Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 693: 149370, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38100998

ABSTRACT

CD146/MCAM has garnered significant attention for its potential contribution to cardiovascular disease; however, the transcriptional regulation and functions remain unclear. To explore these processes regarding cardiomyopathy, we employed doxorubicin, a widely used stressor for cardiomyocytes. Our in vitro study on H9c2 cardiomyoblasts highlights that, besides impairing the fatty acid uptake in the cells, doxorubicin suppressed the expression of fatty acid binding protein 4 (Fabp4) along with the histone deacetylase 9 (Hdac9), bromodomain and extra-terminal domain proteins (BETs: Brd2 and Brd4), while augmented the production of CD146/MCAM. Silencing and chemical inhibition of Hdac9 further augmented CD146/MCAM and deteriorated fatty acid uptake. In contrast, chemical inhibition of BETs as well as silencing of MCAM/CD146 ameliorated fatty acid uptake. Moreover, protein kinase C (PKC) inhibition abrogated CD146/MCAM, particularly in the nucleus. Taken together, our results suggest that epigenetic dysregulation of Hdac9, Brd2, and Brd4 alters CD146/MCAM expression, deteriorating fatty acid uptake by downregulating Fabp4. This process depends on the PKC-mediated nuclear translocation of CD146. Thus, this study highlights a pivotal role of CD146/MCAM in doxorubicin-induced cardiomyopathy.


Subject(s)
Cardiomyopathies , Transcription Factors , Humans , CD146 Antigen/genetics , CD146 Antigen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Epigenesis, Genetic
2.
Cell Commun Signal ; 22(1): 170, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459564

ABSTRACT

Heterogeneous cancer-associated fibroblasts (CAFs) play important roles in cancer progression. However, the specific biological functions and regulatory mechanisms involved in endometrial cancer have yet to be elucidated. We aimed to explore the potential mechanisms of heterogeneous CAFs in promoting endometrial cancer progression. The presence of melanoma cell adhesion molecule (MCAM; CD146) positive CAFs was confirmed by tissue multi-immunofluorescence (mIF), and fluorescence activated cell sorting (FACS). The biological functions were determined by wound healing assays, tuber formation assays and cord formation assays. The effects of CD146+CAFs on endometrial cancer cells were studied in vitro and in vivo. The expression level of interleukin 10 (IL-10) was measured by quantitative real time polymerase chain reaction (qRT-PCR), western boltting and enzyme linked immunosorbent assays (ELISAs). In addition, the transcription factor STAT3 was identified by bioinformatics methods and chromatin immunoprecipitation (ChIP). A subtype of CAFs marked with CD146 was found in endometrial cancer and correlated with poor prognosis. CD146+CAFs promoted angiogenesis and vasculogenic mimicry (VM) in vitro. A xenograft tumour model also showed that CD146+CAFs can facilitate tumour progression. The expression of IL-10 was elevated in CD146+CAFs. IL-10 promoted epithelial-endothelial transformation (EET) and further VM formation in endometrial cancer cells via the janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) signalling pathway. This process could be blocked by the JAK1/STAT3 inhibitor niclosamide. Mechanically, STAT3 can bind to the promoter of cadherin5 (CDH5) to promote its transcription which may be stimulated by IL-10. We concluded that CD146+CAFs could promote angiogenesis and VM formation via the IL-10/JAK1/STAT3 signalling pathway. These findings may lead to the identification of potential targets for antiangiogenic therapeutic strategies for endometrial cancers.


Subject(s)
Cancer-Associated Fibroblasts , Endometrial Neoplasms , Female , Humans , Angiogenesis , Cancer-Associated Fibroblasts/metabolism , CD146 Antigen/metabolism , Cell Line, Tumor , Endometrial Neoplasms/metabolism , Interleukin-10 , Janus Kinase 1 , STAT3 Transcription Factor/metabolism
3.
Mol Pharm ; 21(9): 4490-4497, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39077827

ABSTRACT

The aim of this study was to evaluate the preclinical efficacy of [89Zr]Zr-DFO-Ab253 as a novel positron emission tomography (PET) tracer for CD146-positive malignant melanoma imaging. Considering the high expression of CD146 in malignant melanoma, this study investigated the effect of different CD146 expression levels on the tumor uptake of [89Zr]Zr-DFO-Ab253. CD146 selectivity was investigated by using the CD146-positive human melanoma cell A375 and the CD146-negative human alveolar epithelial cell A549. The cell uptake of [89Zr]Zr-DFO-Ab253 tracers was investigated, and receptor-binding affinities were measured by radioactive enzyme-linked immunosorbent assay. Biodistribution studies and micro-PET imaging of the radiotracers were performed on mice bearing A375 and A549 xenografts under baseline and blocking conditions. An immunohistochemical test was performed using A375 and A549 tissue sections for CD146 expression level analysis. [89Zr]Zr-DFO-Ab253 was obtained with a high radiochemical yield (87.86 ± 4.66%) and a satisfactory radiochemical purity (>98.0%). The specificity and affinity of [89Zr]Zr-DFO-Ab253 were confirmed in melanoma A375 cells and in vivo PET imaging of A375 tumor models. [89Zr]Zr-DFO-IgG and A549 lung tumors were prepared as control radiotracers and negative models to verify the specificity of [89Zr]Zr-DFO-Ab253 on CD146. [89Zr]Zr-DFO-Ab253 has a Kd of 4.01 ± 0.50 nM. PET imaging and biodistribution showed a higher uptake of [89Zr]Zr-DFO-Ab253 in A375 melanomas than that in A549 tumors (42.1 ± 4.04% vs 7.87 ± 1.30% ID/g at 120 h, P < 0.05). A low tumor uptake of [89Zr]Zr-DFO-IgG was observed with uptakes of 1.91 ± 0.41 and 2.80 ± 0.14 ID%/g when blocked at 120 h. The radiation-absorbed dose was calculated to be 0.13 mSv/MBq. This study demonstrates the synthesis and preclinical evaluation of [89Zr]Zr-DFO-Ab253 and indicates that the novel tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma. It also provides feasibility for the development of integrated molecular probes for diagnosis and treatment based on the CD146 target.


Subject(s)
Antibodies, Monoclonal , CD146 Antigen , Melanoma , Positron-Emission Tomography , Radioisotopes , Zirconium , CD146 Antigen/metabolism , CD146 Antigen/immunology , Animals , Humans , Zirconium/chemistry , Melanoma/diagnostic imaging , Mice , Positron-Emission Tomography/methods , Antibodies, Monoclonal/chemistry , Tissue Distribution , Cell Line, Tumor , Mice, Nude , A549 Cells , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Female
4.
BMC Gastroenterol ; 24(1): 308, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261771

ABSTRACT

BACKGROUND: The netrin-1/CD146 pathway regulates colorectal cancer (CRC) liver metastasis, angiogenesis, and vascular development. However, few investigations have yet examined the biological function of netrin-1/CD146 complex in CRC. In this work, we investigated the relationship between the netrin-1/CD146 axis and S100 proteins in sentinel lymph node, and revealed a possible new clue for vascular metastasis of CRC. METHODS: The expression levels of netrin-1 and CD146 proteins in CRC, as well as S100A8 and S100A9 proteins in the sentinel lymph nodes were determined by immunohistochemistry. Using GEPIA and UALCAN, we analyzed netrin-1 and CD146 gene expression in CRC, their association with CRC stage, and their expression levels and prognosis in CRC patients. RESULTS: The expression level of netrin-1 in N1a+1b (CRC lymphatic metastasis groups, exculded N1c) was positively increased with N0 (p = 0.012). The level of netrin-1 protein was positively correlated with CD146 protein (p < 0.05). The level of S100A9 protein was positively correlated with CD146 protein (r = 0.492, p = 0.007). Moreover, netrin-1 expression was obviously correlated with S100A9 expression in the N1 stage (r = 0.867, p = 0.000). CD146 level was correlated with S100A9 level in the N2 stage (r = 0.731, p = 0.039). CD146 mRNA expression was higher in normal colorectal tissues than in CRC (p < 0.05). Netrin-1 and CD146 expression were not significantly associated with the tumor stages and prognosis of patients with CRC (p > 0.05). CONCLUSIONS: The netrin-1/CD146 and netrin-1/S100A9 axis in CRC tissues might related with early stage of lymph node metastasis, thus providing potential novel channels for blocking lymphatic metastasis and guiding biomarker discovery in CRC patients.


Subject(s)
CD146 Antigen , Calgranulin B , Colorectal Neoplasms , Lymphatic Metastasis , Netrin-1 , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , CD146 Antigen/genetics , CD146 Antigen/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Lymph Nodes/pathology , Lymph Nodes/metabolism , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Neoplasm Staging , Netrin-1/metabolism , Netrin-1/genetics , Prognosis
5.
Brain ; 146(4): 1483-1495, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36319587

ABSTRACT

The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Blood-Brain Barrier/pathology , Brain/pathology , CD146 Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Endothelium/pathology , Multiple Sclerosis/pathology , Neuroinflammatory Diseases
6.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561728

ABSTRACT

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Animals , Mice , Cartilage, Articular/metabolism , CD146 Antigen/metabolism , Cell Differentiation , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Bone Marrow Cells/metabolism , Chondrogenesis , RNA, Messenger/metabolism , Magnetic Phenomena , Lipids
7.
Gastroenterology ; 162(3): 890-906, 2022 03.
Article in English | MEDLINE | ID: mdl-34883119

ABSTRACT

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/physiology , Carcinogenesis/pathology , Cell Lineage , Colorectal Neoplasms/pathology , Mesenchymal Stem Cells/physiology , Actins/genetics , Actins/metabolism , Adult , Aged , Aged, 80 and over , Animals , CD146 Antigen/genetics , CD146 Antigen/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Differentiation , Cell Proliferation , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Humans , Intestinal Mucosa/pathology , Ki-67 Antigen/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Organoids/pathology , Organoids/physiology , Prognosis , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sequence Analysis, RNA , Survival Rate , Tumor Microenvironment
8.
Exp Eye Res ; 227: 109368, 2023 02.
Article in English | MEDLINE | ID: mdl-36586549

ABSTRACT

While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.


Subject(s)
Choroid , Neurons , Humans , CD146 Antigen/metabolism , Neurons/metabolism , Choroid/innervation , Nerve Fibers
9.
J Oral Pathol Med ; 52(7): 660-665, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336496

ABSTRACT

BACKGROUND: Vascular anomalies and tumors are common in the head, neck, and craniofacial areas and are associated with abnormalities in the angiomatous architecture. However, the etiology and molecular basis for the pathogenesis of most vascular lesions are still unknown. Pericytes are mural cells that surround endothelial cells. Besides angiogenesis and other physiological functions, pericytes play an important role in vascularized tissue repair and as resident mesenchymal stem/progenitor cells. Perivascular cells demonstrate a distinct immunohistochemical profile, including expression of alpha-smooth muscle actin (α-SMA), CD146, CD105, and PDGFRß, without endothelial differentiation (absence of CD31 and CD34 immunoreactivity). These pericyte markers have been shown to be expressed in soft tissue hemangiomas. However, they have not been fully examined in intraosseous hemangiomas. METHODS: In this study, we compared mesenchymal stem cell (MSC) expression of CD146 and α-SMA markers in pericytes from hemangiomas from different tissues and malignant vascular tumors. RESULTS: The results demonstrated an increased expression of pericyte markers in perivascular cells of benign hemangiomas, especially intraosseous hemangiomas and a significantly reduced expression of pericyte markers in malignant angiosarcomas. CONCLUSION: The evidence provides insight into the function of pericytes in vascular tumors and suggests their role in vascular tumor disease types.


Subject(s)
Hemangioma , Vascular Neoplasms , Humans , Pericytes/metabolism , Pericytes/pathology , Vascular Neoplasms/metabolism , Vascular Neoplasms/pathology , CD146 Antigen/metabolism , Endothelial Cells/metabolism , Hemangioma/metabolism , Hemangioma/pathology
10.
Cell Mol Life Sci ; 79(8): 398, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790583

ABSTRACT

Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/pathology , CD146 Antigen/genetics , CD146 Antigen/metabolism , Glioblastoma/pathology , Glioma/pathology , Zebrafish/metabolism
11.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569284

ABSTRACT

Adipose stem and progenitor cells (ASPCs) have been isolated from humans and animals for use in regenerative medicine and therapy. However, knowledge of ASPCs in other species is limited. Particularly, ASPCs in livestock are expected to enhance the fat content and meat composition. In this study, we isolated bovine ASPCs using cell surface markers. Specifically, we focused on ASPC markers in humans and experimental animals, namely CD26, CD146, and CD54. Stromal vascular fraction cells from bovine fat were separated using flow cytometry before primary culture. We evaluated the self-renewal and adipogenic potential of each fraction. We identified four cell populations: CD26-CD146+CD54+, CD26-CD146+CD54-, CD26-CD146-, and CD26+CD146-. Among them, the CD26-CD146+ fraction, particularly CD54+, demonstrated the properties of preadipocytes (PreAs), characterized by slow proliferation and a high adipogenic capacity. In conclusion, we could collect and characterize possible PreAs as CD26-CD146+CD54+ or CD26-CD146+CD54-, which are expected for in vitro bovine adipogenic assays in the future.


Subject(s)
Dipeptidyl Peptidase 4 , Stem Cells , Humans , Cattle , Animals , Dipeptidyl Peptidase 4/metabolism , Cell Differentiation , CD146 Antigen/metabolism , Stem Cells/metabolism , Flow Cytometry , Obesity/metabolism , Adipose Tissue/metabolism
12.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835460

ABSTRACT

Regenerative therapy for tissues by mesenchymal stem cell (MSCs) transplantation has received much attention. The cluster of differentiation (CD)146 marker, a surface-antigen of stem cells, is crucial for angiogenic and osseous differentiation abilities. Bone regeneration is accelerated by the transplantation of CD146-positive deciduous dental pulp-derived mesenchymal stem cells contained in stem cells from human exfoliated deciduous teeth (SHED) into a living donor. However, the role of CD146 in SHED remains unclear. This study aimed to compare the effects of CD146 on cell proliferative and substrate metabolic abilities in a population of SHED. SHED was isolated from deciduous teeth, and flow cytometry was used to analyze the expression of MSCs markers. Cell sorting was performed to recover the CD146-positive cell population (CD146+) and CD146-negative cell population (CD146-). CD146 + SHED without cell sorting and CD146-SHED were examined and compared among three groups. To investigate the effect of CD146 on cell proliferation ability, an analysis of cell proliferation ability was performed using BrdU assay and MTS assay. The bone differentiation ability was evaluated using an alkaline phosphatase (ALP) stain after inducing bone differentiation, and the quality of ALP protein expressed was examined. We also performed Alizarin red staining and evaluated the calcified deposits. The gene expression of ALP, bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN) was analyzed using a real-time polymerase chain reaction. There was no significant difference in cell proliferation among the three groups. The expression of ALP stain, Alizarin red stain, ALP, BMP-2, and OCN was the highest in the CD146+ group. CD146 + SHED had higher osteogenic differentiation potential compared with SHED and CD146-SHED. CD146 contained in SHED may be a valuable population of cells for bone regeneration therapy.


Subject(s)
Osteogenesis , Stem Cells , Tooth, Deciduous , Humans , CD146 Antigen/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp/metabolism , Osteocalcin/metabolism , Stem Cells/cytology , Tooth, Deciduous/cytology
13.
BMC Oral Health ; 23(1): 137, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894905

ABSTRACT

BACKGROUND: The aim of this study was to investigate the protective effect and mechanism of oridonin in an in vitro lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs) model of periodontitis. METHODS: Primary hPDLSCs were isolated and cultured, and then the expression of surface antigens CD146, STRO-1 and CD45 of hPDLSCs was detected by flow cytometry. The mRNA expression level of Runx2, OPN, Col-1, GRP78, CHOP, ATF4 and ATF6 in the cells was tested by qRT-PCR. MTT was taken to determine the cytotoxicity of oridonin at different concentrations (0-4 µM) on hPDLSCs. Besides, ALP staining, alizarin red staining and Oil Red O staining were utilized to assess the osteogenic differentiation (ALP concentration, mineralized calcium nodule formation) and adipogenic differentiation abilities of the cells. The proinflammatory factors level in the cells was measured by ELISA. The protein expression level of NF-κB/NLRP3 pathway-related proteins and endoplasmic reticulum (ER) stress-related markers in the cells were detected by Western blot. RESULTS: hPDLSCs with positive CD146 and STRO-1 expression and negative CD45 expression were successfully isolated in this study. 0.1-2 µM of oridonin had no significant cytotoxicity on the growth of hPDLSCs, while 2 µM of oridonin could not only greatly reduce the inhibitory effect of LPS on the proliferation and osteogenic differentiation of hPDLSCs cells, but also inhibit LPS-induced inflammation and ER stress in hPDLSCs cells. Moreover, further mechanism research showed that 2 µM of oridonin suppressed NF-κB/NLRP3 signaling pathway activity in LPS-induced hPDLSCs cells. CONCLUSIONS: Oridonin promotes proliferation and osteogenic differentiation of LPS-induced hPDLSCs in an inflammatory environment, possibly by inhibiting ER stress and NF-κB/NLRP3 pathway. Oridonin may have a potential role in the repair and regeneration of hPDLSCs.


Subject(s)
Lipopolysaccharides , NF-kappa B , Humans , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Periodontal Ligament , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteogenesis , CD146 Antigen/metabolism , CD146 Antigen/pharmacology , Signal Transduction , Cell Differentiation , Stem Cells/metabolism , Cell Proliferation , Cells, Cultured
14.
J Cell Physiol ; 237(1): 589-602, 2022 01.
Article in English | MEDLINE | ID: mdl-34287857

ABSTRACT

Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.


Subject(s)
Adipose Tissue , Stem Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Differentiation , Cells, Cultured , Humans , Stem Cells/metabolism
15.
Lab Invest ; 102(8): 794-804, 2022 08.
Article in English | MEDLINE | ID: mdl-35306530

ABSTRACT

Bronchopulmonary dysplasia (BPD) is the most common challenge in preterm neonates. Retardation of alveolar development characterizes the pulmonary pathology in BPD. In the present study, we explored the roles of the CD146-HIF-1α axis in BPD. We demonstrated that the levels of reactive oxygen species (ROS) and soluble CD146 (sCD1146) were increased in the peripheral blood of preterm neonates with BPD. In alveolar epithelial cells, hyperoxia promoted the expression of HIF-1α and CD146, which reinforced each other. In a mouse model of BPD, by exposing pups to 65% hyperoxia, HIF-1α and CD146 were increased in the pulmonary tissues. Mechanistically, CD146 hindered the migration of alveolar epithelial cells; in contrast, movement was significantly enhanced in CD146-knockout alveolar epithelial cells. As expected, CD146-knockout ameliorated alveolarization and improved BPD disease severity. Taken together, our findings imply that the CD146-HIF-1α axis contributes to alveolarization and that CD146 may be a novel candidate in BPD therapy.


Subject(s)
Bronchopulmonary Dysplasia , CD146 Antigen , Hyperoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Alveolar Epithelial Cells/metabolism , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Movement , Disease Models, Animal , Humans , Hyperoxia/metabolism , Hyperoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infant, Newborn , Lung/metabolism , Mice , Reactive Oxygen Species/blood
16.
Circ Res ; 127(9): 1182-1194, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32781905

ABSTRACT

RATIONALE: Mean platelet volume (MPV) and platelet count (PLT) are platelet measures that have been linked to cardiovascular disease (CVD) and mortality risk. Identifying protein biomarkers for these measures may yield insights into CVD mechanisms. OBJECTIVE: We aimed to identify causal protein biomarkers for MPV and PLT among 71 CVD-related plasma proteins measured in FHS (Framingham Heart Study) participants. METHODS AND RESULTS: We conducted integrative analyses of genetic variants associated with PLT/MPV with protein quantitative trait locus variants associated with plasma proteins followed by Mendelian randomization to infer causal relations of proteins for PLT/MPV. We also tested protein-PLT/MPV association in FHS participants. Using induced pluripotent stem cell-derived megakaryocyte clones that produce functional platelets, we conducted RNA-sequencing and analyzed expression differences between low- and high-platelet producing clones. We then performed small interfering RNA gene knockdown experiments targeting genes encoding proteins with putatively causal platelet effects in megakaryocyte clones to examine effects on platelet production. In protein-trait association analyses, ten proteins were associated with MPV and 31 with PLT. Mendelian randomization identified 4 putatively causal proteins for MPV and 4 for PLT. GP-5 (Glycoprotein V), GRN (granulin), and MCAM (melanoma cell adhesion molecule) were associated with PLT, while MPO (myeloperoxidase) showed significant association with MPV in both analyses. RNA-sequencing analysis results were directionally concordant with observed and Mendelian randomization-inferred associations for GP-5, GRN, and MCAM. In siRNA gene knockdown experiments, silencing GP-5, GRN, and MPO decreased PLTs. Genome-wide association study results suggest several of these may be linked to CVD risk. CONCLUSIONS: We identified 4 proteins that are causally linked to PLTs. These proteins may also have roles in the pathogenesis of CVD via a platelet/blood coagulation-based mechanism.


Subject(s)
Cardiovascular Diseases/genetics , Granulins , Mean Platelet Volume , Peroxidase , Platelet Count , Platelet Membrane Glycoproteins , Biomarkers/blood , Blood Proteins/analysis , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Cell Differentiation , Female , Gene Silencing , Genome-Wide Association Study , Granulins/genetics , Granulins/metabolism , Humans , Longitudinal Studies , Male , Megakaryocyte Progenitor Cells , Megakaryocytes/cytology , Mendelian Randomization Analysis , Middle Aged , Peroxidase/genetics , Peroxidase/metabolism , Phenotype , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Pluripotent Stem Cells , RNA, Small Interfering , Risk , Sequence Analysis, RNA
17.
Mol Biol Rep ; 49(9): 8761-8775, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35771357

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs), new members of the noncoding RNA family, have been reported to participate in various pathological conditions, especially cancer. Pancreatic ductal adenocarcinoma (PDAC), as one of the most aggressive human solid tumors, is still with a low surgical cure rate. Exploring the role of circRNAs in PDAC is meaningful, and may offer a new therapeutic approach for PDAC. METHODS AND RESULTS: Competing endogenous RNA (ceRNA) microarray revealed that circ-0047078 was highly expressed in pancreatic ductal adenocarcinoma (PDAC) tissues compared with adjacent normal tissues, and the differential expression was further confirmed by PCR in both tissues and cell lines. Cell functional assays including cell counting kit-8 (CCK-8) assay, transwell invasion assay, flow cytometry and caspase activity assay demonstrated that circ-0047078 was positively correlated with the proliferation and invasion but negatively correlated with the apoptosis of CFPAC-1 cells. Circ-0047078 knockdown led to miR-11181, CXCL12 and MCAM downregulation and RGS16 upregulation, and the effect of circ-0047078 knockdown on CFPAC-1 cell behavior change can be reversed by miR-11181 mimic. Moreover, clinicopathological analysis indicated that circ-0047078 expression level was positively correlated with lymphatic metastasis and perineural invasion. In addition, knockdown of Chemokine (C-X-C motif) Ligand 12 (CXCL12) alone decreased proliferation, invasion, but increased apoptosis of CFPAC-1 cells, and raised the activity of caspase-3, caspase-8 and caspase-9 activity. Knockdown of Melanoma Cell Adhesion Molecule (MCAM) alone decreased invasion and increased apoptosis of CFPAC-1 cells, and both caspase-3 and caspase-9 activity increased, but no obvious change observed on caspase-8, and also no significant effect on CFPAC-1 cells proliferation. Knockdown of Regulator of G-protein signaling 16 (RGS16) alone increased invasion of CFPAC-1 cells, but had no significant effect on proliferation and apoptosis, of course, no obvious change on the activity of caspase-3, caspase-8 and caspase-9 had been observed. CONCLUSIONS: In conclusion, circ-0047078 plays a role in promoting PDAC via miR-11181 and then via CXCL12, MCAM and RGS16. Circ-0047078 may serve as a promising novel therapeutic target for PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Apoptosis/genetics , CD146 Antigen/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Caspase 3/metabolism , Caspase 8/genetics , Caspase 9/genetics , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Chemokine CXCL12/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/metabolism , RNA, Circular/genetics , Pancreatic Neoplasms
18.
J Pediatr Hematol Oncol ; 44(6): e918-e922, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34387625

