Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 89: 741-768, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569526

ABSTRACT

Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Glycolipids/biosynthesis , O Antigens/biosynthesis , Polyprenols/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Carbon-Oxygen Ligases/chemistry , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Protein Structure, Secondary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Teichoic Acids/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
2.
Plant Physiol ; 195(4): 2877-2890, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38630859

ABSTRACT

Thousands of barley (Hordeum vulgare L.) mutants have been isolated over the last century, and many are stored in gene banks across various countries. In the present work, we developed a pipeline to efficiently identify causal mutations in barley. The pipeline is also efficient for mutations located in centromeric regions. Through bulked segregant analyses using whole genome sequencing of pooled F2 seedlings, we mapped 2 mutations and identified a limited number of candidate genes. We applied the pipeline on F2 mapping populations made from xan-j.59 (unknown mutation) and xan-l.82 (previously known). The Xantha-j (xan-j) gene was identified as encoding chlorophyll synthase, which catalyzes the last step in the chlorophyll biosynthetic pathway: the addition of a phytol moiety to the propionate side chain of chlorophyllide. Key amino acid residues in the active site, including the binding sites of the isoprenoid and chlorophyllide substrates, were analyzed in an AlphaFold2-generated structural model of the barley chlorophyll synthase. Three allelic mutants, xan-j.19, xan-j.59, and xan-j.64, were characterized. While xan-j.19 is a 1 base pair deletion and xan-j.59 is a nonsense mutation, xan-j.64 causes an S212F substitution in chlorophyll synthase. Our analyses of xan-j.64 and treatment of growing barley with clomazone, an inhibitor of chloroplastic isoprenoid biosynthesis, suggest that binding of the isoprenoid substrate is a prerequisite for the stable maintenance of chlorophyll synthase in the plastid. We further suggest that chlorophyll synthase is a sensor for coordinating chlorophyll and isoprenoid biosynthesis.


Subject(s)
Chlorophyll , Hordeum , Mutation , Plant Proteins , Hordeum/genetics , Hordeum/enzymology , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Chlorophyll/metabolism , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Genes, Plant , Chromosome Mapping
3.
J Bacteriol ; 203(16): e0023021, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34060906

ABSTRACT

Resistance in VanA-type vancomycin-resistant Enterococcus faecium (VREfm) is due to an inducible gene cassette encoding seven proteins (vanRSHAXYZ). This provides for an alternative peptidoglycan (PG) biosynthesis pathway whereby D-Ala-D-Ala is replaced by D-Ala-d-lactate (Lac), to which vancomycin cannot bind effectively. This study aimed to quantify cytoplasmic levels of normal and alternative pathway PG intermediates in VanA-type VREfm by liquid chromatography-tandem mass spectrometry before and after vancomycin exposure and to correlate these changes with changes in vanA operon mRNA levels measured by real-time quantitative PCR (RT-qPCR). Normal pathway intermediates predominated in the absence of vancomycin, with low levels of alternative pathway intermediates. Extended (18-h) vancomycin exposure resulted in a mixture of the terminal normal (UDP-N-acetylmuramic acid [NAM]-l-Ala-D-Glu-l-Lys-D-Ala-D-Ala [UDP-Penta]) and alternative (UDP-NAM-l-Ala-γ-D-Glu-l-Lys-D-Ala-D-Lac [UDP-Pentadepsi]) pathway intermediates (2:3 ratio). Time course analyses revealed normal pathway intermediates responding rapidly (peaking in 3 to 10 min) and alternative pathway intermediates responding more slowly (peaking in 15 to 45 min). RT-qPCR demonstrated that vanA operon mRNA transcript levels increased rapidly after exposure, reaching maximal levels in 15 min. To resolve the effect of increased van operon protein expression on PG metabolite levels, linezolid was used to block protein biosynthesis. Surprisingly, linezolid dramatically reduced PG intermediate levels when used alone. When used in combination with vancomycin, linezolid only modestly reduced alternative UDP-linked PG intermediate levels, indicating substantial alternative pathway presence before vancomycin exposure. Comparison of PG intermediate levels between VREfm, vancomycin-sensitive Enterococcus faecium, and methicillin-resistant Staphylococcus aureus after vancomycin exposure demonstrated substantial differences between S. aureus and E. faecium PG biosynthesis pathways. IMPORTANCE VREfm is highly resistant to vancomycin due to the presence of a vancomycin resistance gene cassette. Exposure to vancomycin induces the expression of genes in this cassette, which encode enzymes that provide for an alternative PG biosynthesis pathway. In VanA-type resistance, these alternative pathway enzymes replace the D-Ala-D-Ala terminus of normal PG intermediates with D-Ala-D-Lac terminated intermediates, to which vancomycin cannot bind. While the general features of this resistance mechanism are well known, the details of the choreography between vancomycin exposure, vanA gene induction, and changes in the normal and alternative pathway intermediate levels have not been described previously. This study comprehensively explores how VREfm responds to vancomycin exposure at the mRNA and PG intermediate levels.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Enterococcus faecium/drug effects , Peptidoglycan/metabolism , RNA, Messenger/genetics , Vancomycin/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Cell Wall/drug effects , Cell Wall/genetics , Cell Wall/metabolism , Enterococcus faecium/enzymology , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Operon/drug effects , RNA, Messenger/metabolism , Vancomycin Resistance
4.
Biochem J ; 477(20): 4021-4036, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32990304

ABSTRACT

Chlorophyll synthase (ChlG) catalyses a terminal reaction in the chlorophyll biosynthesis pathway, attachment of phytol or geranylgeraniol to the C17 propionate of chlorophyllide. Cyanobacterial ChlG forms a stable complex with high light-inducible protein D (HliD), a small single-helix protein homologous to the third transmembrane helix of plant light-harvesting complexes (LHCs). The ChlG-HliD assembly binds chlorophyll, ß-carotene, zeaxanthin and myxoxanthophyll and associates with the YidC insertase, most likely to facilitate incorporation of chlorophyll into translated photosystem apoproteins. HliD independently coordinates chlorophyll and ß-carotene but the role of the xanthophylls, which appear to be exclusive to the core ChlG-HliD assembly, is unclear. Here we generated mutants of Synechocystis sp. PCC 6803 lacking specific combinations of carotenoids or HliD in a background with FLAG- or His-tagged ChlG. Immunoprecipitation experiments and analysis of isolated membranes demonstrate that the absence of zeaxanthin and myxoxanthophyll significantly weakens the interaction between HliD and ChlG. ChlG alone does not bind carotenoids and accumulation of the chlorophyllide substrate in the absence of xanthophylls indicates that activity/stability of the 'naked' enzyme is perturbed. In contrast, the interaction of HliD with a second partner, the photosystem II assembly factor Ycf39, is preserved in the absence of xanthophylls. We propose that xanthophylls are required for the stable association of ChlG and HliD, acting as a 'molecular glue' at the lateral transmembrane interface between these proteins; roles for zeaxanthin and myxoxanthophyll in ChlG-HliD complexation are discussed, as well as the possible presence of similar complexes between LHC-like proteins and chlorophyll biosynthesis enzymes in plants.


Subject(s)
Carbon-Oxygen Ligases/metabolism , Chlorophyll/metabolism , Cyanobacteria/metabolism , Light-Harvesting Protein Complexes/metabolism , Xanthophylls/metabolism , Chlorophyll/chemistry , Chromatography, High Pressure Liquid , Cyanobacteria/enzymology , Light , Mutation , Photosystem II Protein Complex/metabolism , Protein Binding , Proteomics , Recombinant Proteins , Synechocystis/genetics , Synechocystis/metabolism , Xanthophylls/chemistry , Zeaxanthins/genetics , Zeaxanthins/metabolism
5.
J Biol Chem ; 293(46): 17985-17996, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30237166

ABSTRACT

Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.


Subject(s)
Alanine/metabolism , Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Staphylococcus aureus/metabolism , Teichoic Acids/biosynthesis , Teichoic Acids/metabolism , Thiolester Hydrolases/metabolism , Alanine/genetics , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/metabolism , Carrier Proteins/metabolism , Enzyme Assays , Histidine/chemistry , Kinetics , Membrane Transport Proteins/metabolism , Mutagenesis, Site-Directed , Mutation , Serine/chemistry , Staphylococcus aureus/enzymology , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics
6.
Mol Microbiol ; 110(1): 95-113, 2018 10.
Article in English | MEDLINE | ID: mdl-30047569

ABSTRACT

WaaL is an inner membrane glycosyltransferase that catalyzes the transfer of O-antigen polysaccharide from its lipid-linked intermediate to a terminal sugar of the lipid A-core oligosaccharide, a conserved step in lipopolysaccharide biosynthesis. Ligation occurs at the periplasmic side of the bacterial cell membrane, suggesting the catalytic region of WaaL faces the periplasm. Establishing the membrane topology of the WaaL protein family will enable understanding its mechanism and exploit it as a potential antimicrobial target. Applying oxidative labeling of native methionine/cysteine residues, we previously validated a topological model for Escherichia coli WaaL, which differs substantially from the reported topology of the Pseudomonas aeruginosa WaaL, derived from the analysis of truncated protein reporter fusions. Here, we examined the topology of intact E. coli and P. aeruginosa WaaL proteins by labeling engineered cysteine residues with the membrane-impermeable sulfhydryl reagent polyethylene glycol maleimide (PEG-Mal). The accessibility of PEG-Mal to targeted engineered cysteine residues in both E. coli and P. aeruginosa WaaL proteins demonstrates that both ligases share similar membrane topology. Further, we also demonstrate that P. aeruginosa WaaL shares similar functional properties with E. coli WaaL and that E. coli WaaL may adopt a functional dimer conformation.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , O Antigens/metabolism , Pseudomonas aeruginosa/enzymology , Alanine/genetics , Bacterial Proteins/chemistry , Carbon-Oxygen Ligases/chemistry , Carbon-Oxygen Ligases/genetics , Cell Membrane/metabolism , Cysteine/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Lipid A/metabolism , Maleimides/chemistry , Maleimides/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Periplasm/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Pseudomonas aeruginosa/genetics
7.
Chembiochem ; 20(6): 764-769, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30556942

ABSTRACT

Armeniaspirols are potent antibiotics containing an unusual spiro[4.4]non-8-ene moiety. Herein, we describe the cloning and functional analysis of the armeniaspirol biosynthetic gene cluster. Gene-inactivation studies and subsequent isolation of previously unknown biosynthetic intermediates shed light on intriguing biosynthetic details. Remarkably, deletion of ams15, which encodes a protein bearing a flavin-binding domain, led to the accumulation of several non-spiro intermediates with various numbers of chlorine substitutions on the pyrrole moiety. The di- and trichloropyrrole species were converted by Streptomyces albus expressing Ams15 into mono- and dichlorinated spiro derivatives, respectively. In addition, in vitro conversion of these non-spiro intermediates into des-N-methyl spiro intermediates by the cell lysate of the same recombinant strain proved Ams15 to be responsible for spiro formation through oxidative dehalogenation.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Pyrroles/metabolism , Spiro Compounds/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Halogenation , Molecular Structure , Multigene Family , Oxidation-Reduction , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Pyrroles/chemistry , Spiro Compounds/chemistry , Streptomyces/genetics , Streptomyces/metabolism
8.
Photosynth Res ; 140(1): 77-92, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30607859

ABSTRACT

In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound ß-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.


Subject(s)
Carbon-Oxygen Ligases/metabolism , Chlorophyll/analogs & derivatives , Cyanobacteria/enzymology , Photosystem I Protein Complex/metabolism , Synechococcus/enzymology , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/isolation & purification , Chlorophyll/metabolism , Chlorophyll A/metabolism , Cyanobacteria/genetics , Cyanobacteria/physiology , Cyanobacteria/radiation effects , Gene Expression , Genetic Variation , Light , Mutagenesis, Site-Directed , Pheophytins/metabolism , Photosynthesis , Photosystem II Protein Complex/genetics , Phycobilisomes , Synechococcus/genetics , Synechococcus/physiology , Synechococcus/radiation effects
9.
Ecotoxicol Environ Saf ; 183: 109542, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31401333

ABSTRACT

Mercury (Hg) is one of the most toxic heavy metals with strong negative effects on the plant growth and functions. Salicylic acid (SA) is an important signaling molecule which confers tolerance to metal toxicities but little is known about the mechanisms of SA-mediated alleviation of Hg stress. Here, physiochemical and molecular responses of Hg-stressed lemon balm (Melissa officinalis L.) to exogenous SA were investigated to reveal SA-induced tolerance mechanisms. The CHLG gene of lemon balm which encodes chlorophyll synthase was also partly isolated and sequenced for the first time. Hg stress markedly decreased growth, relative water content (RWC) and photosynthetic pigments of the plant. However, exogenous SA significantly mitigated the toxic effects of mercury on the growth and RWC and enabled plant to maintain chlorophylls to the similar levels of unstressed plants. Hg-induced oxidative damage was also reduced following treatment with SA and treated plants showed the lower extent of lipid peroxidation which was accompanied with the higher free proline and phenolics contents and elevation of the antioxidant capacity as evidenced by DPPH radical scavenging and FRAP assays. Moreover, SA treatment resulted in up-regulation of CHLG and phenylalanine ammonia-lyase (PAL) genes as key components of chlorophyll and phenylpropanoid routes, respectively. Our results collectively indicate the ameliorative effects of exogenous SA in mercury toxicity through coordinated alternations in plant metabolic processes which provide insights to better understand mechanisms of Hg tolerance in lemon balm plant.


Subject(s)
Antioxidants/metabolism , Environmental Pollutants/toxicity , Melissa/drug effects , Mercury/toxicity , Photosynthesis/drug effects , Salicylic Acid/pharmacology , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Chlorophyll/metabolism , Environmental Pollutants/metabolism , Gene Expression/drug effects , Lipid Peroxidation/drug effects , Melissa/growth & development , Melissa/metabolism , Mercury/metabolism , Oxidation-Reduction , Phenols/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism
10.
Microb Pathog ; 124: 322-331, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30165113

ABSTRACT

Aliivibrio salmonicida is the causative agent of cold-water vibriosis, a hemorrhagic septicemia of salmonid fish. The bacterium has been shown to rapidly enter the fish bloodstream, and proliferation in blood is seen after a period of latency. Although the pathogenesis of the disease is largely unknown, shedding of high quantities of outer-membrane complex VS-P1, consisting of LPS and a protein moiety, has been suggested to act as decoy and contribute to immunomodulation. To investigate the role of LPS in the pathogenesis, we constructed O-antigen deficient mutants by knocking out the gene encoding O-antigen ligase waaL. As this gene exists in two copies in the Al. salmonicida genome, we constructed single and double in-frame deletion mutants to explore potential effects of copy number variation. Our results demonstrate that the LPS structure of Al. salmonicida is essential for virulence in Atlantic salmon. As the loss of O-antigen did not influence invasive properties of the bacterium, the role of LPS in virulence applies to later stages of the pathogenesis. One copy of waaL was sufficient for O-antigen ligation and virulence in experimental models. However, as a non-significant decrease in mortality was observed after immersion challenge with a waaL single mutant, it is tempting to suggest that multiple copies of the gene are beneficial to the bacterium at lower challenge doses. The loss of O-antigen was not found to affect serum survival in vitro, but quantification of bacteria in blood following immersion challenge suggested a role in in vivo survival. Furthermore, fish challenged with the waaL double mutant induced a more transient immune response than fish challenged with the wild type strain. Whether the reduction in virulence following the loss of waaL is caused by altered immunomodulative properties or impaired survival remains unclear. However, our data demonstrate that LPS is crucial for development of disease.


Subject(s)
Aliivibrio salmonicida/metabolism , Aliivibrio salmonicida/pathogenicity , Fish Diseases/microbiology , Hemorrhagic Septicemia/veterinary , O Antigens/metabolism , Vibrio Infections/veterinary , Aliivibrio salmonicida/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , DNA Copy Number Variations , Hemorrhagic Septicemia/microbiology , O Antigens/genetics , Salmo salar , Vibrio Infections/microbiology , Virulence
11.
Nucleic Acids Res ; 44(3): e24, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26400159

ABSTRACT

The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds.


Subject(s)
Carbon-Oxygen Ligases/genetics , High-Throughput Screening Assays/methods , Mitochondrial Proteins/genetics , Trypanosoma brucei brucei/enzymology , Animals , Carbon-Oxygen Ligases/metabolism , Catalytic Domain , Kinetics , Mitochondrial Proteins/metabolism , Suramin/metabolism
12.
J Biol Chem ; 291(4): 1735-1750, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26586916

ABSTRACT

We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Peptides/metabolism , Bacillus subtilis/chemistry , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Biocatalysis , Carbon-Oxygen Ligases/chemistry , Carbon-Oxygen Ligases/genetics , Substrate Specificity
13.
Plant Cell ; 26(3): 1267-79, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24681617

ABSTRACT

Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Cyanobacteria/enzymology , Carotenoids/metabolism , Chlorophyll/metabolism , Protein Binding
14.
Foodborne Pathog Dis ; 14(4): 195-201, 2017 04.
Article in English | MEDLINE | ID: mdl-28346839

ABSTRACT

Increased enterococcal infections in hospitals and multidrug-resistant and vancomycin-resistant enterococci (VRE) isolated from humans, animals, and food sources raised public health concern on the presence of VRE in multiple sources. We performed a comparative analysis of the antimicrobial resistance and genetics of VRE isolates derived from fresh produce and human fecal samples. Of 389 Enterococcus isolates, 8 fecal and 3 produce isolates were resistant to vancomycin and teicoplanin; all harbored vanA gene. The VRE isolates showed multidrug-resistant properties. The isolates from fresh produce in this study showed to have the common shared characteristics with the isolates from humans by the results of antimicrobial resistance, multilocus sequence typing, and Tn 1546 transposon analysis. Therefore, VRE isolates from fresh produce are likely related to VRE derived from humans. The results suggested that VRE may contaminate vegetables through the environment, and the contaminated vegetables could then act as a vehicle for human infections. Ongoing nationwide surveillance of antibiotic resistance and the promotion of the proper use of antibiotics are necessary.


Subject(s)
Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Crops, Agricultural/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Feces/microbiology , Vancomycin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Typing Techniques , Carbon-Oxygen Ligases/metabolism , DNA Transposable Elements , DNA, Bacterial/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis/isolation & purification , Enterococcus faecium/isolation & purification , Food Contamination/analysis , Food Microbiology , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Teicoplanin/pharmacology , Vancomycin/pharmacology
15.
Antimicrob Agents Chemother ; 60(4): 2209-21, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26810654

ABSTRACT

Chlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistantE. faecium(VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed thatvanAupregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. ThevanHpromoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. UsingvanHreporter experiments withBacillus subtilisand deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion ofvanRdid not result in increased chlorhexidine susceptibility, demonstrating thatvanHAXinduction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Bacterial Proteins/agonists , Chlorhexidine/analogs & derivatives , Enterococcus faecium/drug effects , Gene Expression Regulation, Bacterial , Vancomycin Resistance/drug effects , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/genetics , Carbon-Oxygen Ligases/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Chlorhexidine/pharmacology , Daptomycin/pharmacology , Enterococcus faecium/genetics , Enterococcus faecium/growth & development , Enterococcus faecium/metabolism , Gene Expression Profiling , Microbial Sensitivity Tests , Transcription Factors/genetics , Transcription Factors/metabolism , Vancomycin/pharmacology , Vancomycin Resistance/genetics
16.
Antimicrob Agents Chemother ; 60(8): 4930-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27270282

ABSTRACT

The increasing resistance of clinical pathogens against the glycopeptide antibiotic vancomycin, a last-resort drug against infections with Gram-positive pathogens, is a major problem in the nosocomial environment. Vancomycin inhibits peptidoglycan synthesis by binding to the d-Ala-d-Ala terminal dipeptide moiety of the cell wall precursor lipid II. Plasmid-transferable resistance is conferred by modification of the terminal dipeptide into the vancomycin-insensitive variant d-Ala-d-Lac, which is produced by VanA. Here we show that exogenous d-Ala competes with d-Lac as a substrate for VanA, increasing the ratio of wild-type to mutant dipeptide, an effect that was augmented by several orders of magnitude in the absence of the d-Ala-d-Ala peptidase VanX. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that high concentrations of d-Ala led to the production of a significant amount of wild-type cell wall precursors, while vanX-null mutants produced primarily wild-type precursors. This enhanced the efficacy of vancomycin in the vancomycin-resistant model organism Streptomyces coelicolor, and the susceptibility of vancomycin-resistant clinical isolates of Enterococcus faecium (VRE) increased by up to 100-fold. The enhanced vancomycin sensitivity of S. coelicolor cells correlated directly to increased binding of the antibiotic to the cell wall. Our work offers new perspectives for the treatment of diseases associated with vancomycin-resistant pathogens and for the development of drugs that target vancomycin resistance.


Subject(s)
Alanine/metabolism , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Drug Resistance, Microbial/drug effects , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Vancomycin Resistance/drug effects , Anti-Bacterial Agents/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Enterococcus faecium/drug effects , Enterococcus faecium/metabolism , Glycopeptides/metabolism , Ligases/metabolism , Peptidoglycan/metabolism , Streptomyces coelicolor/drug effects , Streptomyces coelicolor/metabolism , Vancomycin/pharmacology
17.
Bioconjug Chem ; 27(10): 2418-2423, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27611478

ABSTRACT

The emergence of antibiotic-resistant bacteria is a major public health threat, and therefore novel antimicrobial targets and strategies are urgently needed. In this regard, cell-wall-associated proteases are envisaged as interesting antimicrobial targets due to their role in cell wall remodeling. Here, we describe the discovery and characteristics of a protease substrate that is processed by a bacterial cell-wall-associated protease. Stationary-phase grown Gram-positive bacteria were incubated with fluorogenic protease substrates, and their cleavage and covalent incorporation into the cell wall was analyzed. Of all of the substrates used, only one substrate, containing a valine-leucine-lysine (VLK) motif, was covalently incorporated into the bacterial cell wall. Linkage of the VLK-peptide substrate appeared unrelated to sortase A and B activity, as both wild-type and sortase A and B knock out Staphylococcus aureus strains incorporated this substrate into their cell wall with comparable efficiency. Additionally, the VLK-peptide substrate showed significantly higher incorporation in the cell wall of VanA-positive Enterococcus faecium strains than in VanB- and vancomycin-susceptible isolates. In conclusion, the VLK-peptide substrate identified in this study shows promise as a vehicle for targeting antimicrobial compounds and diagnostic contrast agents to the bacterial cell wall.


Subject(s)
Cell Wall/chemistry , Gram-Positive Bacteria/cytology , Peptides/pharmacokinetics , Amino Acid Motifs , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Cell Wall/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Enterococcus faecium/cytology , Enterococcus faecium/drug effects , Enterococcus faecium/metabolism , Gram-Positive Bacteria/metabolism , Leucine/chemistry , Lysine/chemistry , Microbial Sensitivity Tests , Staphylococcus aureus/cytology , Staphylococcus aureus/genetics , Valine/chemistry
18.
Plant Physiol ; 168(4): 1503-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26048882

ABSTRACT

Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Carbon-Oxygen Ligases/genetics , Epigenesis, Genetic , Tocopherols/metabolism , Vitamin E/biosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , RNA Interference , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Seeds/metabolism
19.
Plant Physiol ; 169(2): 1307-17, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269547

ABSTRACT

The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.


Subject(s)
Chlorophyll/biosynthesis , Chlorophyllides/metabolism , Phosphatidylglycerols/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Chlorophyll/metabolism , Light-Harvesting Protein Complexes/metabolism , Phosphatidylglycerols/genetics , Photosystem I Protein Complex/metabolism , Protochlorophyllide/metabolism , Synechocystis/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
20.
J Chem Inf Model ; 56(9): 1762-75, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27579990

ABSTRACT

The d-Ala:d-Lac ligase, VanA, plays a critical role in the resistance of vancomycin. Indeed, it is involved in the synthesis of a peptidoglycan precursor, to which vancomycin cannot bind. The reaction catalyzed by VanA requires the opening of the so-called "ω-loop", so that the substrates can enter the active site. Here, the conformational landscape of VanA is explored by an enhanced sampling approach: the temperature-accelerated molecular dynamics (TAMD). Analysis of the molecular dynamics (MD) and TAMD trajectories recorded on VanA permits a graphical description of the structural and kinetics aspects of the conformational space of VanA, where the internal mobility and various opening modes of the ω-loop play a major role. The other important feature is the correlation of the ω-loop motion with the movements of the opposite domain, defined as containing the residues A149-Q208. Conformational and kinetic clusters have been determined and a path describing the ω-loop opening was extracted from these clusters. The determination of this opening path, as well as the relative importance of hydrogen bonds along the path, permit one to propose some key residue interactions for the kinetics of the ω-loop opening.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Molecular Dynamics Simulation , Amino Acid Sequence , Bacterial Proteins/chemistry , Carbon-Oxygen Ligases/chemistry , Computer Graphics , Kinetics , Ligands , Molecular Docking Simulation , Protein Conformation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL