ABSTRACT
Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Caliciviridae Infections/immunology , Cell Differentiation/immunology , Gastroenteritis/immunology , Norovirus/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Caliciviridae Infections/genetics , Caliciviridae Infections/virology , Cell Differentiation/genetics , Cell Line , Cellular Microenvironment/genetics , Cellular Microenvironment/immunology , Gastroenteritis/genetics , Gastroenteritis/virology , Gene Expression Profiling/methods , Gene Ontology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory/genetics , Immunologic Memory/immunology , Mice, Inbred C57BL , Norovirus/physiology , Oligonucleotide Array Sequence Analysis/methodsABSTRACT
Fucosyltransferase 2 (FUT2) gene, which regulates the formation of Histoblood group antigens, could determine the human susceptibility to norovirus. This study aimed to investigate the correlation between FUT2 gene polymorphism and susceptibility to norovirus gastroenteritis in Han Chinese population. A total of 212 children patients with acute gastroenteritis were enrolled. The stool and serum samples were collected respectively. We used the qPCR method to detect the norovirus infection status from the stool samples, and we used serum samples to detect the FUT2 polymorphism. A case-control study was conducted to investigate the three common SNPs polymorphisms (rs281377, rs1047781, and rs601338) of FUT2 gene with sanger sequencing method. The results indicated that the homozygous genotypes and mutant allele of rs1047781 (A385T) would downgrade the risk of norovirus gastroenteritis in Chinese Han population (AA vs. TT, odds ratio [OR] = 0.098, 95% confidence interval [CI] = 0.026-0.370, p = 0.001; AA + AT vs. TT, OR = 0.118. 95% CI = 0.033-0.424, p = 0.001; A vs. T, OR = 0.528, 95% CI = 0.351-0.974, p = 0.002). There were no significant difference of rs281377 (C357T) and rs601338 (G428A) polymorphisms between norovirus positive and norovirus negative groups (p > 0.05). The haplotype T-T-G was less susceptible (OR = 0.49, 95% CI = 0.31-0.79, p = 0.0034) to norovirus infection compared to other haplotypes. Our results investigated the relationship between the FUT2 gene polymorphisms and norovirus susceptibility in Han Chinese population, and firstly revealed that children with homozygous genotypes and mutant alleles of FUT2 rs1047781 (A385T) were less susceptible to norovirus gastroenteritis.
Subject(s)
Caliciviridae Infections , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Gastroenteritis , Genetic Predisposition to Disease , Genotype , Norovirus , Polymorphism, Single Nucleotide , Humans , Fucosyltransferases/genetics , Caliciviridae Infections/genetics , Caliciviridae Infections/virology , Caliciviridae Infections/epidemiology , Female , Male , Gastroenteritis/virology , Gastroenteritis/genetics , Case-Control Studies , Child, Preschool , Norovirus/genetics , Infant , China/epidemiology , Child , Feces/virology , Alleles , Haplotypes , East Asian PeopleABSTRACT
MicroRNAs (miR) are a group of small, non-coding RNAs of 17-25 nucleotides that regulate gene expression at the post-transcriptional level. Dysregulation of miRNA expression or function may contribute to abnormal gene expression and signaling pathways, leading to disease pathology. Lagovirus europaeus (L. europaeus) causes severe disease in rabbits called rabbit hemorrhagic disease (RHD). The symptoms of liver, lung, kidney, and spleen degeneration observed during RHD are similar to those of acute liver failure (ALF) and multi-organ failure (MOF) in humans. In this study, we assessed the expression of miRs and their target genes involved in the innate immune and inflammatory response. Also, we assessed their potential impact on pathways in L. europaeus infection-two genotypes (GI.1 and GI.2)-in the liver, lungs, kidneys, and spleen. The expression of miRs and target genes was determined using quantitative real-time PCR (qPCR). We assessed the expression of miR-155 (MyD88, TAB2, p65, NLRP3), miR-146a (IRAK1, TRAF6), miR-223 (TLR4, IKKα, NLRP3), and miR-125b (MyD88). We also examined biomarkers of inflammation: IL-1ß, IL-6, TNF-α, and IL-18 in four tissues at the mRNA level. Our