ABSTRACT

INTRODUCTION: Vitamin B 12 (cobalamin) deficiency may be a significant cause of hyperhomocysteinemia, and high homocysteine (Hcy) levels are associated with an increased risk of cardiovascular disease. Endothelium-derived microparticles (EMPs) are a new marker in endothelial dysfunction and atherosclerosis, which play a role in cardiovascular diseases' pathogenesis. This study aimed to evaluate the EMPs, the markers of endothelial dysfunction and atherosclerosis, and lipid profile in teenagers with cobalamin deficiency. MATERIALS AND METHODS: This prospective study included 143 teenagers, 75 vitamin B 12 deficient patients and 68 healthy controls between 11 and 18 years of age. Routine laboratory tests, hemogram, vitamin B 12 , folic acid, ferritin, Hcy, lipid profile and EMPs were examined and compared. EMP subgroups were analyzed by flow cytometry method according to the expression of membrane-specific antigens. The microparticles released from the endothelium studied were VE-cadherin (CD144), S-endo1 (CD146), and Endoglin (CD105). RESULTS: The present study demonstrates that circulating CD105+ EMP, CD144+ EMP, CD146+ EMPs, and Hcy were increased, and high-density lipoprotein (HDL) cholesterol was reduced in teenagers with cobalamin deficiency. Vitamin B 12 showed a negative correlation with EMPs and Hcy, positive correlation with folate and HDL. All EMPs showed a significant positive correlation with triglyceride, vitamin B 12 , and HDL. CONCLUSION: Vitamin B 12 deficiency may predispose to endothelial damage and atherosclerosis by increasing EMPs and harms lipid metabolism in the long term.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Vitamin B 12 Deficiency , Adolescent , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers/metabolism , CD146 Antigen/metabolism , Endothelium/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Lipids , Prospective Studies , Vitamin B 12/metabolism
19.
Oral Dis ; 28(4): 1207-1214, 2022 May.
Article in English | MEDLINE | ID: mdl-33728761

ABSTRACT

OBJECTIVES: Our study aimed to observe the distribution of putative stem cells in irreversible pulpitis and to investigate the expression of specific molecules. SUBJECTS AND METHODS: Extracted third molar teeth were collected and divided into two groups: the normal pulp group and inflamed pulp group. Real-time PCR was applied to detect the expression of several embryonic and dentinogenic genes. The expression of mesenchymal cell markers (STRO-1, CD90, and CD146) and stromal cell-derived factor 1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) proteins was examined by immunohistochemical analysis. RESULTS: The expression levels of most embryonic and dentinogenic genes were not statistically different between the two groups. Immunohistochemical analysis revealed that in inflamed pulp, cells with positive expression for STRO-1, CD90, and CD146 mainly resided in two specific niches, both adjacent to inflammatory sites: one in the pulp core and another in the odontoblast layer. SDF-1α- and CXCR4-positive cells were significantly correlated with STRO-1-positive cells. Double immunofluorescence analysis indicated that STRO-1-positive cells overlapped with SDF-1α- and CXCR4-positive cells near the inflammatory site. CONCLUSIONS: This study gave a direct observation of putative stem cells distributed in irreversible pulpitis and implied a role of SDF-1α/CXCR4 signaling in stem cell-based therapies for reparative dentinogenesis.


Subject(s)
Pulpitis , CD146 Antigen/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Dental Pulp/metabolism , Humans , Pulpitis/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Stem Cells/metabolism
20.
J Clin Lab Anal ; 36(2): e24214, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34961985

ABSTRACT

BACKGROUND: Although there are standard treatment options for osteosarcoma (OS), the prognoses of patients with OS remain varied. Therefore, it is important to profile OS patients at a high risk of mortality to develop focused interventions. Although tumor biomarkers are closely associated with clinical outcomes, data on prognostic biomarkers for OS remain scarce. METHODS: We collected RNA expression profiles and clinical data of 90 OS patients from the GEO database (dataset GSE21257 and GSE39055) and 96 patients in the TARGET program. The data were analyzed using univariate Kaplan-Meier survival analysis to screen candidate gene sets that might be associated with OS survival. RESULTS: Our analysis demonstrated that melanoma cell adhesion molecule (MCAM) was associated with overall survival of patients with OS in the three cohorts. The data showed that MCAM was upregulated in OS patients who had metastases within 5 years compared to those without metastases. GO analysis revealed that genes correlated with MCAM were mainly involved in cell migration and wound healing processes. In addition, wound healing assays and gene set enrichment analysis results from RNA sequencing data of small interfering (si)-MCAM-transfected OS cells demonstrated that MCAM modulated tumor cell migration. CONCLUSIONS: Our data demonstrate that MCAM may be a novel prognostic biomarker for OS. MCAM is associated with increased cell migration ability and risk of metastasis, thus leading to poor prognoses in OS patients.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms/metabolism , Cell Movement , Osteosarcoma/metabolism , RNA/metabolism , Bone Neoplasms/genetics , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Line, Tumor , Datasets as Topic , Gene Expression , Humans , Neoplasm Metastasis , Osteosarcoma/genetics , Prognosis , Sequence Analysis, RNA , Survival Analysis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL