Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Publication year range
1.
Hum Reprod ; 39(8): 1794-1803, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38867472

ABSTRACT

STUDY QUESTION: Is resting energy expenditure (REE) altered in women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER: Women with PCOS have a reduction in REE, when corrected for fat-free mass, independent of PCOS clinical phenotypes and BMI categories. WHAT IS KNOWN ALREADY: Obesity is an important issue in women with PCOS, in terms of frequency and pathophysiological implications. It has been hypothesized that obesity may be favoured by alterations in REE, but the studies have been limited and conflicting. STUDY DESIGN, SIZE, DURATION: This case-control study was a comparison of 266 women with PCOS and 51 healthy controls, recruited in the Verona 3P study from 2010 to 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with PCOS diagnosed by the Rotterdam criteria, with normal thyroid function and no interfering medications, were referred to the outpatient clinic of a tertiary care centre of endocrinology and metabolism for a measurement of REE. Healthy controls were recruited in the same period and submitted to the same procedure. In all subjects, REE was measured by indirect calorimetry and serum androgens were measured by LC-MS/MS. In women with PCOS, insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp. MAIN RESULTS AND THE ROLE OF CHANCE: REE was similar in women with PCOS and controls. However, REE corrected for fat-free mass (REE/FFM) was significantly lower in women with PCOS than in controls (31.8 ± 4.0 vs 35.4 ± 3.9 kcal/kgFFM·day, P < 0.001). REE/FFM did not differ between normal-weight, overweight, or obese women with PCOS, and each of these subgroups showed lower REE/FFM values than controls. Reduced REE/FFM values were found in each phenotype of the syndrome. In multiple regression analysis, REE/FFM was independently associated with age and PCOS status, but not with fat mass. In PCOS women, REE/FFM was independently and directly associated with ovarian follicle number. LIMITATIONS, REASONS FOR CAUTION: Limitations of the study are the cross-sectional design, which limits the causal inference of the results, and the unavailability of precise information about lifestyle factors, which may be potential confounders. Further prospective studies are needed to establish the importance of this phenomenon in contributing to the weight excess of PCOS. WIDER IMPLICATIONS OF THE FINDINGS: A reduction of REE could potentially favour weight gain in women with PCOS and possibly contribute to the altered metabolic profile typical of this condition, even counteracting the therapeutic strategies aimed to reduce excess body fat in these women. Nevertheless, the presence of this abnormality in both obese/overweight and normal-weight patients suggests that other factors must play a role in this phenomenon. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by academic grants to PM from the University of Verona (FUR 2010-2022). All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Energy Metabolism , Obesity , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Polycystic Ovary Syndrome/complications , Female , Adult , Case-Control Studies , Obesity/metabolism , Obesity/complications , Obesity/physiopathology , Young Adult , Insulin Resistance , Body Mass Index , Basal Metabolism , Calorimetry, Indirect
2.
Curr Opin Crit Care ; 30(2): 186-192, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38441116

ABSTRACT

PURPOSE OF REVIEW: Recent changes in guidelines recommendation during early phase of critical illness and use of indirect calorimetry. The aim of this review is to discuss methods of determining energy requirements in the critically ill and highlight factors impacting resting energy expenditure. RECENT FINDING: An appraisal of recent literature discussing indirect calorimetry guided-nutrition potential benefits or pitfalls. Recent attempts to devise strategy and pilot indirect calorimetry use in the critically ill patients requiring continuous renal replacement therapy or extracorporeal membrane oxygenation are also discussed. Additionally, we briefly touched on variability between guidelines recommended energy target and measured energy expenditure for adult critically ill patients with obesity. SUMMARY: While energy requirement in the critically ill continues to be an area of controversy, recent guidelines recommendations shift toward providing less aggressive calories during acute phase of illness in the first week of ICU.Use of indirect calorimetry may provide more accurate energy target compared to the use of predictive equations. Despite the absence of literature to support long term mortality benefits, there are many potential benefits for the use of indirect calorimetry when available.


Subject(s)
Critical Illness , Energy Metabolism , Adult , Humans , Critical Illness/therapy , Calorimetry, Indirect/methods , Obesity , Energy Intake
3.
Scand J Med Sci Sports ; 34(6): e14674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895762

ABSTRACT

This study assesses the impact of three volumetric gas flow measurement methods-turbine (fT); pneumotachograph (fP), and Venturi (fV)-on predictive accuracy and precision of expired gas analysis indirect calorimetry (EGAIC) across varying exercise intensities. Six males (Age: 38 ± 8 year; Height: 178.8 ± 4.2 cm; V ̇ O 2 peak $$ \dot{V}{\mathrm{O}}_2\mathrm{peak} $$ : 42 ± 2.8 mL O2 kg-1 min-1) and 14 females (Age = 44.6 ± 9.6 year; Height = 164.6 ± 6.9 cm; V ̇ O 2 peak $$ \dot{V}{\mathrm{O}}_2\mathrm{peak} $$ = 45 ± 8.6 mL O2 kg-1 min-1) were recruited. Participants completed physical exertion on a stationary cycle ergometer for simultaneous pulmonary minute ventilation ( V ̇ $$ \dot{V} $$ ) measurements and EGAIC computations. Exercise protocols and subsequent conditions involved a 5-min cycling warm-up at 25 W min-1, incremental exercise to exhaustion ( V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ ramp test), then a steady-state exercise bout induced by a constant Watt load equivalent to 80% ventilatory threshold (80% VT). A linear mixed model revealed that exercise intensity significantly affected V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ measurements (p < 0.0001), whereas airflow sensor method (p = 0.97) and its interaction with exercise intensity (p = 0.91) did not. Group analysis of precision yielded a V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ CV % = 21%; SEM = 5 mL O2 kg-1 min-1. Intra- and interindividual analysis of precision via Bland-Altman revealed a 95% confidence interval (CI) precision benchmark of 3-5 mL kg-1 min-1. Agreement among methods decreased at power outputs eliciting V ̇ $$ \dot{V} $$ up to 150 L min-1, indicating a decrease in precision and highlighting potential challenges in interpreting biological variability, training response heterogeneity, and test-retest comparisons. These findings suggest careful consideration of airflow sensor method variance across metabolic cart configurations.


Subject(s)
Calorimetry, Indirect , Exercise Test , Humans , Male , Adult , Female , Exercise Test/methods , Middle Aged , Pulmonary Ventilation/physiology , Oxygen Consumption/physiology , Physical Exertion/physiology , Exercise/physiology
4.
Am J Emerg Med ; 78: 182-187, 2024 04.
Article in English | MEDLINE | ID: mdl-38301368

ABSTRACT

OBJECTIVE: Oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), which is the ratio of VO2 to VCO2, are critical indicators of human metabolism. To seek a link between the patient's metabolism and pathophysiology of critical illness, we investigated the correlation of these values with mortality in critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older healthy volunteers and patients who underwent mechanical ventilation were enrolled. A high-fidelity automation device, which accuracy is equivalent to the gold standard Douglas Bag technique, was used to measure VO2, VCO2, and RQ at a wide range of fraction of inspired oxygen (FIO2). RESULTS: We included a total of 21 subjects including 8 post-cardiothoracic surgery patients, 7 intensive care patients, 3 patients from the emergency room, and 3 healthy volunteers. This study included 10 critical care patients, whose metabolic measurements were performed in the ER and ICU, and 6 died. VO2, VCO2, and RQ of survivors were 282 +/- 95 mL/min, 202 +/- 81 mL/min, and 0.70 +/- 0.10, and those of non-survivors were 240 +/- 87 mL/min, 140 +/- 66 mL/min, and 0.57 +/- 0.08 (p = 0.34, p = 0.10, and p < 0.01), respectively. The difference of RQ was statistically significant (p < 0.01) and it remained significant when the subjects with FIO2 < 0.5 were excluded (p < 0.05). CONCLUSIONS: Low RQ correlated with high mortality, which may potentially indicate a decompensation of the oxygen metabolism in critically ill patients.


Subject(s)
Lung , Respiration, Artificial , Humans , Adolescent , Prospective Studies , Calorimetry, Indirect/methods , Oxygen Consumption , Carbon Dioxide/metabolism , Critical Illness/therapy , Oxygen
5.
BMC Anesthesiol ; 24(1): 171, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714926

ABSTRACT

BACKGROUND: Older critically ill patients experience rapid muscle loss during stay in an intensive care unit (ICU) due to physiological stress and increased catabolism. This may lead to increased ICU length of stay, delayed weaning from ventilation and persistent functional limitations. We hypothesized that with optimal nutrition and early physical therapy acting in synergism, we can reduce muscle mass loss and improve functional outcomes. METHODS: This was a prospective, single blinded randomized, controlled single-center pilot study to compare the lean muscle mass (measured at bilateral quadriceps femoris using ultrasound) of older ICU patients at 4 time points over 14 days between the control and intervention groups. The control group received standard weight-based empiric feeding and standard ICU physiotherapy. The intervention group received indirect calorimetry directed feeding adjusted daily and 60 min per day of cycle ergometry. 21 patients were recruited and randomized with 11 patients in the control arm and 10 patients in the intervention arm. Secondary outcome measures included ICU and hospital mortality, length of stay, functional assessments of mobility and assessment of strength. RESULTS: Median age was 64 in the control group and 66 in the intervention group. Median calories achieved was 24.5 kcal/kg per day in the control group and 23.3 kcal/kg per day in the intervention group. Cycle ergometry was applied to patients in the intervention group for a median of 60 min a day and a patient had a median of 8.5 sessions in 14 days. Muscle mass decreased by a median of 4.7cm2 in the right quadriceps femoris in the control group and 1.8cm2 in the intervention group (p = 0.19), while the left quadriceps femoris decreased by 1.9cm2 in the control group and 0.1cm2 in the intervention group (p = 0.51). CONCLUSION: In this pilot study, we found a trend towards decrease muscle loss in bilateral quadriceps femoris with our combined interventions. However, it did not reach statistical significance likely due to small number of patients recruited in the study. However, we conclude that the intervention is feasible and potentially beneficial and may warrant a larger scale study to achieve statistical significance. TRIAL REGISTRATION: This study was registered on Clinicaltrials.gov on 30th May 2018 with identifier NCT03540732.


Subject(s)
Calorimetry, Indirect , Intensive Care Units , Length of Stay , Humans , Pilot Projects , Male , Aged , Female , Calorimetry, Indirect/methods , Prospective Studies , Middle Aged , Single-Blind Method , Critical Illness/therapy , Bicycling/physiology , Energy Intake/physiology , Quadriceps Muscle , Hospital Mortality
6.
Int J Biometeorol ; 68(6): 1109-1122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488867

ABSTRACT

The increasing preference for indoor exercise spaces highlights the relationship between indoor thermal environments and physiological responses, particularly concerning thermal comfort during physical activity. Determining the metabolic heat production rate during exercise is essential for optimizing the thermal comfort, well-being, and performance of individuals engaged in physical activities. This value can be determined during the activity using several methods, including direct calorimetry measurement, indirect calorimetry that uses analysis of respiratory gases, or approximations using collected data such as speed, body mass, and heart rate. The study aimed to calculate the metabolic heat production rate by infrared thermal evaluation (ITE) based on the body's thermal balance approach and compare it with the values determined by indirect calorimetry (IC). Fourteen participants volunteered for the study, using a cycling ergometer in a controlled climatic chamber. After the familiarization sessions, maximal O2 intake levels (VO2max) were determined through maximal graded exercise tests. Subsequently, constant work rate exercise tests were performed at 60% of VO2max for 20 min. The metabolic heat production rates were calculated by IC and ITE for each athlete individually. Respiratory gases were used to determine IC, while body skin and core temperatures, along with physical environmental data, were applied to calculate ITE using the human body thermal balance approximation of ASHRAE. According to the results, heat storage rates were misleading among the body's heat transfer modes, particularly during the first 8 min of the exercise. ITE showed a moderate level of correlation with IC (r: 0.03-0.86) with a higher level of dispersion relative to the mean (CV%: 12-84%). Therefore, a new equation (ITEnew) for the heat storage rates was proposed using the experimental data from this study. The results showed that ITEnew provided more precise estimations for the entire exercise period (p > 0.05). Correlations between ITEnew and IC values were consistently strong throughout the exercise period (r: 0.62-0.85). It can be suggested that ITEnew values can predict IC during the constant work rate steady-state exercise.


Subject(s)
Exercise , Humans , Male , Exercise/physiology , Young Adult , Adult , Thermogenesis , Athletes , Calorimetry, Indirect , Body Temperature , Oxygen Consumption , Body Temperature Regulation , Infrared Rays
7.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793899

ABSTRACT

Metabolic syndrome poses a significant health challenge worldwide, prompting the need for comprehensive strategies integrating physical activity monitoring and energy expenditure. Wearable sensor devices have been used both for energy intake and energy expenditure (EE) estimation. Traditionally, sensors are attached to the hip or wrist. The primary aim of this research is to investigate the use of an eyeglass-mounted wearable energy intake sensor (Automatic Ingestion Monitor v2, AIM-2) for simultaneous recognition of physical activity (PAR) and estimation of steady-state EE as compared to a traditional hip-worn device. Study data were collected from six participants performing six structured activities, with the reference EE measured using indirect calorimetry (COSMED K5) and reported as metabolic equivalents of tasks (METs). Next, a novel deep convolutional neural network-based multitasking model (Multitasking-CNN) was developed for PAR and EE estimation. The Multitasking-CNN was trained with a two-step progressive training approach for higher accuracy, where in the first step the model for PAR was trained, and in the second step the model was fine-tuned for EE estimation. Finally, the performance of Multitasking-CNN on AIM-2 attached to eyeglasses was compared to the ActiGraph GT9X (AG) attached to the right hip. On the AIM-2 data, Multitasking-CNN achieved a maximum of 95% testing accuracy of PAR, a minimum of 0.59 METs mean square error (MSE), and 11% mean absolute percentage error (MAPE) in EE estimation. Conversely, on AG data, the Multitasking-CNN model achieved a maximum of 82% testing accuracy in PAR, a minimum of 0.73 METs MSE, and 13% MAPE in EE estimation. These results suggest the feasibility of using an eyeglass-mounted sensor for both PAR and EE estimation.


Subject(s)
Energy Metabolism , Exercise , Eyeglasses , Neural Networks, Computer , Wearable Electronic Devices , Humans , Energy Metabolism/physiology , Exercise/physiology , Adult , Male , Calorimetry, Indirect/instrumentation , Calorimetry, Indirect/methods , Female , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods
8.
Nurs Crit Care ; 29(2): 307-312, 2024 03.
Article in English | MEDLINE | ID: mdl-38228360

ABSTRACT

BACKGROUND: Indirect calorimetry (IC) is the gold standard to monitor energy expenditure in critically ill patients. In several intensive care units (ICUs), nurses are responsible for carrying out the measurements. AIM: The aim of this study was to assess nurses' perception of their involvement in IC. STUDY DESIGN: This was a prospective survey conducted in the surgical ICU of a French university hospital after 18 months of use of the Q-NRG + ® calorimeter (COSMED©, Italy). All nurses who have used the calorimeter in the previous 6 months in this ICU were questioned through a questionnaire about their theoretical and practical knowledge and experience in using it. RESULTS: The participation rate was 93% (28/30 surveyed). All the respondents understood the objectives of performing an IC and 23 of them (82%) had used the device at least once in the previous 6 months. All the users thought it was pertinent that ICU nurses were in charge of the IC measurements, 16 of them (70%) reported having been formally trained, mostly by a colleague, and 17 (77%) felt comfortable with the device after 2 to 5 uses. The five non-users (8%) did not have the opportunity to do so. Theoretical and practical knowledge could be improved as only 5 of the users (22%) declared to know the main criteria of reliability of the IC measurement and 4 of them (18%) declared to know the maintenance and cleaning protocol of the device. CONCLUSION: Nurses quickly felt comfortable with the Q-NRG + ® in this ICU. Formal initial and ongoing training of all staff completing IC is essential to perform IC measurements safely and to obtain reliable and interpretable results in practice. RELEVANCE TO CLINICAL PRACTICE: Involving the nursing team in nutritional care, even if it is technical, seems to bring satisfaction in terms of overall patient care.


Subject(s)
Critical Care , Nurses , Humans , Calorimetry, Indirect/methods , Prospective Studies , Reproducibility of Results , Intensive Care Units
9.
Nutr J ; 22(1): 72, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114986

ABSTRACT

BACKGROUND: Nutritional support is often based on predicted resting energy expenditure (REE). In patients, predictions seem invalid. Indirect calorimetry is the gold standard for measuring EE. For assessments over longer periods (up to days), room calorimeters are used. Their design makes their use cumbersome, and warrants improvements to increase utility. Current study aims to compare data on momentary EE, obtained by a basic respiration room vs. classical ventilated hood. The objective is to compare results of the basic room and to determine its 1)reliability for measuring EE and 2)sensitivity for minute changes in activity. METHODS: Two protocols (P1; P2)(n = 62; 25 men/37 women) were applied. When measured by hood, participants in both protocols were in complete rest (supine position). When assessed by room, participants in P1 were instructed to stay half-seated while performing light desk work; in P2 participants were in complete rest mimicking hood conditions. The Omnical calorimeter operated both modalities. Following data were collected/calculated: Oxygen uptake ([Formula: see text] O2(ml/min)), carbon dioxide production ([Formula: see text] CO2ml/min), 24h_EE (kcal/min), and respiratory exchange ratio (RER). Statistical analyses were done between modalities and between protocols. The agreement between 24h_EE, [Formula: see text] O2 and [Formula: see text] CO2 obtained by both modalities was investigated by linear regression. Reliability analysis on 24h_EE determined ICC. RESULTS: No significant differences were found for 24h_EE and [Formula: see text] O2. [Formula: see text] CO2 significantly differed in P1 + P2, and P2 (hood > room). RER was significantly different (hood > room) for P1 + P2 and both protocols individually. Reliability of 24h_EE between modalities was high. Modality-specific results were not different between protocols. DISCUSSION/CONCLUSION: The room is valid for assessing momentary EE. Minute changes in activity lead to a non-significant increase in EE and significant increase in RER. The significant difference in [Formula: see text] CO2 for hood might be related to perceived comfort. More research is necessary on determinants of RER, type (intensity) of activity, and restlessness. The design of the room facilitates metabolic measurements in research, with promising results for future clinical use.


Subject(s)
Carbon Dioxide , Energy Metabolism , Male , Humans , Female , Reproducibility of Results , Basal Metabolism , Calorimetry, Indirect/methods , Oxygen Consumption
11.
Nutrients ; 16(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257164

ABSTRACT

Determining resting metabolic rate (RMR) is an important aspect when calculating energy requirements for professional rugby union players. Prediction equations are often used for convenience to estimate RMR. However, the accuracy of current prediction equations for professional rugby union players remains unclear. The aims of this study were to examine the RMR of professional male rugby union players compared to nine commonly used prediction equations and develop and validate RMR prediction equations specific to professional male rugby union players. One hundred and eight players (body mass (BM) = 102.9 ± 13.3 kg; fat-free mass (FFM) = 84.8 ± 10.2 kg) undertook Dual-energy X-ray Absorptiometry scans to assess body composition and indirect calorimetry to determine RMR. Mean RMR values of 2585 ± 176 kcal∙day-1 were observed among the group with forwards (2706 ± 94 kcal·day-1), demonstrating significantly (p < 0.01; d = 1.93) higher RMR compared to backs (2465 ± 156 kcal·day-1), which appeared to be due to their higher BM and FFM measures. Compared to the measured RMR for the group, seven of the nine commonly used prediction equations significantly (p < 0.05) under-estimated RMR (-104-346 kcal·day-1), and one equation significantly (p < 0.01) over-estimated RMR (192 kcal·day-1). This led to the development of a new prediction equation using stepwise linear regression, which determined that the strongest predictor of RMR for this group was FFM alone (R2 = 0.70; SEE = 96.65), followed by BM alone (R2 = 0.65; SEE = 104.97). Measuring RMR within a group of professional male rugby union players is important, as current prediction equations may under- or over-estimate RMR. If direct measures of RMR cannot be obtained, we propose the newly developed prediction equations be used to estimate RMR within professional male rugby union players. Otherwise, developing team- and/or group-specific prediction equations is encouraged.


Subject(s)
Basal Metabolism , Rugby , Humans , Male , Body Composition , Calorimetry, Indirect , Linear Models
12.
Adv Nutr ; 15(4): 100198, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432591

ABSTRACT

Understanding energy expenditure in children with chronic disease is critical due to the impact on energy homeostasis and growth. This systematic review aimed to describe available literature of resting (REE) and total energy expenditure (TEE) in children with chronic disease measured by gold-standard methods of indirect calorimetry (IC) and doubly labeled water (DLW), respectively. A literature search was conducted using OVID Medline, Embase, CINAHL Plus, Cochrane, and Scopus until July 2023. Studies were included if the mean age of the participants was ≤18 y, participants had a chronic disease, and measurement of REE or TEE was conducted using IC or DLW, respectively. Studies investigating energy expenditure in premature infants, patients with acute illness, and intensive care patients were excluded. The primary outcomes were the type of data (REE, TEE) obtained and REE/TEE stratified by disease group. In total, 271 studies across 24 chronic conditions were identified. Over 60% of retrieved studies were published >10 y ago and conducted on relatively small population sizes (n range = 1-398). Most studies obtained REE samples (82%) rather than that of TEE (8%), with very few exploring both samples (10%). There was variability in the difference in energy expenditure in children with chronic disease compared with that of healthy control group across and within disease groups. Eighteen predictive energy equations were generated across the included studies. Quality assessment of the studies identified poor reporting of energy expenditure protocols, which may limit the validity of results. Current literature on energy expenditure in children with chronic disease, although extensive, reveals key future research opportunities. International collaboration and robust measurement of energy expenditure should be conducted to generate meaningful predictive energy equations to provide updated evidence that is reflective of emerging disease-modifying therapies. This study was registered in PROSPERO as CRD42020204690.


Subject(s)
Calorimetry, Indirect , Energy Metabolism , Humans , Energy Metabolism/physiology , Child , Chronic Disease , Calorimetry, Indirect/methods , Adolescent , Male , Female , Child, Preschool , Infant
13.
PLoS One ; 19(7): e0272239, 2024.
Article in English | MEDLINE | ID: mdl-39052563

ABSTRACT

BACKGROUND: Feasible estimations of perioperative changes in oxygen consumption (VO2) could enable larger studies of its role in postoperative outcomes. Current methods, either by reverse Fick calculations using pulmonary artery catheterisation or metabolic by breathing gas analysis, are often deemed too invasive or technically requiring. In addition, reverse Fick calculations report generally lower values of oxygen consumption. METHODS: We investigated the relationship between perioperative estimations of VO2 (EVO2), from LiDCO™plus-derived (LiDCO Ltd, Cambridge, UK) cardiac output and arterial-central venous oxygen content difference (Ca-cvO2), with indirect calorimetry (GVO2) by QuarkRMR (COSMED srl. Italy), using data collected 2017-2018 during a prospective observational study on perioperative oxygen transport in 20 patients >65 years during epidural and general anaesthesia for open pancreatic or liver resection surgery. Eighty-five simultaneous intra- and postoperative measurements at different perioperative stages were analysed for prediction, parallelity and by traditional agreement assessment. RESULTS: Unadjusted bias between GVO2 and EVO2 indexed for body surface area was 26 (95% CI 20 to 32) with limits of agreement (1.96SD) of -32 to 85 ml min-1m-2. Correlation adjusted for the bias was moderate, intraclass coefficient(A,1) 0.51(95% CI 0.34 to 0.65) [F (84,84) = 3.07, P<0.001]. There was an overall association between GVO2 and EVO2, in a random coefficient model [GVO2 = 73(95% CI 62 to 83) + 0.45(95% CI 0.29 to 0.61) EVO2 ml min-1m-2, P<0.0001]. GVO2 and EVO2 changed in parallel intra- and postoperatively when normalised to their respective overall means. CONCLUSION: Based on this data, estimations from LiDCO™plus-derived cardiac output and Ca-cvO2 are not reliable as a surrogate for perioperative VO2. Results were in line with previous studies comparing Fick-based and metabolic measurements but limited by variability of data and possible underpowering. The parallelity at different perioperative stages and the prediction model can provide useful guidance and methodological tools for future studies on similar methods in larger samples.


Subject(s)
Calorimetry, Indirect , Cardiac Output , Oxygen Consumption , Humans , Aged , Male , Female , Calorimetry, Indirect/methods , Prospective Studies , Aged, 80 and over , Oxygen/metabolism , Abdomen/surgery , Perioperative Period
14.
JPEN J Parenter Enteral Nutr ; 48(3): 284-290, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400637

ABSTRACT

BACKGROUND: Minor burns could be associated with moderate hypermetabolism. In this study, the primary outcome was measured energy expenditure (mEE) determined by indirect calorimetry in patients with minor burns. We also compared mEE with predictive values and actual energy intakes. METHODS: Adults with minor burns exclusively treated on an outpatient basis were included. During the week following injury, a dietitian performed indirect calorimetry (Q-NRG in canopy mode), calculated the estimated energy expenditure (eEE) based on the Harris-Benedict (HB) and Henry formulas, and evaluated daily energy intakes using a food anamnesis. RESULTS: Forty-nine patients (59.2% male; median age: 35 [interquartile range: 29-46.5] years; body mass index [BMI]: 26.2 [22.3-29.6] kg/m2; burn surface area [BSA]: 1.5% [1%-2%]) were included 4 (2-6) days after injury. The mEE was 1863 (1568-2199) kcal or 25 (22.4-28.5) kcal/kg and 1838 (1686-2026) kcal or 26.1 (23.7-27.7) kcal/kg in patients who were respectively fasting for >10 h or not (P = 0.991 or P = 0.805). The total mEE was 104% (95%-116%) and 108% (99%-122%) of the total eEE using the HB and Henry formulas, respectively, with diet-induced thermogenesis and physical activity level. Hypermetabolism (ie, oxygen consumption at rest ≥3.5 ml/kg/min) was observed in 21/49 (42.9%) patients. Energy intakes corresponded to 71% (60%-86%) of the total mEE. CONCLUSION: Performing indirect calorimetry in adults with minor burns revealed that ≥40% of the tested adults presented a hypermetabolism and that their mEE was not covered by their energy intakes.


Subject(s)
Burns , Energy Metabolism , Adult , Humans , Male , Female , Calorimetry, Indirect , Cohort Studies , Nutritional Requirements , Burns/therapy
15.
Nutrients ; 16(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398849

ABSTRACT

We propose a novel method for assessing metabolic flexibility (MF) through indirect calorimetry. A total of twenty healthy volunteers (10 females; 10 males) aged 45-65 were categorized into a Low-Intensity activity group (LI, 0-1 session of 1 h per week) and a High-Intensity activity group (HI, 5-6 sessions of 2 h per week). Volunteers underwent a stepwise exercise test on a cycle ergometer, connected to a calorimeter, to examine respiratory gas exchange to evaluate peak fatty acid Oxidation (PFO) and peak carbohydrate oxidation (PCO). Circulating peroxisome proliferator-activated receptor α (PPARα) biomarkers, docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratio and N-oleoylethanolamine (OEA), and the endocannabinoid- 2-arachidonoylglycerol (2-AG), were evaluated. We developed two MF parameters: the MF index (MFI), calculated by the product of PFO normalized per kg of fat-free mass (FFM) and the percentage of VO2max at PFO, and the peak energy substrates' oxidation (PESO), computed by summing the kilocalories from the PFO and PCO, normalized per kg FFM. The MFI and PESO were significantly different between the HI and LI groups, showing strong correlations with the circulating bioactive substances. Higher DHA/EPA ratio (p ≤ 0.05) and OEA (p ≤ 0.01), but lower 2-AG levels (p ≤ 0.01) were found in the HI group. These new parameters successfully established a functional link between MF and the balance of PPARα/endocannabinoid systems.


Subject(s)
Endocannabinoids , PPAR alpha , Male , Middle Aged , Female , Humans , Calorimetry, Indirect , Oxidation-Reduction , Docosahexaenoic Acids , Eicosapentaenoic Acid
16.
Article in English | MEDLINE | ID: mdl-39063471

ABSTRACT

This study aimed to investigate the resting metabolic rate (RMR) in cross-training practitioners (advanced and novice) using indirect calorimetry (IC) and compare it with predictive equations proposed in the scientific literature. METHODS: A cross-sectional and comparative study analyzed 65 volunteers, both sexes, practicing cross-training (CT). Anthropometry and body composition were assessed, and RMR was measured by IC (FitMate PRO®), bioimpedance (BIA-InBody 570®), and six predictive equations. Data normality was tested by the Kolgomorov-Smirnov test and expressed as mean ± standard deviation with 95% confidence intervals (CI), chi-square test was performed to verify ergogenic resources, and a Bland-Altman plot (B&A) was made to quantify the agreement between two quantitative measurements. One-way ANOVA was applied to body composition parameters, two-way ANOVA with Bonferroni post hoc was used to compare the RMR between groups, and two-way ANCOVA was used to analyze the adjusted RMR for body and skeletal muscle mass. The effect size was determined using Cohen's d considering the values adjusted by ANCOVA. If a statistical difference was found, post hoc Bonferroni was applied. The significance level was p < 0.05 for all tests. RESULTS: The main results indicated that men showed a higher RMR than women, and the most discrepant equations were Cunningham, Tinsley (b), and Johnstone compared to IC. Tinsley's (a) equation indicated greater precision in measuring the RMR in CM overestimated it by only 1.9%, and BIA and the Harris-Benedict in CW overestimated RMR by only 0.1% and 3.4%, respectively. CONCLUSIONS: The BIA and Harris-Benedict equation could be used reliably to measure the RMR of females, while Tinsley (a) is the most reliable method to measure the RMR of males when measuring with IC is unavailable. By knowing which RMR equations are closest to the gold standard, these professionals can prescribe a more assertive diet, training, or ergogenic resources. An assertive prescription increases performance and can reduce possible deleterious effects, maximizing physical sports performance.


Subject(s)
Basal Metabolism , Body Composition , Calorimetry, Indirect , Humans , Male , Female , Cross-Sectional Studies , Adult , Young Adult , Anthropometry , Electric Impedance
17.
JPEN J Parenter Enteral Nutr ; 48(3): 267-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409876

ABSTRACT

BACKGROUND: Many equations to estimate the resting energy expenditure (REE) of patients with burns are currently available, but which of them provides the best guide to optimize nutrition support is controversial. This review examined the bias and precision of commonly used equations in patients with severe burns. METHODS: A systematic search of the PubMed, Web of Science, Embase, and Cochrane Library databases was undertaken on June 1, 2023, to identify studies comparing predicted REE (using equations) with measured REE (by indirect calorimetry [IC]) in adults with severe burns. Meta-analyses of bias and calculations of precisions were performed in each predictive equation, respectively. RESULTS: Nine eligible studies and 12 eligible equations were included. Among the equations, the Toronto equation had the lowest bias (26.1 kcal/day; 95% CI, -417.0 to 469.2), followed by the Harris-Benedict equation × 1.5 (1.5HB) and the Milner equation. The Ireton-Jones equation (303.4 kcal/day; 95% CI, 224.5-382.3) acceptably overestimated the REE. The accuracy of all of the equations was <50%. The Ireton-Jones equation had the relatively highest precision (41.2%), followed by the 1.5HB equation (37.0%) and the Toronto equation (34.7%). CONCLUSION: For adult patients with severe burns, all of the commonly used equations for the prediction of REE are inaccurate. It is recommended to use IC for accurate REE measurements and to use the Toronto equation, 1.5HB equation, or Ireton-Jones equation as a reference when IC is not available. Further studies are needed to propose more accurate REE predictive models.


Subject(s)
Basal Metabolism , Burns , Adult , Humans , Burns/metabolism , Calorimetry, Indirect , Energy Metabolism , Nutritional Support , Rest
18.
Obes Rev ; 25(6): e13739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548479

ABSTRACT

The determination of energy requirements in clinical practice is based on basal metabolic rate (BMR), frequently predicted by equations that may not be suitable for individuals with severe obesity. This systematic review and meta-analysis examined the accuracy and precision of BMR prediction equations in adults with severe obesity. Four databases were searched in March 2021 and updated in May 2023. Eligible studies compared BMR prediction equations with BMR measured by indirect calorimetry. Forty studies (age: 28-55 years, BMI: 40.0-62.4 kg/m2) were included, most of them with a high risk of bias. Studies reporting bias (difference between estimated and measured BMR) were included in the meta-analysis (n = 20). Six equations were meta-analyzed: Harris & Benedict (1919); WHO (weight) (1985); Owen (1986); Mifflin (1990); Bernstein (1983); and Cunningham (1980). The most accurate and precise equations in the overall analysis were WHO (-12.44 kcal/d; 95%CI: -81.4; 56.5 kcal/d) and Harris & Benedict (-18.9 kcal/d; 95%CI -73.2; 35.2 kcal/d). All the other equations tended to underestimate BMR. Harris & Benedict and WHO were the equations with higher accuracy and precision in predicting BMR in individuals with severe obesity. Additional analyses suggested that equations may perform differently according to obesity BMI ranges, which warrants further investigation.


Subject(s)
Basal Metabolism , Calorimetry, Indirect , Obesity, Morbid , Humans , Basal Metabolism/physiology , Obesity, Morbid/metabolism , Adult , Body Mass Index
19.
Nutrients ; 16(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257123

ABSTRACT

BACKGROUND: The accurate assessment of resting energy expenditure (REE) is essential for personalized nutrition, particularly in critically ill children. Indirect calorimetry (IC) is the gold standard for measuring REE. This methodology is based on the measurement of oxygen consumption (VO2) and carbon dioxide production (VCO2). These parameters are integrated into the Weir equation to calculate REE. Additionally, IC facilitates the determination of the respiratory quotient (RQ), offering valuable insights into a patient's carbohydrate and lipid consumption. IC validation is limited to spontaneously breathing and mechanically ventilated patients, but it is not validated in patients undergoing non-invasive ventilation (NIV). This study investigates the application of IC during NIV-CPAP (continuous positive airway pressure) and NIV-PS (pressure support). METHODS: This study was conducted in the Pediatric Intensive Care Unit of IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, between 2019 and 2021. Children < 6 years weaning from NIV were enrolled. IC was performed during spontaneous breathing (SB), NIV-CPAP, and NIV-PS in each patient. A Bland-Altman analysis was employed to compare REE, VO2, VCO2, and RQ measured by IC. RESULTS: Fourteen patients (median age 7 (4; 18) months, median weight 7.7 (5.5; 9.7) kg) were enrolled. The REE, VO2, VCO2, and RQ did not differ significantly between the groups. The Limits of Agreement (LoA) and bias of REE indicated good agreement between SB and NIV-CPAP (LoA +28.2, -19.4 kcal/kg/day; bias +4.4 kcal/kg/day), and between SB and NIV-PS (LoA -22.2, +23.1 kcal/kg/day; bias 0.4 kcal/kg/day). CONCLUSIONS: These preliminary findings support the accuracy of IC in children undergoing NIV. Further validation in a larger cohort is warranted.


Subject(s)
Noninvasive Ventilation , Respiration, Artificial , Child , Humans , Calorimetry, Indirect , Cross-Over Studies , Respiration , Proof of Concept Study
20.
PLoS One ; 19(6): e0304030, 2024.
Article in English | MEDLINE | ID: mdl-38900814

ABSTRACT

We overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. To assess WRIC validity seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events. Sixteen participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose in a crossover design. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and carbohydrate oxidation. Postprandial carbohydrate oxidation trajectories for each participant and condition were modeled using Bayesian Hierarchical Modeling. Mean total error in infusions were 1.27 ± 0.67% and 0.42 ± 0.70% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions ([Formula: see text] = 1.05 ± 0.03 kcal/min, p = 0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p = 0.29), postprandial carbohydrate oxidation parameters were significantly lower for dextrose compared with sucrose or fructose. We provide evidence validating our WRIC and a novel application of statistical methods useful for research using WRIC.


Subject(s)
Bayes Theorem , Calorimetry, Indirect , Postprandial Period , Humans , Calorimetry, Indirect/methods , Male , Female , Adult , Reproducibility of Results , Postprandial Period/physiology , Cross-Over Studies , Young Adult , Energy Intake , Energy Metabolism/physiology , Oxidation-Reduction , Fasting
SELECTION OF CITATIONS
SEARCH DETAIL