study shows that the main regulators of the innate immune and inflammatory response in L. europaeus/GI.1 and GI.2 infection, as well as RHD, are miR-155, miR-223, and miR-146a. During infection with L. europaeus/RHD, miR-155 has both pro- and anti-inflammatory effects in the liver and anti-inflammatory effects in the kidneys and spleen; miR-146a has anti-inflammatory effects in the liver, lungs and kidneys; miR-223 has anti-inflammatory effects in all tissues; however, miR-125b has anti-inflammatory effects only in the liver. In each case, such an effect may be a determinant of the pathogenesis of RHD. Our research shows that miRs may regulate three innate immune and inflammatory response pathways in L. europaeus infection. However, the result of this regulation may be influenced by the tissue microenvironment. Our research shows that infection of rabbits with L. europaeus/GI.1 and GI.2 genotypes causes an overexpression of two critical acute phase cytokines: IL-6 in all examined tissues and TNF-α (in the liver, lungs, and spleen). IL-1ß was highly expressed only in the lungs after L. europaeus infection. These facts indicate a strong and rapid involvement of the local innate immune and inflammatory response in L. europaeus infection-two genotypes (GI.1 and GI.2)-and in the pathogenesis of RHD. Profile of biomarkers of inflammation in rabbits infected with L. europaeus/GI.1 and GI.2 genotypes are similar regarding the nature of changes but are different for individual tissues. Therefore, we propose three inflammation profiles for L. europaeus infection for both GI.1 and GI.2 genotypes (pulmonary, renal, liver, and spleen).
Subject(s)
Caliciviridae Infections , Genotype , Hemorrhagic Disease Virus, Rabbit , Immunity, Innate , MicroRNAs , Animals , MicroRNAs/genetics , Immunity, Innate/genetics , Rabbits , Caliciviridae Infections/genetics , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/immunology , Inflammation/genetics , Inflammation/immunology , Gene Expression Regulation , Liver/metabolism , Liver/pathology , Liver/virologyABSTRACT
Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.
Subject(s)
Caliciviridae Infections/virology , Capsid Proteins/genetics , Norovirus/genetics , Norovirus/pathogenicity , Virulence/genetics , Animals , Caliciviridae Infections/genetics , Caliciviridae Infections/immunology , Genetic Fitness/genetics , Immunity, Innate/immunology , Mice , Norovirus/immunology , Polymorphism, Single Nucleotide , Virulence/immunology , Virus ReplicationABSTRACT
Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis in humans. This study combined reverse transcription recombinase polymerase amplification (RT-RPA) with a clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) nucleic acid detection system to develop a point-of-care testing (POCT) technology for typing NoVs. The detection can be completed within 35 min at 37 °C, covering each genotype of genogroup I (GI) and II (GII) NoVs. The sensitivity of this method is 10 copies/µL for GI and 1 copy/µL for GII NoV plasmids. For the detection of clinical samples, the detection results of this method for NoV infected samples are consistent with the RT-qPCR detection method in the laboratory, and this detection method has no cross-reactivity with rotavirus and adenovirus. Therefore, the detection method established in this study enables the diagnosis and screening of suspected patients and close contacts by POCT, which is important for the timely identification and control of NoV outbreaks. In addition, the typing detection of GI and GII NoVs can achieve a precise diagnosis and treatment of patients infected with NoVs.
Subject(s)
Caliciviridae Infections , Norovirus , Humans , Reverse Transcription , CRISPR-Cas Systems/genetics , Recombinases , Norovirus/genetics , Caliciviridae Infections/diagnosis , Caliciviridae Infections/epidemiology , Caliciviridae Infections/genetics , Point-of-Care TestingABSTRACT
Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.
Subject(s)
Caliciviridae Infections , Norovirus , Humans , Norovirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Caliciviridae Infections/geneticsABSTRACT
Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome.
Subject(s)
Caliciviridae Infections/virology , DNA Helicases/metabolism , Eukaryotic Initiation Factor-2/metabolism , Norovirus/physiology , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Biosynthesis , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Animals , Caliciviridae Infections/genetics , Cell Line , Cytoplasmic Granules/metabolism , Humans , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , RNA/metabolism , Signal Transduction , Virus ReplicationABSTRACT
Caliciviruses use a termination/reinitiation mechanism for translation of their minor capsid protein VP2. A sequence element of about 80 nucleotides denoted 'termination upstream ribosomal binding site' (TURBS) is crucial for reinitiation. RNA secondary structure probing and computer aided secondary structure prediction revealed a rather low degree of secondary structure determinants for the TURBS of the rabbit hermorrhagic disease virus. Mutation analysis showed that prevention of duplex formation had major impact on the VP2 expression levels. Restoration of complementarity of the respective sequences by reciprocal mutation at least partially restored reinitiating rates. Synthetic TURBS structures preserving only the secondary structure forming sequences and the known short motifs important for TURBS function were found to drive reinitiation when the altered sequence could be predicted to allow establishment of the crucial secondary structures of the TURBS.
Subject(s)
Caliciviridae Infections/genetics , Capsid Proteins/genetics , Hemorrhagic Disease Virus, Rabbit/genetics , Structure-Activity Relationship , Animals , Binding Sites , Caliciviridae Infections/virology , Gene Expression Regulation, Viral/genetics , Hemorrhagic Disease Virus, Rabbit/pathogenicity , Mutation , Protein Biosynthesis/genetics , Rabbits , Ribosomes/geneticsABSTRACT
BACKGROUND: Noroviruses are a leading cause of acute gastroenteritis. Genogroup 2 type 4 (GII.4) has been the dominant norovirus genotype worldwide since its emergence in the mid-1990s. Individuals with a functional fucosyltransferase-2 gene, known as secretors, have increased susceptibility to GII.4 noroviruses. We hypothesized that this individual-level trait may drive GII.4 norovirus predominance at the human population level. METHODS: We conducted a systematic review for studies reporting norovirus outbreak or sporadic case genotypes and merged this with data on proportions of human secretor status in various countries from a separate systematic review. We used inverse variance-weighted linear regression to estimate magnitude of the population secretor-GII.4 proportion association. RESULTS: Two hundred nineteen genotype and 112 secretor studies with data from 38 countries were included in the analysis. Study-level GII.4 proportion among all noroviruses ranged from 0% to 100%. Country secretor proportion ranged from 43.8% to 93.9%. We observed a 0.69% (95% confidence interval, 0.19-1.18) increase in GII.4 proportion for each percentage increase in human secretor proportion, controlling for Human Development Index. CONCLUSIONS: Norovirus evolution and diversity may be driven by local population human host genetics. Our results may have vaccine development implications including whether specific antigenic formulations would be required for different populations.
Subject(s)
Caliciviridae Infections/transmission , Caliciviridae Infections/genetics , Caliciviridae Infections/virology , Disease Outbreaks/prevention & control , Female , Fucosyltransferases , Genotype , Global Health , Humans , Male , Norovirus/classification , Norovirus/genetics , Phylogeny , Galactoside 2-alpha-L-fucosyltransferaseABSTRACT
Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide, yet host factors that restrict NoV replication are not well understood. Here, we use a CRISPR activation genome-wide screening to identify host genes that can inhibit murine norovirus (MNoV) replication in human cells. Our screens identified with high confidence 49 genes that can inhibit MNoV infection when overexpressed. A significant number of these genes are in interferon and immune regulation signaling networks, but surprisingly, the majority of the genes identified are neither associated with innate or adaptive immunity nor associated with any antiviral activity. Confirmatory studies of eight of the genes validate the initial screening data. Mechanistic studies on TRIM7 demonstrated a conserved role of the molecule in mouse and human cells in restricting MNoV in a step of infection after viral entry. Furthermore, we demonstrate that two isoforms of TRIM7 have differential antiviral activity. Taken together, these data provide a resource for understanding norovirus biology and demonstrate a robust methodology for identifying new antiviral molecules.IMPORTANCE Norovirus is one of the leading causes of food-borne illness worldwide. Despite its prevalence, our understanding of norovirus biology is limited due to the difficulty in growing human norovirus in vitro and a lack of an animal model. Murine norovirus (MNoV) is a model norovirus system because MNoV replicates robustly in cell culture and in mice. To identify host genes that can restrict norovirus replication when overexpressed, we performed genome-wide CRISPR activation screens to induce gene overexpression at the native locus through recruitment of transcriptional activators to individual gene promoters. We found 49 genes that could block murine norovirus replication in human cells. Several of these genes are associated with classical immune signaling pathways, while many of the molecules we identified have not been previously associated with antiviral activity. Our data are a resource for those studying noroviruses, and we provide a robust approach to identify novel antiviral genes.
Subject(s)
Antiviral Agents/pharmacology , Caliciviridae Infections/genetics , Carrier Proteins/pharmacology , Gene Regulatory Networks , Norovirus/physiology , Animals , Caliciviridae Infections/drug therapy , Caliciviridae Infections/virology , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , HeLa Cells , Humans , Mice , Models, Biological , Norovirus/drug effects , Transcriptional Activation , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Up-Regulation , Virus Internalization , Virus Replication/drug effectsABSTRACT
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent-wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV-driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome-wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre-RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV-infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus-driven selection in response to a suddenly emerging infectious disease.
Subject(s)
Caliciviridae Infections , Epidemics , Hemorrhagic Disease Virus, Rabbit , Animals , Australia/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/genetics , Caliciviridae Infections/veterinary , Genotype , Hemorrhagic Disease Virus, Rabbit/genetics , RabbitsABSTRACT
Human norovirus is the leading cause of viral gastroenteritis worldwide. Rapid detection facilitates management of disease outbreaks, but field diagnosis is difficult to achieve due to the lack of reliable and portable methods. Recombinase polymerase amplification (RPA) is a robust isothermal amplification method that is capable of rapidly amplifying and detecting nucleic acids using simple equipment. In this study, RPA combined with lateral flow (LF) strips specific for human genogroup II (GII) noroviruses was established and evaluated. The assay specifically detects purified GII noroviruses as well as RNA in boiled human stool samples, with a sensitivity of 50 norovirus genome copies per reaction. The whole detection procedure of the one-step RT-RPA-LF is completed within 20 min, which is eight times faster than that of the standard real-time RT-PCR. The RT-RPA-LF method described here is suitable for rapid field diagnosis of all GII noroviruses in human stool samples.
Subject(s)
Caliciviridae Infections/diagnosis , Norovirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Caliciviridae Infections/genetics , Feces/virology , Humans , Norovirus/genetics , Real-Time Polymerase Chain Reaction/methods , Recombinases/chemistry , Sensitivity and SpecificityABSTRACT
Genogroup II, genotype 4 noroviruses (GII.4 NoVs) are a leading cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. In this study, we isolated a GII.4 NoV strain (designated 2015HN08) from a kid presenting with acute gastroenteritis and determined its near-complete genome sequence. We then performed sequence analysis by comparing this strain with the prototypical GII.4 strain. Virus-like particles (VLPs) derived from the major capsid protein (VP1) were expressed by using a recombinant-baculovirus expression system, and monoclonal antibodies (mAbs) were produced to compare changes in antigenic or histo-blood group antigens (HBGAs) binding sites with the previously characterized GII.4 NoV strain (JZ403). The genome of 2015HN08 was 7559 nucleotides (nt) long, excluding the poly(A) tail. Genotyping analysis indicated that this strain was a Sydney 2012 variant. In comparison with the prototype Sydney 2012 strain, there were 74, 35, and 16 differences in nucleotide sequences in ORF1, OFR2, and OFR3, causing 7, 10, and 6 amino acid (aa) changes, respectively. Expression of VP1 led to successful assembly of VLPs, as demonstrated by electron microscopy. Screening of hybridoma cell supernatants with an in vitro VLP-HBGAs binding blockade assay led to the identification of a cell clone 3G10 that exhibited HBGA-blocking effects. This mAb also exhibited blocking effects against JZ403 strain, suggesting maintenance of the antigenic site and/or HBGAs binding sites between the two strains. In summary, we determined the near-complete genome sequence of a GII.4 Sydney 2012 variant and produced an mAb with blocking effects that might be useful in evaluating the evolution of current Sydney 2012 NoV strains.
Subject(s)
Caliciviridae Infections/genetics , Capsid Proteins/genetics , Gastroenteritis/genetics , Norovirus/genetics , Binding Sites , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genome, Viral/genetics , Genomics , Genotype , Humans , Norovirus/pathogenicity , Pandemics , Protein BindingABSTRACT
Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-ß expression were not coupled in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.
Subject(s)
Caliciviridae Infections/genetics , Macrophages/virology , Transcriptome/genetics , Animals , Caliciviridae Infections/virology , Cell Cycle/genetics , Cell Line , DNA Replication/genetics , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-7/genetics , Interferon-beta/genetics , Mice , Mice, Inbred BALB C , Norovirus/genetics , RAW 264.7 Cells , Transcription, Genetic/geneticsABSTRACT
The linear ubiquitin chain assembly complex (LUBAC), composed of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL1), HOIL1-interacting protein (HOIP), and SHANK-associated RH domain-interacting protein (SHARPIN), is a crucial regulator of multiple immune signaling pathways. In humans, HOIL1 or HOIP deficiency is associated with an immune disorder involving autoinflammation, immunodeficiency, and inflammatory bowel disease (IBD)-like symptoms. During viral infection, LUBAC is reported to inhibit the induction of interferon (IFN) by the cytosolic RNA sensor retinoic acid-inducible gene I (RIG-I). Surprisingly, we found that HOIL1 is essential for the induction of both type I and type III IFNs, as well as the phosphorylation of IFN regulatory factor 3 (IRF3), during murine norovirus (MNoV) infection in cultured dendritic cells. The RIG-I-like receptor, melanoma differentiation-associated protein 5 (MDA5), is also required for IFN induction and IRF3 phosphorylation during MNoV infection. Furthermore, HOIL1 and MDA5 were required for IFN induction after Theiler's murine encephalomyelitis virus infection and poly(I·C) transfection, but not Sendai virus or vesicular stomatitis virus infection, indicating that HOIL1 and LUBAC are required selectively for MDA5 signaling. Moreover, Hoil1-/- mice exhibited defective control of acute and persistent murine norovirus infection and defective regulation of MNoV persistence by the microbiome as also observed previously for mice deficient in interferon lambda (IFN-λ) receptor, signal transducer and activator of transcription factor 1 (STAT1), and IRF3. These data indicate that LUBAC plays a critical role in IFN induction to control RNA viruses sensed by MDA5.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis throughout the world but are challenging to study in vivo and in vitro Murine norovirus (MNoV) provides a tractable genetic and small-animal model to study norovirus biology and immune responses. Interferons are critical mediators of antiviral immunity, but excessive expression can dysregulate the immune system. IFN-λ plays an important role at mucosal surfaces, including the gastrointestinal tract, and both IFN-λ and commensal enteric bacteria are important modulators of persistent MNoV infection. LUBAC, of which HOIL1 is a component, is reported to inhibit type I IFN induction after RIG-I stimulation. We show, in contrast, that HOIL1 is critical for type I and III IFN induction during infection with MNoV, a virus that preferentially activates MDA5. Moreover, HOIL1 regulates MNoV infection in vivo These data reveal distinct functions for LUBAC in these closely related signaling pathways and in modulation of IFN expression.
Subject(s)
Caliciviridae Infections/virology , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/metabolism , Norovirus/pathogenicity , Ubiquitin-Protein Ligases/physiology , Animals , Caliciviridae Infections/genetics , Caliciviridae Infections/metabolism , Caliciviridae Infections/microbiology , Cells, Cultured , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Dendritic Cells/virology , Fibroblasts/metabolism , Fibroblasts/microbiology , Fibroblasts/virology , Genome, Viral , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferons/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota , Norovirus/genetics , Phosphorylation , Interferon LambdaABSTRACT
Noroviruses are major pathogens associated with acute gastroenteritis worldwide. Their RNA genomes are diverse, with two major genogroups (GI and GII) comprised of at least 28 genotypes associated with human disease. To elucidate mechanisms underlying norovirus diversity and evolution, we used a large-scale genomics approach to analyze human norovirus sequences. Comparison of over 2000 nearly full-length ORF2 sequences representing most of the known GI and GII genotypes infecting humans showed a limited number (≤5) of distinct intra-genotypic variants within each genotype, with the exception of GII.4. The non-GII.4 genotypes were comprised of one or more intra-genotypic variants, with each variant containing strains that differed by only a few residues over several decades (remaining "static") and that have co-circulated with no clear epidemiologic pattern. In contrast, the GII.4 genotype presented the largest number of variants (>10) that have evolved over time with a clear pattern of periodic variant replacement. To expand our understanding of these two patterns of diversification ("static" versus "evolving"), we analyzed using NGS the nearly full-length norovirus genome in healthy individuals infected with GII.4, GII.6 or GII.17 viruses in different outbreak settings. The GII.4 viruses accumulated mutations rapidly within and between hosts, while the GII.6 and GII.17 viruses remained relatively stable, consistent with their diversification patterns. Further analysis of genetic relationships and natural history patterns identified groupings of certain genotypes into larger related clusters designated here as "immunotypes". We propose that "immunotypes" and their evolutionary patterns influence the prevalence of a particular norovirus genotype in the human population.
Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/genetics , Caliciviridae Infections/immunology , Norovirus/genetics , Evolution, Molecular , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Humans , Molecular EpidemiologyABSTRACT
Norovirus (NoV) and rotavirus group A (RVA) are major agents of acute gastroenteritis worldwide. This study aimed to investigate their epidemiological profile in Portuguese elderly living in long-term care facilities and to assess the host genetic factors mediating infection susceptibility. From November 2013 to June 2015, 636 faecal specimens from 169 elderly, mainly asymptomatic, living in nursing homes in Greater Lisbon and Faro district, Portugal, were collected. NoV and RVA were detected by real-time polymerase chain reaction and NoV genotyped by phylogenetic analysis. NoV detection rate was 7.1% (12 of 169). Three GI.3 and one GII.6 strains were genotyped. RVA detection rate was 3.6% (6 of 169), exclusively in asymptomatic individuals. Host genetic factors associated with infection susceptibility were described on 250 samples by saliva-based enzyme-linked immunosorbent assays. The Lewis-negative phenotype was 8.8% (22 of 250) and the rate of nonsecretors was 16.8% (42 of 250). Association to NoV and RVA infection was performed in the subgroup of individuals (n = 147) who delivered both faecal and saliva samples. The majority of NoV- and RVA-positive individuals (90.9% and 83.3%, respectively) were secretor-positive, with Lewis B phenotype. In a subset of individuals, FUT2 and FUT3 genes were genotyped to assess mutations and validate the secretor and Lewis phenotypes. All sequenced nonsecretors were homozygous for FUT2 nonsense mutation G428A. In this study, low detection rates of NoV and RVA infections were found during two winter seasons. However, even in the absence of any outbreak, the importance of finding these infections in a nonepidemic situation in long-term care facilities may have important implications for infection control.
Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/genetics , Homes for the Aged/statistics & numerical data , Norovirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/genetics , Rotavirus/genetics , Aged , Aged, 80 and over , Disease Outbreaks/statistics & numerical data , Feces/virology , Female , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genotype , Humans , Male , Norovirus/isolation & purification , Phenotype , Phylogeny , Portugal/epidemiology , RNA, Viral/genetics , Rotavirus/isolation & purificationABSTRACT
Childhood morbidity and mortality of diarrhoeal diseases are high, particularly in low-income countries and noroviruses and sapoviruses are among the most frequent causes worldwide. Their epidemiology and diversity remain not well studied in many African countries. To assess the positivity rate and the diversity of sapoviruses and noroviruses in Northwest Ethiopia, during November 2015 and April 2016, a total of 450 faecal samples were collected from outpatient children aged <5 years who presented with diarrhoea. Samples were screened for noroviruses and sapoviruses by real-time RT-PCR. Partial VP1 genes were sequenced, genotyped and phylogenetically analysed. Norovirus and sapovirus stool positivity rate was 13.3% and 10.0%, respectively. Noroviruses included GII.4 (35%), GII.6 (20%), GII.17 (13.3%), GII.10 (10%), GII.2 (6.7%), GII.16 (5%), GII.7 (3.3%), GII.9, GII.13, GII.20 and GI.3 (1.7% each) strains. For sapoviruses, GI.1, GII.1 (20.0% each), GII.6 (13.3%), GI.2 (8.9%), GII.2 (11.1%), GV.1 (8.9%), GIV.1 (6.7%), GI.3 and GII.4 (2.2% each) genotypes were detected. This study demonstrates a high genetic diversity of noroviruses and sapoviruses in Northwest Ethiopia. The positivity rate in stool samples from young children with diarrhoea was high for both caliciviruses. Continued monitoring is recommended to identify trends in genetic diversity and seasonal variations.
Subject(s)
Bacterial Proteins/genetics , Caliciviridae Infections/epidemiology , Gastroenteritis/epidemiology , Norovirus/genetics , Sapovirus/genetics , Caliciviridae Infections/genetics , Child , Child, Preschool , Cohort Studies , Developing Countries , Ethiopia/epidemiology , Feces/virology , Female , Gastroenteritis/genetics , Gastroenteritis/microbiology , Genetic Variation , Genotype , Humans , Incidence , Infant , Male , Norovirus/isolation & purification , Outpatients/statistics & numerical data , Phylogeny , Public Health , Retrospective Studies , Risk Assessment , Sapovirus/isolation & purification , Seasons , Survival AnalysisABSTRACT
Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded viral protein genome-linked (VPg) protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However, the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyze changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.
Subject(s)
Caliciviridae Infections/genetics , Norovirus/metabolism , Proteomics/methods , RNA Caps/metabolism , RNA, Messenger/metabolism , Viral Proteins/metabolism , Apoptosis , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Host-Pathogen Interactions , Humans , Immunity, Innate , Isotope Labeling/methods , Mass Spectrometry/methods , Norovirus/genetics , RNA, Viral/metabolismABSTRACT
Norovirus is the leading cause of acute gastroenteritis worldwide. Since the discovery of human norovirus (HuNoV), an efficient and reproducible norovirus replication system has not been established in cultured cells. Although limited amounts of virus particles can be produced when the HuNoV genome is directly transfected into cells, the HuNoV cycle of infection has not been successfully reproduced in any currently available cell-culture system. Those results imply that the identification of a functional cell-surface receptor for norovirus might be the key to establishing a norovirus culture system. Using a genome-wide CRISPR/Cas9 guide RNA library, we identified murine CD300lf and CD300ld as functional receptors for murine norovirus (MNV). The treatment of susceptible cells with polyclonal antibody against CD300lf significantly reduced the production of viral progeny. Additionally, ectopic CD300lf expression in nonsusceptible cell lines derived from other animal species enabled MNV infection and progeny production, suggesting that CD300lf has potential for dictating MNV host tropism. Furthermore, CD300ld, which has an amino acid sequence in the N-terminal region of its extracellular domain that is highly homologous to that of CD300lf, also functions as a receptor for MNV. Our results indicate that direct interaction of MNV with two cell-surface molecules, CD300lf and CD300ld, dictates permissive noroviral infection.