Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.183
Filter
Add more filters

Publication year range
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37220746

ABSTRACT

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Subject(s)
Antifungal Agents , Candidiasis , Animals , Mice , Complement C5/metabolism , Phagocytes/metabolism
2.
Annu Rev Immunol ; 32: 635-57, 2014.
Article in English | MEDLINE | ID: mdl-24499273

ABSTRACT

Anticytokine autoantibodies are an emerging mechanism of disease in previously healthy adults. Patients with these syndromes demonstrate a unique infectious phenotype associated with neutralizing autoantibodies that target a specific cytokine. Examples include anti-interferon (IFN)-γ autoantibodies and disseminated nontuberculous mycobacteria; anti-granulocyte macrophage colony-stimulating factor autoantibodies and cryptococcal meningitis; anti-interleukin (IL)-6 autoantibodies and staphylococcal skin infection; and anti-IL-17A, anti-IL-17F, or anti-IL-22 autoantibodies and mucocutaneous candidiasis in the setting of either APECED (autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy syndrome) or thymoma. Other anticytokine autoantibodies may contribute to an infectious phenotype such as anti-granulocyte colony stimulating factor and anti-IFN-α autoantibodies, although the strength of the association is less clear. Their identification not only affects disease management but also may uncover key mechanisms of host defense against specific organisms. Furthermore, it raises the possibility that currently idiopathic diseases will someday be explained by a yet unidentified anticytokine autoantibody. This review focuses on the current understanding, both clinical and mechanistic, of anticytokine autoantibody-associated immunodeficiency.


Subject(s)
Autoantibodies/immunology , Cytokines/immunology , Immunologic Deficiency Syndromes/immunology , Animals , Candidiasis/diagnosis , Candidiasis/immunology , Candidiasis/therapy , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/therapy , Polyendocrinopathies, Autoimmune/diagnosis , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/therapy , Thymoma/diagnosis , Thymoma/immunology , Thymoma/therapy
3.
Cell ; 184(4): 1017-1031.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33548172

ABSTRACT

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.


Subject(s)
Antibodies, Fungal/immunology , CARD Signaling Adaptor Proteins/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Immunity , Immunoglobulin G/immunology , Mycobiome/immunology , Animals , B-Lymphocytes/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , Feces/microbiology , Germinal Center/immunology , Humans , Mice, Inbred C57BL , Phagocytes/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding , Signal Transduction
4.
Nat Immunol ; 23(7): 1098-1108, 2022 07.
Article in English | MEDLINE | ID: mdl-35761088

ABSTRACT

Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity in patients with APS-1 are well established, the underlying cause of the increased susceptibility to Candida albicans infection remains less understood. Here, we show that Aire+MHCII+ type 3 innate lymphoid cells (ILC3s) could sense, internalize and present C. albicans and had a critical role in the induction of Candida-specific T helper 17 (TH17) cell clones. Extrathymic Rorc-Cre-mediated deletion of Aire resulted in impaired generation of Candida-specific TH17 cells and subsequent overgrowth of C. albicans in the mucosal tissues. Collectively, our observations identify a previously unrecognized regulatory mechanism for effective defense responses against fungal infections.


Subject(s)
Autoimmune Diseases , Candidiasis , Polyendocrinopathies, Autoimmune , Candida albicans , Candidiasis/genetics , Humans , Immunity, Innate , Polyendocrinopathies, Autoimmune/genetics , Th17 Cells
5.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Article in English | MEDLINE | ID: mdl-34663978

ABSTRACT

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Heredity , Immunity, Innate/genetics , Listeria monocytogenes/immunology , Listeriosis/immunology , Myeloid Cells/immunology , Animals , Candida albicans/pathogenicity , Candidiasis/genetics , Candidiasis/metabolism , Candidiasis/microbiology , Cells, Cultured , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Listeria monocytogenes/pathogenicity , Listeriosis/genetics , Listeriosis/metabolism , Listeriosis/microbiology , Male , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Spermatozoa/immunology , Spermatozoa/metabolism , Transcription, Genetic
6.
Nat Immunol ; 20(5): 546-558, 2019 05.
Article in English | MEDLINE | ID: mdl-30911105

ABSTRACT

Neutrophils are essential first-line defense cells against invading pathogens, yet when inappropriately activated, their strong immune response can cause collateral tissue damage and contributes to immunological diseases. However, whether neutrophils can intrinsically titrate their immune response remains unknown. Here we conditionally deleted the Spi1 gene, which encodes the myeloid transcription factor PU.1, from neutrophils of mice undergoing fungal infection and then performed comprehensive epigenomic profiling. We found that as well as providing the transcriptional prerequisite for eradicating pathogens, the predominant function of PU.1 was to restrain the neutrophil defense by broadly inhibiting the accessibility of enhancers via the recruitment of histone deacetylase 1. Such epigenetic modifications impeded the immunostimulatory AP-1 transcription factor JUNB from entering chromatin and activating its targets. Thus, neutrophils rely on a PU.1-installed inhibitor program to safeguard their epigenome from undergoing uncontrolled activation, protecting the host against an exorbitant innate immune response.


Subject(s)
Epigenesis, Genetic/immunology , Epigenomics/methods , Neutrophils/immunology , Proto-Oncogene Proteins/immunology , Trans-Activators/immunology , Animals , Candida albicans/immunology , Candida albicans/physiology , Candidiasis/genetics , Candidiasis/immunology , Candidiasis/microbiology , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Profiling/methods , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/microbiology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Survival Analysis , Trans-Activators/deficiency , Trans-Activators/genetics , Transcriptome/genetics , Transcriptome/immunology
7.
Nat Immunol ; 20(5): 559-570, 2019 05.
Article in English | MEDLINE | ID: mdl-30996332

ABSTRACT

The C-type lectin receptor-Syk (spleen tyrosine kinase) adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human deficiency in CARD9 causes susceptibility to fungus-specific, CNS-targeted infection. CARD9 promotes the recruitment of neutrophils to the fungus-infected CNS, which mediates fungal clearance. In the present study we investigated host and pathogen factors that promote protective neutrophil recruitment during invasion of the CNS by Candida albicans. The cytokine IL-1ß served an essential function in CNS antifungal immunity by driving production of the chemokine CXCL1, which recruited neutrophils expressing the chemokine receptor CXCR2. Neutrophil-recruiting production of IL-1ß and CXCL1 was induced in microglia by the fungus-secreted toxin Candidalysin, in a manner dependent on the kinase p38 and the transcription factor c-Fos. Notably, microglia relied on CARD9 for production of IL-1ß, via both transcriptional regulation of Il1b and inflammasome activation, and of CXCL1 in the fungus-infected CNS. Microglia-specific Card9 deletion impaired the production of IL-1ß and CXCL1 and neutrophil recruitment, and increased fungal proliferation in the CNS. Thus, an intricate network of host-pathogen interactions promotes antifungal immunity in the CNS; this is impaired in human deficiency in CARD9, which leads to fungal disease of the CNS.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , Candidiasis/immunology , Chemokine CXCL1/immunology , Interleukin-1beta/immunology , Microglia/immunology , Neutrophils/immunology , Animals , Brain/immunology , Brain/metabolism , Brain/microbiology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Candida albicans/immunology , Candida albicans/physiology , Candidiasis/genetics , Candidiasis/microbiology , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice, Knockout , Mice, Transgenic , Microglia/metabolism , Microglia/microbiology , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Neutrophils/metabolism , Neutrophils/microbiology
8.
Immunity ; 54(11): 2595-2610.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34506733

ABSTRACT

Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.


Subject(s)
Blood Platelets/immunology , Candida albicans/physiology , Candidiasis/complications , Candidiasis/immunology , Disease Susceptibility , Host-Pathogen Interactions/immunology , Hypersensitivity/complications , Hypersensitivity/immunology , T-Lymphocyte Subsets/immunology , Blood Platelets/metabolism , Hypersensitivity/metabolism , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
9.
Nat Immunol ; 18(9): 973-984, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28671690

ABSTRACT

The balance of myeloid populations and lymphoid populations must be well controlled. Here we found that osteopontin (OPN) skewed this balance during pathogenic conditions such as infection and autoimmunity. Notably, two isoforms of OPN exerted distinct effects in shifting this balance through cell-type-specific regulation of apoptosis. Intracellular OPN (iOPN) diminished the population size of myeloid progenitor cells and myeloid cells, and secreted OPN (sOPN) increase the population size of lymphoid cells. The total effect of OPN on skewing the leukocyte population balance was observed as host sensitivity to early systemic infection with Candida albicans and T cell-mediated colitis. Our study suggests previously unknown detrimental roles for two OPN isoforms in causing the imbalance of leukocyte populations.


Subject(s)
Autoimmune Diseases/immunology , Candidiasis/immunology , Colitis/immunology , Infections/immunology , Lymphocytes/immunology , Myeloid Cells/immunology , Osteopontin/immunology , Animals , Apoptosis , Candida albicans , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lymphopoiesis/immunology , Mice , Mice, Knockout , Myelopoiesis/immunology , Osteopontin/genetics , Protein Isoforms , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes
10.
Nat Immunol ; 16(2): 161-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25531830

ABSTRACT

Innate lymphoid cells (ILCs) are lymphocyte-like cells that lack T cell or B cell antigen receptors and mediate protective and repair functions through cytokine secretion. Among these, type 2 ILCs (ILC2 cells) are able to produce type 2 cytokines. We report the existence of an inflammatory ILC2 (iILC2) population responsive to interleukin 25 (IL-25) that complemented IL-33-responsive natural ILC2 (nILC2) cells. iILC2 cells developed into nILC2-like cells in vitro and in vivo and contributed to the expulsion of Nippostrongylus brasiliensis. They also acquired IL-17-producing ability and provided partial protection against Candida albicans. We propose that iILC2 cells are transient progenitors of ILCs mobilized by inflammation and infection that develop into nILC2-like cells or ILC3-like cells and contribute to immunity to both helminths and fungi.


Subject(s)
Interleukin-17/metabolism , Lymphocytes/immunology , Receptors, Immunologic/metabolism , Animals , Animals, Genetically Modified , Candida albicans/immunology , Candidiasis/immunology , Cell Lineage , Gene Deletion , Inflammation/immunology , Lectins, C-Type , Leukocytes/immunology , Lung/immunology , Lung/pathology , Lymphocytes/cytology , Mice , Nippostrongylus/immunology , Receptors, Immunologic/genetics , Receptors, Interleukin-7/metabolism , Strongylida Infections/immunology
11.
Nat Immunol ; 16(6): 642-52, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915733

ABSTRACT

Fungal infection stimulates the canonical C-type lectin receptor (CLR) signaling pathway via activation of the tyrosine kinase Syk. Here we identify a crucial role for the tyrosine phosphatase SHP-2 in mediating CLR-induced activation of Syk. Ablation of the gene encoding SHP-2 (Ptpn11; called 'Shp-2' here) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated the expression of genes encoding pro-inflammatory molecules following fungal stimulation. Mechanistically, SHP-2 operated as a scaffold, facilitating the recruitment of Syk to the CLR dectin-1 or the adaptor FcRγ, through its N-SH2 domain and a previously unrecognized carboxy-terminal immunoreceptor tyrosine-based activation motif (ITAM). We found that DC-derived SHP-2 was crucial for the induction of interleukin 1ß (IL-1ß), IL-6 and IL-23 and anti-fungal responses of the TH17 subset of helper T cells in controlling infection with Candida albicans. Together our data reveal a mechanism by which SHP-2 mediates the activation of Syk in response to fungal infection.


Subject(s)
Candidiasis/immunology , Dendritic Cells/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Th17 Cells/immunology , Amino Acid Motifs/genetics , Animals , Antigens, Fungal/immunology , Cells, Cultured , Cytokines/metabolism , Enzyme Activation , Inflammation Mediators/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lymphocyte Activation , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Receptors, IgE/genetics , Receptors, IgE/metabolism , Signal Transduction , Syk Kinase
12.
PLoS Biol ; 22(6): e3002693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905306

ABSTRACT

Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.


Subject(s)
Biofilms , Candida albicans , Fungal Proteins , Gene Expression Regulation, Fungal , Transcription Factors , Biofilms/growth & development , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Animals , Plankton/metabolism , Glyoxylates/metabolism , Gene Expression Profiling/methods , Mice , Citric Acid Cycle , Hyphae/metabolism , Hyphae/growth & development , Hyphae/genetics , Candidiasis/microbiology , Metabolic Reprogramming
13.
PLoS Genet ; 20(5): e1011281, 2024 May.
Article in English | MEDLINE | ID: mdl-38743788

ABSTRACT

CgHog1, terminal kinase of the high-osmolarity glycerol signalling pathway, orchestrates cellular response to multiple external stimuli including surplus-environmental iron in the human fungal pathogen Candida glabrata (Cg). However, CgHog1 substrates remain unidentified. Here, we show that CgHog1 adversely affects Cg adherence to host stomach and kidney epithelial cells in vitro, but promotes Cg survival in the iron-rich gastrointestinal tract niche. Further, CgHog1 interactome and in vitro phosphorylation analysis revealed CgSub2 (putative RNA helicase) to be a CgHog1 substrate, with CgSub2 also governing iron homeostasis and host adhesion. CgSub2 positively regulated EPA1 (encodes a major adhesin) expression and host adherence via its interactor CgHtz1 (histone H2A variant). Notably, both CgHog1 and surplus environmental iron had a negative impact on CgSub2-CgHtz1 interaction, with CgHTZ1 or CgSUB2 deletion reversing the elevated adherence of Cghog1Δ to epithelial cells. Finally, the surplus-extracellular iron led to CgHog1 activation, increased CgSub2 phosphorylation, elevated CgSub2-CgHta (canonical histone H2A) interaction, and EPA1 transcriptional activation, thereby underscoring the iron-responsive, CgHog1-induced exchange of histone partners of CgSub2. Altogether, our work mechanistically defines how CgHog1 couples Epa1 adhesin expression with iron abundance, and point towards specific chromatin composition modification programs that probably aid fungal pathogens align their adherence to iron-rich (gut) and iron-poor (blood) host niches.


Subject(s)
Candida glabrata , Cell Adhesion , Epithelial Cells , Fungal Proteins , Histones , Candida glabrata/genetics , Candida glabrata/metabolism , Humans , Histones/metabolism , Histones/genetics , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Cell Adhesion/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Phosphorylation , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Iron/metabolism , Gene Expression Regulation, Fungal , Candidiasis/microbiology , Candidiasis/genetics , Signal Transduction
14.
PLoS Pathog ; 20(3): e1012031, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427950

ABSTRACT

The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.


Subject(s)
Candida albicans , Candidiasis , Humans , Zinc , Epithelial Cells , Intestines
15.
PLoS Pathog ; 20(1): e1011902, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166150

ABSTRACT

Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.


Subject(s)
Candidiasis , Neutrophils , Animals , Mice , Antifungal Agents , Candida albicans , Candidiasis/metabolism , Candidiasis/microbiology , Cytokines/metabolism , Neutrophil Infiltration , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
16.
PLoS Pathog ; 20(6): e1012319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885290

ABSTRACT

Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.


Subject(s)
Biofilms , Candida albicans , Candidiasis , Catheter-Related Infections , Extracellular Traps , Fungal Proteins , Neutrophils , Humans , Biofilms/growth & development , Fungal Proteins/metabolism , Candidiasis/microbiology , Candidiasis/immunology , Catheter-Related Infections/microbiology , Neutrophils/immunology , Neutrophils/metabolism , Extracellular Traps/immunology , Catheters/microbiology , Gene Expression Regulation, Fungal
17.
PLoS Pathog ; 20(5): e1012225, 2024 May.
Article in English | MEDLINE | ID: mdl-38739655

ABSTRACT

Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.


Subject(s)
Biofilms , Candida albicans , Candidiasis , Fungal Proteins , Biofilms/growth & development , Candida albicans/metabolism , Candida albicans/genetics , Candida albicans/physiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Animals , Candidiasis/microbiology , Candidiasis/metabolism , Hyphae/metabolism , Mice , Gene Expression Regulation, Fungal , Ergosterol/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation
18.
PLoS Pathog ; 20(7): e1012389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39078851

ABSTRACT

Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3ß,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis , Drug Resistance, Fungal , Ergosterol , Fungal Proteins , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Antifungal Agents/pharmacology , Mice , Drug Resistance, Fungal/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Animals , Candidiasis/microbiology , Candidiasis/metabolism , Candidiasis/drug therapy , Ergosterol/metabolism , Azoles/pharmacology , Sterols/metabolism , Phenotype , Stress, Physiological , Microbial Sensitivity Tests , Fluconazole/pharmacology
19.
PLoS Pathog ; 20(7): e1012362, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976759

ABSTRACT

Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid ß-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.


Subject(s)
Candida auris , Candidiasis , Fungal Proteins , Mutation , Candidiasis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candida auris/genetics , Candida auris/metabolism , Mice , Animals , Glycerol/metabolism , Adaptation, Physiological , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Fungal , Humans
20.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603707

ABSTRACT

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Subject(s)
Biofilms , Candida albicans , Cystic Fibrosis , Fungal Proteins , Transcription Factors , Cystic Fibrosis/microbiology , Candida albicans/genetics , Candida albicans/metabolism , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Biofilms/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gain of Function Mutation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Lung/microbiology , Candidiasis/microbiology , Adaptation, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL