechanisms of cell death induction, including apoptosis and autophagy, were determined. Cytotoxicity of SDT was evaluated by the cell viability test and clonogenic assay, whereas induction of apoptosis and autophagy was determined by annexin V staining and Western blot. The results revealed dose- and time-dependent reductions in viability of melanoma cells. Treatment of cells for 48 h led to an increase in the percentage of annexin V-positive cells, activation of caspase-8, caspase-9, and caspase-3, and cleavage of PARP, confirming apoptosis. Simultaneously, it was found that SDT increased the level of autophagy marker LC3-II and initiator of autophagy beclin-1. Pretreatment of cells with caspase-3 inhibitor or autophagy inhibitor significantly reduced the cytotoxicity of SDT and revealed that both apoptosis and autophagy contribute to a decrease in cell viability. These findings suggest that 3,4-seco-dammaranes may become a promising group of natural compounds for searching for anti-melanoma agents.


Subject(s)
Apoptosis , Autophagy , Betula , Melanoma , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Autophagy/drug effects , Apoptosis/drug effects , Betula/chemistry , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
Biomacromolecules ; 24(9): 4113-4122, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37611236

ABSTRACT

Herein, a dual-functioning deep eutectic solvent system based on triethylmethylammonium chloride and imidazole was harnessed as a swelling agent and a reaction medium for the esterification of cellulose with n-octyl succinic anhydride (OSA). The modified or amphiphilic cellulose nanofibers (ACNFs), synthesized using three different OSA-to-anhydroglucose unit molar ratios (0.5:1, ACNF-1; 1:1, ACNF-2; and 1.5:1, ACNF-3), were further converted into nanofibers with degree of substitution (DS) values of 0.24-0.66. The ACNFs possessed a lateral dimension of 4.24-9.22 nm and displayed surface activity due to the balance of hydrophobic and hydrophilic characteristics. The ACNFs made stable aqueous dispersions; however, the instability index of ACNF-3 (0.51) was higher than those of ACNF-1 (0.29) and ACNF-2 (0.33), which was attributed to the high DS-induced hydrophobicity, causing the instability in water. The amphiphilic nature of ACNFs promoted their performance as stabilizers in oil-in-water Pickering emulsions with average droplet sizes of 4.85 µm (ACNF-1) and 5.48 µm (ACNF-2). Self-standing films of ACNFs showed high contact angles for all the tested DS variants (97.48-114.12°), while their tensile strength was inversely related to DS values (ACNF-1: 115 MPa and ACNF-3: 49.5 MPa). Aqueous dispersions of ACNFs were also tested for coating fruits to increase their shelf life. Coatings improved their shelf life by decreasing oxygen contact and moisture loss.


Subject(s)
Cellulose , Nanofibers , Nanofibers/chemistry , Nanofibers/ultrastructure , Emulsions/chemistry , Solvents/chemistry , Cellulose/chemistry , Cellulose/ultrastructure , Betula/chemistry , Esterification
4.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903473

ABSTRACT

Suberin is a complex polyester biopolymer, and it is practically impossible to estimate the real content of suberin in suberised plant tissues. This indicates the importance of the development of instrumental analytical methods for the comprehensive characterisation of suberin derived from plant biomass for the successful integration of suberinic products into biorefinery production chains. In this study, we optimised two GC-MS methods-one with direct sylilation, and the second with additional depolymerisation, using GPC methods with RI detector and polystyrene calibration and with a three-angle light scattering detector and an eighteen-angle light scattering detector. We also performed MALDI-Tof analysis for non-degraded suberin structure determination. We characterised suberinic acid (SA) samples obtained from birch outer bark after alkaline depolymerisation. The samples were particularly rich in diols, fatty acids and their esters, hydroxyacids and their corresponding esters, diacids and their corresponding esters, as well as extracts (mainly betulin and lupeol) and carbohydrates. To remove phenolic-type admixtures, treatment with ferric chloride (FeCl3) was used. The SA treatment with FeCl3 allows the possibility to obtain a sample that has a lower content of phenolic-type compounds and a lower molecular weight than an untreated sample. It was possible to identify the main free monomeric units of SA samples by GC-MS system using direct silylation. By performing an additional depolymerisation step before silylation, it was possible to characterise the complete potential monomeric unit composition in the suberin sample. For the molar mass distribution determination, it is important to perform GPC analysis. Even though chromatographic results can be obtained using a three- laser MALS detector, they are not fully correct because of the fluorescence of the SA samples. Therefore an 18-angle MALS detector with filters was more suitable for SA analysis. MALDI-Tof analysis is a great tool for the polymeric compound structural identification, which cannot be done using GC-MS. Using the MALDI data, we discovered that the main monomeric units that makes up the SA macromolecular structure are octadecanedioic acid and 2-(1,3-dihydroxyprop-2-oxy)decanedioic acid. This corresponds with GC-MS results, showing that after depolymerisation hydroxyacids and diacids were the dominant type of compounds found in the sample.


Subject(s)
Betula , Plant Bark , Betula/chemistry , Plant Bark/chemistry , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Plants , Hydroxy Acids
5.
Anal Bioanal Chem ; 414(25): 7531-7542, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35551432

ABSTRACT

The properties of biogenic aerosol strongly depend on the particle's proteinaceous compounds. Proteins from primary biological aerosol particles (PBAPs) can cause allergic reactions in the human respiratory system or act as ice and condensation nuclei in clouds. Consequently, these particles have high impact on human health and climate. The detection of biogenic aerosol is commonly performed with fluorescence-based techniques. However, many PBAPs (i.e., pollen of birch, mugwort, or ragweed) show weak or rather low fluorescence signals in the particular protein region (λex ~ 255-280 nm, λem ~ 280-350 nm). We hypothesize that the fluorescence signal of proteins present in birch pollen is being distorted within its native matrix. In this study, we conducted in vitro quenching experiments and employed UV/Vis spectroscopy, capillary zone electrophoresis (CZE), liquid chromatography (LC), electrospray ionization mass spectrometry (ESI-MS), and multistage MS (MS2 and MS3) to target major components in birch pollen washing water (BPWW) possibly quenching the fluorescence activity of proteins and thus explaining the lack of corresponding protein fluorescent signals. We identified quercetin-3-O-sophoroside (Q3OS, MW 626 g mol-1) to be the main UV/Vis absorbing component in BPWW. Our results point out that Q3OS suppresses the fluorescence of proteins in our samples predominantly due to inner filter effects. In general, when applying fluorescence spectroscopy to analyze and detect PBAPs in the laboratory or the atmosphere, it is important to critically scrutinize the obtained spectra.


Subject(s)
Allergens , Betula , Allergens/analysis , Betula/chemistry , Humans , Ice/analysis , Pollen/chemistry , Quercetin/analogs & derivatives
6.
J Cell Mol Med ; 25(24): 11085-11096, 2021 12.
Article in English | MEDLINE | ID: mdl-34755444

ABSTRACT

Flavonoids are bioactive secondary metabolites of plants, which exert anti-cancer effects. However, metabolism in enterocytes and the liver can influence the biological activity of flavonoids contained in the diet. Therefore, results from in vitro studies on cancer cells from the digestive tract and liver may reflect the real effects in the human body. Previously, we have found that the extract from birch buds exerts antiproliferative activity in a panel of cancer cells. In the present study, the anti-cancer activity of ten flavonoids isolated from the buds of Betula pubescens and Betula pendula was characterized. Among them, santin and cirsimaritin significantly reduced viability, proliferation and clonogenicity of gastric (AGS), colon (DLD-1) and liver (HepG2) cancer cells. Both flavonoids induced apoptosis, accompanied by activation of caspase-3, caspase-7, caspase-8 and caspase-9. Moreover, upregulation of p53 was detected only in wild-type p53 harbouring cells. Together, our results suggest that santin and cirsimaritin exhibit promising anti-cancer activity in cultures of digestive system cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Betula/chemistry , Flavones/pharmacology , Flavonoids/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Digestive System Neoplasms , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/metabolism , Flavones/chemistry , Flavonoids/chemistry , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology
7.
J Nat Prod ; 84(5): 1607-1616, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34008971

ABSTRACT

The antiausterity strategy is a promising approach for the discovery of lead compounds with unprecedented anticancer activities by targeting the tolerance of cancer cells to nutrition starvation. These agents are selectively cytotoxic under the tumor microenvironment-mimicking condition of nutrition starvation, without apparent toxicity in the normal nutrient-rich condition. In this study, an ethanol extract of Betula alnoides showed antiausterity activity against PANC-1 human pancreatic cancer cells under nutrient-deprived conditions, with a PC50 value of 13.2 µg/mL. Phytochemical investigation of this active extract led to the isolation of eight benzophenones (1-8), including six new compounds, named betuphenones A-F (2-7), and three known xanthones (9-11). The structure elucidation of the new compounds was achieved by HRFABMS, NMR, and ECD spectroscopic analyses. A plausible biogenetic pathway of the new compounds was proposed. Compounds 1-7 displayed antiausterity activity with PC50 values of 4.9-8.4 µM. Moreover, compounds 2 and 7 induced alterations in PANC-1 cell morphology under nutrient-deprived conditions and also inhibited PANC-1 colony formation under nutrient-rich conditions.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzophenones/pharmacology , Betula/chemistry , Pancreatic Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/isolation & purification , Benzophenones/isolation & purification , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Bark/chemistry , Thailand , Tumor Microenvironment/drug effects
8.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008694

ABSTRACT

The objective of this study was to produce bactericidal polymer films containing birch tar (BT). The produced polymer films contain PLA, plasticiser PEG (5% wt.) and birch tar (1, 5 and 10% wt.). Compared to plasticised PLA, films with BT were characterised by reduced elongation at break and reduced water vapour permeability, which was the lowest in the case of film with 10% wt. BT content. Changes in the morphology of the produced materials were observed by performing scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis; the addition of BT caused the surface of the film to be non-uniform and to contain recesses. FTIR analysis of plasticised PLA/BT films showed that the addition of birch tar did not change the crystallinity of the obtained materials. According to ISO 22196: 2011, the PLA film with 10% wt. BT content showed the highest antibacterial effect against the plant pathogens A. tumefaciens, X. campestris, P. brassicacearum, P. corrugata, P. syringae. It was found that the introduction of birch tar to plasticised PLA leads to a material with biocidal effect and favourable physicochemical and structural properties, which classifies this material for agricultural and horticultural applications.


Subject(s)
Betula/chemistry , Chemical Phenomena , Disinfectants/pharmacology , Polyesters/pharmacology , Tars/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Calcium Chloride/chemistry , Microbial Sensitivity Tests , Permeability , Plastics/chemistry , Spectroscopy, Fourier Transform Infrared , Steam , Surface Properties
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638570

ABSTRACT

The microbial biodegradation of new PLA and PCL materials containing birch tar (1-10% v/v) was investigated. Product of dry distillation of birch bark (Betula pendula Roth) was added to polymeric materials to obtain films with antimicrobial properties. The subject of the study was the course of enzymatic degradation of a biodegradable polymer with antibacterial properties. The results show that the type of the material, tar concentration, and the environment influenced the hydrolytic activity of potential biofilm degraders. In the presence of PCL films, the enzyme activities were higher (except for α-D-glucosidase) compared to PLA films. The highest concentration of birch tar (10% v/v) decreased the activity of hydrolases produced by microorganisms to the most significant extent; however, SEM analysis showed the presence of a biofilm even on plastics with the highest tar content. Based on the results of the biological oxygen demand (BOD), the new materials can be classified as biodegradable but, the biodegradation process was less efficient when compared to plastics without the addition of birch tar.


Subject(s)
Anti-Infective Agents/chemistry , Betula/chemistry , Biodegradable Plastics/chemistry , Polyesters/chemistry , Tars/chemistry , Aminopeptidases/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Betula/microbiology , Biodegradable Plastics/pharmacology , Biofilms , Biological Oxygen Demand Analysis , Distillation , Enzyme Assays , Esterases/metabolism , Lipase/metabolism , Plant Bark/chemistry , Plant Bark/microbiology , Polyesters/metabolism , Tars/pharmacology , alpha-Glucosidases/metabolism , beta-Glucosidase/metabolism
10.
Int J Mol Sci ; 22(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34830180

ABSTRACT

Neuroblastoma (NB) and rhabdomyosarcoma (RMS), the most common pediatric extracranial solid tumors, still represent an important clinical challenge since no effective treatment is available for metastatic and recurrent disease. Hence, there is an urgent need for the development of new chemotherapeutics to improve the outcome of patients. Betulin (Bet), a triterpenoid from the bark of birches, demonstrated interesting anti-cancer potential. The modification of natural phytochemicals with evidenced anti-tumor activity, including Bet, is one of the methods of receiving new compounds for potential implementation in oncological treatment. Here, we showed that two acetylenic synthetic Bet derivatives (ASBDs), EB5 and EB25/1, reduced the viability and proliferation of SK-N-AS and TE671 cells, as measured by MTT and BrdU tests, respectively. Moreover, ASBDs were also more cytotoxic than temozolomide (TMZ) and cisplatin (cis-diaminedichloroplatinum [II], CDDP) in vitro, and the combination of EB5 with CDDP enhanced anti-cancer effects. We also showed the slowdown of cell cycle progression at S/G2 phases mediated by EB5 using FACS flow cytometry. The decreased viability and proliferation of pediatric cancers cells after treatment with ASBDs was linked to the reduced activity of kinases Akt, Erk1/2 and p38 and the induction of apoptosis, as investigated using Western blotting and FACS. In addition, in silico analyses of the ADMET profile found EB5 to be a promising anti-cancer drug candidate that would benefit from further investigation.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Triterpenes/pharmacology , Acetylene/chemistry , Antineoplastic Agents/pharmacology , Betula/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Molecular Structure , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Temozolomide/pharmacology , Triterpenes/chemical synthesis , Triterpenes/chemistry
11.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361786

ABSTRACT

Silver birch, Betula pendula Roth, is one of the most common trees in Europe. Due to its content of many biologically active substances, it has long been used in medicine and cosmetics, unlike the rare black birch, Betula obscura Kotula. The aim of the study was therefore to compare the antioxidant properties of extracts from the inner and outer bark layers of both birch trees towards the L929 line treated with acetaldehyde. Based on the lactate dehydrogenase test and the MTT test, 10 and 25% concentrations of extracts were selected for the antioxidant evaluation. All extracts at tested concentrations reduced the production of hydrogen peroxide, superoxide anion radical, and 25% extract decreased malonic aldehyde formation in acetaldehyde-treated cells. The chemical composition of bark extracts was accessed by IR and HPLC-PDA methods and surprisingly, revealed a high content of betulin and lupeol in the inner bark extract of B. obscura. Furthermore, IR analysis revealed differences in the chemical composition of the outer bark between black and silver birch extracts, indicating that black birch may be a valuable source of numerous biologically active substances. Further experiments are required to evaluate their potential against neuroinflammation, cancer, viral infections, as well as their usefulness in cosmetology.


Subject(s)
Antioxidants/pharmacology , Betula/chemistry , Plant Bark/chemistry , Plant Extracts/pharmacology , Acetaldehyde/antagonists & inhibitors , Acetaldehyde/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Betula/classification , Cell Line , Chromatography, High Pressure Liquid , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hydrogen Peroxide/antagonists & inhibitors , Malondialdehyde/antagonists & inhibitors , Mice , Oxidants/antagonists & inhibitors , Oxidants/pharmacology , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/isolation & purification , Plant Bark/classification , Plant Extracts/chemistry , Poland , Superoxides/antagonists & inhibitors , Triterpenes/chemistry , Triterpenes/isolation & purification
12.
Environ Geochem Health ; 43(7): 2551-2570, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32488796

ABSTRACT

Zinc is an essential trace element and a vital microelement for human health. Zinc can be toxic when exposures exceed physiological needs. Toxic effects in humans are most evident from inhalation exposure to high concentrations of Zn compounds. Urban air pollution can be especially dangerous due to the Zn content in airborne dust. Tree leaves can absorb significant levels of zinc. In this study, leaf deposition of Zn was investigated in Chelyabinsk, Russia. Russian zinc production plant and metallurgical plant are located in Chelyabinsk. Extremely high concentrations of Zn (316-4000 mg kg-1) were found in the leaves of birch trees. It is well known that traffic also is Zn source in an urban environment. Trees, growing at the different distances from zinc production and metallurgical plants and road to identify the contribution of each source (road or industry), were studied. Through SEM analysis, the prevalence of small particulates (PM10 and less), containing Zn, illustrated leaf Zn deposition from the air by passing root accumulation. It was shown that emission of zinc production plant and the metallurgical plant is the main source of leaf Zn deposition in Chelyabinsk.


Subject(s)
Betula/chemistry , Environmental Monitoring , Trace Elements/analysis , Zinc/analysis , Air Pollution/analysis , Dust/analysis , Humans , Metallurgy , Plant Leaves/chemistry , Russia , Trees
13.
AAPS PharmSciTech ; 22(6): 205, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34286391

ABSTRACT

Drug-loaded electrospun fibers have attracted increasing attention as a promising wound dressing material due to their capability of preventing from infections and inflammation and maintaining an appropriate environment for wound healing. In this study, polylactic acid (PLA), which is widely used in wound management, was chosen as electrospinnable polymer. A triterpene extract (TE) from the outer bark of birch known for its anti-inflammatory, antiviral, antibacterial, and wound healing effects was chosen to produce TE-loaded PLA electrospun fibers for wound dressing. A binary solvent system of dichloromethane (DCM) and dimethyl sulfoxide (DMSO) was employed, and the ratio of the solvents was optimized for preparing smooth and uniform fibers. The morphology of TE-loaded PLA electrospun fibers was investigated by scanning electron microscopy (SEM). The entrapment of TE in PLA fibers was confirmed by confocal laser scanning microscopy (CLSM). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the solid state of TE in PLA fibers. The release behavior of TE was assayed by a shaking flask method for a period of 96 h. The results revealed that TE-loaded electrospun PLA microfibers could be reliably prepared and are promising future candidates in wound therapy.


Subject(s)
Bandages , Betula/chemistry , Nanofibers/chemistry , Plant Bark/chemistry , Polyesters/chemical synthesis , Triterpenes/chemical synthesis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemical synthesis , Chemistry, Pharmaceutical/methods , Nanofibers/analysis , Plant Extracts/analysis , Plant Extracts/chemical synthesis , Polyesters/analysis , Triterpenes/analysis
14.
Clin Chem Lab Med ; 58(11): 1875-1883, 2020 10 25.
Article in English | MEDLINE | ID: mdl-32083439

ABSTRACT

Background Tree nut-allergic individuals are often sensitised towards multiple nuts and seeds. The underlying cause behind a multi-sensitisation for cashew nut, hazelnut, peanut and birch pollen is not always clear. We investigated whether immunoglobulin E antibody (IgE) cross-reactivity between cashew nut, hazelnut and peanut proteins exists in children who are multi-allergic to these foods using a novel IMMULITE®-based inhibition methodology, and investigated which allergens might be responsible. In addition, we explored if an allergy to birch pollen might play a role in this co-sensitisation for cashew nut, hazelnut and peanut. Methods Serum of five children with a confirmed cashew nut allergy and suffering from allergic symptoms after eating peanut and hazelnut were subjected to inhibition immunoassays using the IMMULITE® 2000 XPi. Serum-specific IgE (sIgE) to seed storage allergens and pathogenesis-related protein 10 (PR10) allergens were determined and used for molecular multicomponent allergen correlation analyses with observed clinical symptoms and obtained inhibition data. Results IgE cross-reactivity was observed in all patients. Hazelnut extract was a strong inhibitor of cashew nut sIgE (46.8%), while cashew nut extract was less able to inhibit hazelnut extract (22.8%). Peanut extract showed the least inhibition potency. Moreover, there are strong indications that a birch pollen sensitisation to Bet v 1 might play a role in the observed symptoms provoked upon ingestion of cashew nut and hazelnut. Conclusions By applying an adjusted working protocol, the IMMULITE® technology can be used to perform inhibition assays to determine the risk of sIgE cross-reactivity between very different food components.


Subject(s)
Allergens/immunology , Immunoglobulin E/immunology , Nut Hypersensitivity/immunology , Peanut Hypersensitivity/immunology , Anacardium/chemistry , Arachis/chemistry , Betula/chemistry , Child , Corylus/chemistry , Cross Reactions , Humans , Immunoassay/methods , Immunoglobulin E/blood , Nut Hypersensitivity/blood , Peanut Hypersensitivity/blood , Pollen/immunology
15.
J Chem Ecol ; 46(2): 217-231, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31879865

ABSTRACT

Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant-herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.


Subject(s)
Betula/chemistry , Flavonoids/metabolism , Moths/physiology , Plants, Genetically Modified/chemistry , Tannins/metabolism , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Betula/enzymology , Betula/parasitology , Flavonoids/pharmacology , Herbivory/drug effects , Host-Parasite Interactions , Larva/growth & development , Larva/physiology , Moths/growth & development , Oxygenases/antagonists & inhibitors , Oxygenases/genetics , Oxygenases/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/parasitology , RNA Interference , Tannins/pharmacology
16.
Phytother Res ; 34(1): 126-138, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31512302

ABSTRACT

Betula platyphylla (BP) is frequently administered in the treatment of various human diseases, including cancers. This study was undertaken to investigate the pharmacological function of the active components in BP and the underlying mechanism of its chemotherapeutic effects in human lung cancer cells. We observed that BP extracts and 1,7-bis(4-hydroxyphenyl)-4-hepten-3-one (BE1), one of the components of BP, effectively decreased the cell viability of several lung cancer cell lines. BE1-treated cells exhibited apoptosis induction and cell cycle arrest at the G2/M phase. Further examination demonstrated that BE1 treatment resulted in suppression of autophagy, as evidenced by increased protein expression levels of both LC3 II and p62/SQSTM1. Interestingly, the pharmacological induction of autophagy with rapamycin remarkably reduced the BE1-induced apoptosis, indicating that apoptosis induced by BE1 was associated with autophagy inhibition. Our data also demonstrated that BE1 exposure activated the p38 pathway resulting in regulation of the pro-apoptotic activity. Taken together, we believe that BE1 is a potential anticancer agent for human lung cancer, which exerts its effect by enhancing apoptosis via regulating autophagy and the p38 pathway.


Subject(s)
Betula/chemistry , Lung Neoplasms/drug therapy , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Humans , Transfection
17.
Int J Mol Sci ; 21(16)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784509

ABSTRACT

Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.


Subject(s)
Allergens/immunology , Betula/chemistry , Hypersensitivity/immunology , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Pollen/chemistry , Rhinitis, Allergic, Seasonal/immunology , Antibody Specificity/immunology , Basophils/physiology , Cell Degranulation/physiology , Endocytosis , Humans , Immunoglobulin E/blood , Monocytes/metabolism , Recombinant Proteins/metabolism , U937 Cells , Up-Regulation
18.
Molecules ; 25(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164383

ABSTRACT

Commercially bottled birch saps (BSs) were analyzed for several nutrient (Ca, Cu, Fe, Mg, and Zn) and toxic (As, Cd, Ni, and Pb) elements using inductively coupled plasma optical emission spectrometry (ICP OES). The method was validated under the conditions of several sample preparation procedures, including a traditional digestion as well as alternative non-digestion schemes. It was found that the direct analysis of untreated BSs gives the best results, i.e., limits of detection at 0.02-5.8 ng mL-1, precision better than 5%, accuracy from 98.0% to 104.5% and determination of 12 elements in a short time (~1 min per sample). The multi-element analysis of nine commercially available bottled BSs showed that they contained mainly Mg and Ca, small quantities of Mn, Zn, Cu, and Fe, but are free from toxic elements such as As, Cd, Ni, and Pb. Additionally, the nutritional value of BSs was examined using in vitro gastro-intestinal digestion (GID) to determine the bioaccessible fraction of elements. Accordingly, bioaccessibility of nutritious ones (Ca, Cu, Fe, Mg, Zn) was <40%. Drinking daily 1 L of BSs covered <2.5% of recommended dietary intakes (RDIs) of the aforementioned elements. Only the bioaccessibility of Mn highly contributes to its RDI.


Subject(s)
Betula/chemistry , Spectrophotometry, Atomic/methods , Trace Elements/chemistry , Digestion , Mass Spectrometry/methods , Spectrum Analysis/methods
19.
Molecules ; 25(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086645

ABSTRACT

Triterpenes from the outer bark of birch (TE) are known for various pharmacological effects including enhanced wound healing. Apart from an already authorized oleogel, electrospun nanofiber mats containing these triterpenes in a polyvinyl alcohol (PVA) matrix appear to be an advantageous application form. The effects of PVA molecular weight and concentration on the fiber morphology have been investigated. Three different molecular weights of PVA ranging from 67 to 186 kDa were used. The concentration of PVA was varied from 5 to 20 wt%. Polymer solutions were blended with colloidal dispersions of birch bark extract at a weight ratio of 60:40 (wt.%). The estimated viscosity of polymer solutions was directly linked to their concentration and molecular weight. In addition, both pure and blended solutions showed viscoelastic properties with a dominant viscous response in the bulk. Fiber morphology was confirmed using scanning electron microscopy (SEM). Both polymer concentration and molecular weight were found to be significant factors affecting the diameter of the fibers. Fiber diameter increased with a higher molecular weight and polymer concentration as more uniform fibers were obtained using PVA of higher molecular weight (146-186 kDa). In vitro drug release and ex vivo permeation studies indicated a faster drug release of betulin from electrospun scaffolds with lower PVA molecular weight. Our research suggests that the fabricated TE-loaded PVA electrospun dressings represent potential delivery systems of TE for wound care applications.


Subject(s)
Betula/chemistry , Nanofibers/chemistry , Triterpenes/pharmacology , Wound Healing/drug effects , Drug Delivery Systems , Humans , Molecular Weight , Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Plant Bark/chemistry , Polyvinyl Alcohol/chemistry , Triterpenes/chemistry
20.
J Environ Sci Health B ; 55(11): 1009-1019, 2020.
Article in English | MEDLINE | ID: mdl-32816605

ABSTRACT

The present study addresses the herbicidal activity and biological effects of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retroflexus, Sinapis arvensis, and Leucanthemum maximum). The effects of the free herbicides and the herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of fluorescence: maximum quantum yield of photosystem-II [Y(II)max], maximum quantum yield of non-photochemical quenching [Y(NPQ)max], and maximum rate of non-cyclic electron transport [ETRmax] and concentrations of chlorophyll a and b. The effect of the embedded TBM on the photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-treated plants but lasted longer than the effect of the free TBM and increased over time. Embedding of metribuzin in the matrix of degradable blend did not decrease its herbicidal activity.


Subject(s)
Arylsulfonates/pharmacology , Herbicides/pharmacology , Plant Weeds/drug effects , Triazines/pharmacology , Amaranthus/drug effects , Arylsulfonates/chemistry , Betula/chemistry , Chlorophyll A/metabolism , Delayed-Action Preparations , Herbicides/chemistry , Hydroxybutyrates/chemistry , Leucanthemum/drug effects , Photosynthesis/drug effects , Plant Weeds/metabolism , Plant Weeds/physiology , Polyesters/chemistry , Sinapis/drug effects , Triazines/chemistry , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL