Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Mol Cell Cardiol ; 189: 38-51, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387723

ABSTRACT

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.


Subject(s)
Aortic Dissection , Cannabidiol , Animals , Humans , Mice , Aminopropionitrile/pharmacology , Aortic Dissection/drug therapy , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Macrophages/metabolism , Muscle, Smooth, Vascular/pathology
2.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38406827

ABSTRACT

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Subject(s)
Cannabidiol , Neoplasms , Humans , Cisplatin/toxicity , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabidiol/therapeutic use , Cachexia/metabolism , Catalase/metabolism , Quality of Life , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/drug therapy , Oxidative Stress , Neoplasms/metabolism , RNA, Messenger/metabolism
3.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588037

ABSTRACT

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Subject(s)
Cannabidiol , Cocaine , Mice , Animals , Male , Cannabidiol/pharmacology , Cannabidiol/metabolism , Glucose/metabolism , Fluorodeoxyglucose F18/metabolism , Brain/metabolism , Cocaine/pharmacology , Mice, Inbred C57BL
4.
Mol Psychiatry ; 28(8): 3397-3413, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37433966

ABSTRACT

Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner.


Subject(s)
Cannabidiol , Humans , Pregnancy , Male , Female , Mice , Animals , Cannabidiol/pharmacology , Cannabidiol/metabolism , Sunflower Oil/metabolism , Prefrontal Cortex/metabolism , Pain/metabolism , Nausea/metabolism
5.
Chemistry ; 29(43): e202300682, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37265377

ABSTRACT

The human endocannabinoid system regulates a myriad of physiological processes through a complex lipid signaling network involving cannabinoids and their respective receptors, cannabinoid receptor 1 (hCB1 R) and cannabinoid receptor 2 (hCB2 R). Anandamide (AEA) and cannabidiol (CBD) are classical examples of cannabinoids that elicit a variety of effects, both beneficial and detrimental, through these receptors. Mounting evidence suggested the presence of other potential cannabinoid targets that may be responsible for other observable effects. However, prior pharmacological studies on these cannabinoid compounds provided scant evidence of direct engagement to these proposed targets. Moreover, to the best of our knowledge, no chemoproteomic studies have been demonstrated on CBD. Here we showed that, by taking advantage of a recently developed 'label-free' 2D-TPP (2 Dimensional-Thermal Protein Profiling) approach, we have identified several new putative targets of both AEA and CBD. Comparison of these interaction landscapes with those obtained from well-established affinity-based protein profiling (AfBPP) platforms has led to the discovery of both shared and unique protein targets. Subsequent target validation of selected proteins led us to conclude that this 2D-TPP strategy complements well with AfBPP.


Subject(s)
Cannabidiol , Cannabinoids , Humans , Endocannabinoids/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabinoids/metabolism , Polyunsaturated Alkamides , Carrier Proteins
6.
Calcif Tissue Int ; 112(6): 716-726, 2023 06.
Article in English | MEDLINE | ID: mdl-37093268

ABSTRACT

Cannabidiol (CBD), the non-psychoactive component of the Cannabis sativa plant, is marketed as a potential therapeutic agent and has been studied for its roles in reducing inflammation and managing neuropathic pain. Some studies have reported that CB1 and CB2 receptor activation can attenuate and reverse bone loss in experimental animal models. Despite this, little is known about the impact of CBD on fracture healing. We investigated the effects of CBD in vitro using human osteoprogenitor cells and in vivo via murine femur fracture and osteoporosis models. In vitro mesenchymal stem cells were treated with increasing concentrations of crystalized pharmaceutical grade CBD or vehicle solution. Cell viability and proliferation were significantly increased in cells treated with CBD compared to vehicle control. Osteocalcin expression was also significantly higher in the CBD-treated human stem cells compared to vehicle control. In vivo the effect of CBD on bone mineral density and fracture healing in mice was examined using a two-phase experimental approach. Fluoxetine was used for pharmacologic induction of osteoporosis and surgical oophorectomy (OVX) was used for hormonal induction of osteoporosis. X-ray and microCT analysis showed that CBD prevented both fluoxetine- and OVX-induced osteoporosis. We found that while OVX resulted in delayed bone healing in control mice, CBD-pretreated mice exhibited normal bone healing. Collectively these in vitro and in vivo findings suggest that CBD exerts cell-specific effects which can be exploited to enhance bone metabolism. These findings also indicate that CBD usage in an osteoporotic population may positively impact bone morphology, warranting further research.


Subject(s)
Cannabidiol , Mesenchymal Stem Cells , Osteoporosis , Humans , Mice , Animals , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabidiol/therapeutic use , Cell Survival , Fluoxetine/metabolism , Fluoxetine/pharmacology , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Models, Animal , Gene Expression , Cell Proliferation
7.
Environ Res ; 233: 116454, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37343751

ABSTRACT

Non-melanoma skin cancer is one of the most common malignancies reported around the globe. Current treatment therapies fail to meet the desired therapeutic efficacy due to high degree of drug resistance. Thus, there is prominent demand in advancing the current conventional therapy to achieve desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The current investigation has been designed to evaluate the safety and efficacy of developed 5-Flurouracil and cannabidiol loaded combinatorial lipid-based nanocarrier (FU-CBD NLCs) gel for the effective treatment of skin cancer. Initially, confocal microscopy study results showed excellent uptake and deposition at epidermal and the dermal layer. Irritation studies performed by IR camera and HET cam shows FU-CBD NLCs was much more tolerated and less irritant compared to conventional treatment. Furthermore, gamma scintigraphy evaluation shows the skin retention behavior of the formulation. Later, in-ovo tumor remission studies were performed, and it was found that prepared FU-CBD NLCs was able to reduce tumor volume significantly compared to conventional formulation. Thus, obtained results disclosed that permeation and disposition of 5-FU and CBD into different layers of the skin FU-CBD NLCs gel could be more potential carrier than conventional gel. Furthermore, prepared formulation showed greater tumor remission, better survival rate, reduction in tumor number, area, and volume with improved biochemical profile. Thus, prepared gel could serve as a promising formulation approach for the skin cancer treatment.


Subject(s)
Cannabidiol , Nanostructures , Skin Neoplasms , Humans , Skin Absorption , Cannabidiol/metabolism , Cannabidiol/pharmacology , Drug Carriers/metabolism , Drug Carriers/pharmacology , Skin , Fluorouracil/metabolism , Fluorouracil/pharmacology , Skin Neoplasms/drug therapy , Lipids , Particle Size
8.
J Enzyme Inhib Med Chem ; 38(1): 2121821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36650907

ABSTRACT

The mitochondrial voltage-dependent anion channel 1 (VDAC1) plays a central role in metabolism and apoptosis, which makes it a promising therapeutic target. Nevertheless, molecular mechanisms governing VDAC1 functioning remain unclear. Small-molecule ligands specifically interacting with the channel provide an attractive way of exploring its structure-function relationships and can possibly be used as founding stones for future drug-candidates. While around 30 VDAC1 ligands have been identified over the years, various techniques have been used by research teams, making a fair and direct comparison between compounds impossible. To tackle this issue, we performed ligand-binding assays on a representative set of seventeen known VDAC1 ligands using nano-differential scanning fluorimetry and microscale thermophoresis. While all the compounds have been confirmed as VDAC1 ligands by at least one method, combining both technologies lead to the selection of four molecules (cannabidiol, curcumin, DIDS and VBIT4) as chemical starting points for future design of VDAC1 selective ligands.


Subject(s)
Cannabidiol , Voltage-Dependent Anion Channel 1 , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Mitochondria/metabolism , Apoptosis , Cannabidiol/metabolism
9.
Ann Plast Surg ; 90(6S Suppl 4): S408-S415, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37332213

ABSTRACT

BACKGROUND: Patients suffering from arthritis have limited treatment options for nonoperative management. In search of pain relief, patients have been taking over-the-counter cannabinoids. Cannabidiol (CBD) and cannabichromene (CBC) are minor cannabinoids with reported analgesic and anti-inflammatory properties and have been implicated as potential therapeutics for arthritis-related pain. To this end, we utilized a murine model to investigate the effectiveness of and mechanism by which CBC alone, CBD alone, or CBD and CBC in combination may provide a reduction in arthritis-associated inflammation. METHODS: Forty-eight mice were included in the study, which were separated into 4 groups: control group (n = 12), treatment with CBD alone (n = 12), treatment with CBC alone (n = 12), and treatment with CBD + CBC (n = 12). We induced inflammation in each mouse utilizing the collagen-induced arthritis model. At scheduled timepoints, mice were clinically assessed for weight gain, swelling, and arthritis severity. In addition, inflammation-associated serum cytokine levels were analyzed for each animal. RESULTS: Thirty-five of 48 mice survived the duration of the study resulting in the following group numbers: control group (n = 8), treatment with CBD alone (n = 9), treatment with CBC alone (n = 9), and treatment with CBD + CBC (n = 9). Animals treated with CBC and CBD + CBC showed significant weight gain between 3 and 5 weeks. Irrespective of treatment, regression analysis comparing all cytokine measurement and physical outcomes found a significant positive correlation between levels of 5 individual cytokines and both arthritis scores and swelling. Animals treated with CBD + CBC showed a significant decrease in swelling between 3 and 5 weeks compared with the control group. Cannabinoid treatment selectively affected the gene expression of eotaxin and lipopolysaccharide-induced CXC chemokine with combined treatment of CBC + CBD. CONCLUSION: Treatment with cannabinoids resulted in decreased clinical markers of inflammation. Further, the anti-inflammatory effect of CBC and CBD in conjunction was associated with a greater anti-inflammatory effect than either minor cannabinoid alone. Future work will elucidate the possibility of synergistic or entourage effects of minor cannabinoids used in combination for the treatment of arthritis-related pain and inflammation.


Subject(s)
Arthritis , Cannabidiol , Cannabinoids , Mice , Animals , Cannabidiol/therapeutic use , Cannabidiol/metabolism , Cannabidiol/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Cannabinoids/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Arthritis/drug therapy , Arthritis/etiology , Pain , Cytokines
10.
Int J Mol Sci ; 24(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37834328

ABSTRACT

Cannabidiol (CBD), the main non-psychoactive component of Cannabis sativa L., is widely used in therapy for the treatment of different diseases and as an adjuvant drug. Our aim was to assess the effects of CBD on proinflammatory cytokine production and cell proliferation in human peripheral blood mononuclear cells (PBMCs) and on CD4+ T lymphocyte differentiation, and, furthermore, to test CBD's ability to affect the functional properties of regulatory T cells (Treg). Experiments were performed on isolated PBMCs and purified CD4+ T lymphocytes obtained from the buffy coats of healthy subjects. Cytokines produced by CD4+ T cells were evaluated by flow cytometry and intracellular cytokine staining techniques. PBMC cytokine production was measured by an ELISA assay. Real-time PCR was used to assess the mRNA expression of cytokines and the key transcription factors (TFs) of CD4+ T cells. Finally, the proliferation of PBMC and CD4+ T effector cells (Teff), alone and in the presence of Treg, was assessed by flow cytometry. Results showed that CBD affects both the frequency of IL-4-producing CD4+ and of IFN-γ/IL-17-producing cells and dramatically decreases the mRNA levels of all TFs. Stimuli-induced cytokine mRNA expression was decreased while protein production was unaffected. CBD was unable to affect the ability of Treg to prevent Teff cell proliferation while it slightly increased PBMC proliferation. In conclusion, CBD may inhibit the expression of proinflammatory cytokines; however, the effect of CBD on cell proliferation suggests that this cannabinoid exerts a complex activity on human PBMCs and CD4+ T cells which deserves further investigation.


Subject(s)
CD4-Positive T-Lymphocytes , Cannabidiol , Humans , CD4-Positive T-Lymphocytes/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Leukocytes, Mononuclear/metabolism , Cytokines/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895171

ABSTRACT

Aging is associated with changes in cognitive and emotional function. Cannabidiol (CBD) has been reported to attenuate stress and anxiety in human and animal studies. In this study, we aimed to assess the therapeutic potential of CBD among middle-aged female rats exposed to social isolation (SI) and the potential involvement of brain-derived neurotrophic factor (BDNF) in these effects. Thirteen-month-old female rats were group-housed (GH) or exposed to social isolation (SI) and treated with vehicle or CBD (10 mg/kg). CBD restored the SI-induced immobility in the forced swim test and the SI-induced decrease in the expression of BDNF protein levels in the nucleus accumbens (NAc). CBD also increased the time that rats spent in the center in an open field, improved spatial training, and increased BDNF expression in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). BDNF expression was found to be correlated with an antidepressant (in the NAc) and an anxiolytic (in the mPFC, BLA, NAc) phenotype, and with learning improvement in the PFC. Together, our results suggest that CBD may serve as a beneficial agent for wellbeing in old age and may help with age-related cognitive decline.


Subject(s)
Cannabidiol , Animals , Female , Rats , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Nucleus Accumbens/metabolism , Prefrontal Cortex/metabolism , Social Isolation
12.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768376

ABSTRACT

Cannabidiol (CBD) is a potential antidepressant agent. We examined the association between the antidepressant effects of CBD and alterations in brain microRNAs in the unpredictable chronic mild stress (UCMS) model for depression. UCMS male rats were injected with vehicle or CBD (10 mg/kg) and tested for immobility time in the forced swim test. Alterations in miRNAs (miR16, miR124, miR135a) and genes that encode for the 5HT1a receptor, the serotonergic transporter SERT, ß-catenin, and CB1 were examined. UCMS increased immobility time in a forced swim test (i.e., depressive-like behavior) and altered the expression of miRNAs and mRNA in the ventromedial prefrontal cortex (vmPFC), raphe nucleus, and nucleus accumbens. Importantly, CBD restored UCMS-induced upregulation in miR-16 and miR-135 in the vmPFC as well as the increase in immobility time. CBD also restored the UCMS-induced decrease in htr1a, the gene that encodes for the serotonergic 5HT1a receptor; using a pharmacological approach, we found that the 5HT1a receptor antagonist WAY100135 blocked the antidepressant-like effect of CBD on immobility time. Our findings suggest that the antidepressant effects of CBD in a rat model for depression are associated with alterations in miR-16 and miR-135 in the vmPFC and are mediated by the 5HT1a receptor.


Subject(s)
Cannabidiol , MicroRNAs , Rats , Male , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/metabolism , Depression/drug therapy , Depression/genetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/metabolism , Prefrontal Cortex/metabolism , MicroRNAs/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Disease Models, Animal
13.
Molecules ; 28(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050032

ABSTRACT

Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.


Subject(s)
Cannabidiol , Cannabis , Epilepsy , Animals , Humans , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabis/metabolism , Epilepsy/drug therapy , Cannabinoid Receptor Agonists , Pain , Dronabinol/pharmacology
14.
Biochemistry ; 61(21): 2398-2408, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36223199

ABSTRACT

The phytocannabinoid cannabigerol (CBG) is the central biosynthetic precursor to many cannabinoids, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Though the use of CBG has recently witnessed a widespread surge because of its beneficial health effects and lack of psychoactivity, its metabolism by human cytochrome P450s is largely unknown. Herein, we describe comprehensive in vitro and in vivo cytochrome P450 (CYP)-mediated metabolic studies of CBG, ranging from liquid chromatography tandem mass spectrometry-based primary metabolic site determination, synthetic validation, and kinetic behavior using targeted mass spectrometry. These investigations revealed that cyclo-CBG, a recently isolated phytocannabinoid, is the major metabolite that is rapidly formed by selected human cytochrome P450s (CYP2J2, CYP3A4, CYP2D6, CYP2C8, and CYP2C9). Additionally, in vivo studies with mice administered with CBG supported these studies, where cyclo-CBG is the major metabolite as well. Spectroscopic binding studies along with docking and modeling of the CBG molecule near the heme in the active site of P450s confirmed these observations, pointing at the preferred site selectivity of CBG metabolism at the prenyl chain over other positions. Importantly, we found out that CBG and its oxidized CBG metabolites reduced inflammation in BV2 microglial cells stimulated with LPS. Overall, combining enzymological studies, mass spectrometry, and chemical synthesis, we showcase that CBG is rapidly metabolized by human P450s to form oxidized metabolites that are bioactive.


Subject(s)
Cannabidiol , Cannabinoids , Animals , Humans , Mice , Cannabidiol/metabolism , Cannabinoids/metabolism , Cytochrome P-450 Enzyme System/metabolism
15.
Synapse ; 76(11-12): e22246, 2022 09.
Article in English | MEDLINE | ID: mdl-35831708

ABSTRACT

Striatal medium-sized spiny neurons express mRNA and protein of GPR55 receptors that stimulate neurotransmitter release; thus, GPR55 could be sent to nigral striatal projections, where it might modulate GABA release and motor behavior. Here, we study the presence of GPR55 receptors at striato-nigral terminals, their modulation of GABA release, their signaling pathway, and their effect on motor activity. By double immunohistochemistry, we found the colocation of GPR55 protein and substance P in the dorsal striatum. In slices of the rat substantia nigra, the GPR55 agonists LPI and O-1602 stimulated [3 H]-GABA release induced by high K+ depolarization in a dose-dependent manner. The antagonists CID16020046 and cannabidiol prevented agonist stimulation in a dose-dependent way. The effect of GPR55 on nigral [3 H]-GABA release was prevented by lesion of the striatum with kainic acid, which was accompanied by a decrement of GPR55 protein in nigral synaptosomes, indicating the presynaptic location of receptors. The depletion of internal Ca2+ stores with thapsigargin did not prevent the effect of LPI on [3 H]-GABA release, but the remotion or chelation of external calcium did. Blockade of Gi, Gs, PLC, PKC, or dopamine D1 receptor signaling proteins did not prevent the effect of GPR55 on release. However, the activation of GPR55 stimulated [3 H]-cAMP accumulation and PKA activity. Intranigral unilateral injection of LPI induces contralateral turning. This turning was prevented by CID16020046, cannabidiol, and bicuculline but not by SCH 23390. Our data indicate that presynaptic GPR55 receptors stimulate [3 H]-GABA release at striato-nigral terminals through [3 H]-cAMP production and stimulate motor behavior.


Subject(s)
Cannabidiol , Receptors, Cannabinoid , Receptors, G-Protein-Coupled , Receptors, Presynaptic , Animals , Azabicyclo Compounds , Benzoates , Bicuculline/pharmacology , Calcium/metabolism , Cannabidiol/metabolism , Cannabidiol/pharmacology , Kainic Acid/metabolism , Kainic Acid/pharmacology , Neurotransmitter Agents/pharmacology , RNA, Messenger/metabolism , Rats , Receptors, Cannabinoid/metabolism , Receptors, Dopamine D1/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Presynaptic/metabolism , Substance P/metabolism , Substantia Nigra/metabolism , Thapsigargin/metabolism , Thapsigargin/pharmacology , gamma-Aminobutyric Acid/metabolism
16.
Pharmacol Res ; 181: 106267, 2022 07.
Article in English | MEDLINE | ID: mdl-35643249

ABSTRACT

This systematic review examine the biological effects of CBD, a major component of therapeutic Cannabis, on human pathological and cancer cell populations of integumentary, gastro-intestinal, genital and breast, respiratory, nervous, haematopoietic and skeletal districts in terms of cell viability, proliferation, migration, apoptosis, inflammation, metastasis, and CBD receptor expression. The included studies were in English, on human cell lines and primary culture from non-healthy donors with CBD exposure as variable and no CBD exposure as control. Quality assessment was based on ToxRtool with a reliability score ranging from 15 to 18. Following the PRISMA statement 4 independent reviewers performed an electronic search using MEDLINE via PubMed, Scopus and Web of Science. From 3974 articles, 83 studies have been selected. Data showed conflicting results due to different concentration exposure, administrations and time points. CBD inhibited cell viability and proliferation in most cellular districts except the integumentary apparatus. Also a significant inhibition of migration was observed in all cell types, while an increase in apoptosis at both high and low doses (greater and less than 10 µM respectively). Considering inflammation, CBD caused an anti-inflammatory effect on nervous cells at low doses and on gastro-intestinal cells at high doses, while metastatic power was reduced even at low doses, but in a skeletal cell line there was an increased angiogenesis. CB1 receptor has been related to viability effects, CB2 to apoptosis and TRPV1 to inflammation and invasiveness. A detailed insight into these aspects would allow therapeutic use of this substance without possible side effects.


Subject(s)
Cannabidiol , Cannabis , Neoplasms , Apoptosis , Cannabidiol/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Humans , Inflammation/drug therapy , Neoplasms/drug therapy , Reproducibility of Results
17.
Planta Med ; 88(5): 389-397, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33902128

ABSTRACT

Microbial biotransformation of cannabidiol was assessed using 31 different microorganisms. Only Mucor ramannianus (ATCC 9628), Beauveria bassiana (ATCC 7195), and Absidia glauca (ATCC 22 752) were able to metabolize cannabidiol. M. ramannianus (ATCC 9628) yielded five metabolites, namely, 7,4″ß-dihydroxycannabidiol (1: ), 6ß,4″ß-dihydroxycannabidiol (2: ), 6ß,2″ß-dihydroxycannabidiol (3: ), 6ß,3″α-dihydroxycannabidiol (4: ), and 6ß,7,4″ß-trihydroxycannabidiol (5: ). B. bassiana (ATCC 7195) metabolized cannabidiol to afford six metabolites identified as 7,3″-dihydroxycannabidivarin (6: ), 7-hydroxycannabidivarin-3″-carboxylic acid (7: ), 3″-hydroxycannabidivarin (8: ), 4″ß-hydroxycannabidiol (9: ), and cannabidivarin-3″-carboxylic acid (10: ) along with compound 1: . Incubation of cannabidiol with A. glauca (ATCC 22 752) yielded three metabolites, 6α,3″-dihyroxycannabidivarin (11: ), 6ß,3″-dihyroxycannabidivarin (12: ), and compound 6: . All compounds were evaluated for their antimicrobial and antiprotozoal activity.


Subject(s)
Beauveria , Cannabidiol , Cannabis , Beauveria/metabolism , Biotransformation , Cannabidiol/metabolism , Cannabis/metabolism , Carboxylic Acids/metabolism
18.
Planta Med ; 88(12): 1047-1059, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34638139

ABSTRACT

THC, CBD, and CBN were reported as promising candidates against SARS-CoV2 infection, but the mechanism of action of these three cannabinoids is not understood. This study aims to determine the mechanism of action of THC, CBD, and CBN by selecting two essential targets that directly affect the coronavirus infections as viral main proteases and human angiotensin-converting enzyme2. Tested THC and CBD presented a dual-action action against both selected targets. Only CBD acted as a potent viral main protease inhibitor at the IC50 value of 1.86 ± 0.04 µM and exhibited only moderate activity against human angiotensin-converting enzyme2 at the IC50 value of 14.65 ± 0.47 µM. THC acted as a moderate inhibitor against both viral main protease and human angiotensin-converting enzymes2 at the IC50 value of 16.23 ± 1.71 µM and 11.47 ± 3.60 µM, respectively. Here, we discuss cannabinoid-associated antiviral activity mechanisms based on in silico docking studies and in vitro receptor binding studies.


Subject(s)
COVID-19 Drug Treatment , Cannabidiol , Cannabinoids , Angiotensin-Converting Enzyme 2 , Angiotensins , Antiviral Agents/pharmacology , Cannabidiol/metabolism , Cannabinoids/metabolism , Cannabinol/metabolism , Cannabinol/pharmacology , Defense Mechanisms , Dronabinol/metabolism , Dronabinol/pharmacology , Humans , Peptide Hydrolases , Protease Inhibitors/pharmacology , RNA, Viral , SARS-CoV-2
19.
Nucleic Acids Res ; 48(W1): W477-W487, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32313937

ABSTRACT

To increase the number of value-added chemicals that can be produced by metabolic engineering and synthetic biology, constructing metabolic space with novel reactions/pathways is crucial. However, with the large number of reactions that existed in the metabolic space and complicated metabolisms within hosts, identifying novel pathways linking two molecules or heterologous pathways when engineering a host to produce a target molecule is an arduous task. Hence, we built a user-friendly web server, novoPathFinder, which has several features: (i) enumerate novel pathways between two specified molecules without considering hosts; (ii) construct heterologous pathways with known or putative reactions for producing target molecule within Escherichia coli or yeast without giving precursor; (iii) estimate novel pathways with considering several categories, including enzyme promiscuity, Synthetic Complex Score (SCScore) and LD50 of intermediates, overall stoichiometric conversions, pathway length, theoretical yields and thermodynamic feasibility. According to the results, novoPathFinder is more capable to recover experimentally validated pathways when comparing other rule-based web server tools. Besides, more efficient pathways with novel reactions could also be retrieved for further experimental exploration. novoPathFinder is available at http://design.rxnfinder.org/novopathfinder/.


Subject(s)
Biosynthetic Pathways , Metabolic Engineering , Software , Algorithms , Benzaldehydes/metabolism , Cannabidiol/metabolism , Escherichia coli/metabolism , Internet , Saccharomyces cerevisiae/metabolism
20.
Phytochem Anal ; 33(8): 1257-1265, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36372393

ABSTRACT

INTRODUCTION: There are several cannabidiol (CBD) transdermal patches available on the market. However, none are FDA-approved. Furthermore, not much evidence has been published about CBD release and skin permeation from such patches, so the effectiveness and reliability remain unclear. OBJECTIVES: We aimed to develop a method to determine the in vitro release and skin permeation of CBD from transdermal patches using Franz cell diffusion in combination with quantitative 1 H-NMR (qNMR). MATERIALS AND METHODS: The study was conducted on CBD patches with known CBD content and six different commercially available or market-ready CBD patches using a Franz cell with a Strat-M™ membrane and with samples taken directly from the transdermal patch for qNMR analysis. RESULTS: The use of qNMR yielded an average recovery of 100% ± 7% when samples with known CBD content were tested. Results from the testing of six commercially available patches indicated that five out of six patches did not contain the CBD amount stated by the manufacturer according to a ± 10% variance margin, of which four patches were under-labeled and one was over-labeled. The release rate of patches was determined, and significant differences between the patches were shown. Maximum release of CBD was calculated to occur after 39 to 70 h. CONCLUSION: The established method was proven to be a reliable means of determining the quantity and release of CBD from transdermal patches and can be used to verify CBD content and release rate in transdermal patches.


Subject(s)
Cannabidiol , Transdermal Patch , Skin Absorption , Cannabidiol/metabolism , Reproducibility of Results , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL