ABSTRACT
Bacteria have two routes for the l-methionine biosynthesis. In one route called the direct sulfuration pathway, acetylated l-homoserine is directly converted into l-homocysteine. The reaction using H2S as the second substrate is catalyzed by a pyridoxal 5'-phosphate-dependent enzyme, O-acetylhomoserine sulfhydrylase (OAHS). In the present study, we determined the enzymatic functions and the structures of OAHS from Lactobacillus plantarum (LpOAHS). The LpOAHS enzyme exhibited the highest catalytic activity under the weak acidic pH condition. In addition, crystallographic analysis revealed that the enzyme takes two distinct structures, open and closed forms. In the closed form, two acidic residues are sterically clustered. The proximity may cause the electrostatic repulsion, inhibiting the formation of the closed form under the neutral to the basic pH conditions. We concluded that the pH-dependent regulation mechanism using the two acidic residues contributes to the acidophilic feature of the enzyme. IMPORTANCE: In the present study, we can elucidate the pH-dependent regulation mechanism of the acidophilic OAHS. The acidophilic feature of the enzyme is caused by the introduction of an acidic residue to the neighborhood of the key acidic residue acting as a switch for the structural interconversion. The strategy may be useful in the field of protein engineering to change the optimal pH of the enzymes. In addition, this study may be useful for the development of antibacterial drugs because the l-methionine synthesis essential for bacteria is inhibited by the OAHS inhibitors. The compounds that can inhibit the interconversion between the open and closed forms of OAHS may become antibacterial drugs.
Subject(s)
Bacterial Proteins , Lactobacillus plantarum , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Hydrogen-Ion Concentration , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Carbon-Oxygen LyasesABSTRACT
Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE: Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.
Subject(s)
Bacterial Proteins , Salmonella typhimurium , Animals , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Oxygen Lyases , Gene Expression Regulation, Bacterial , Genomic Islands , Macrophages/microbiology , RAW 264.7 Cells , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/genetics , Salmonella typhimurium/physiology , VirulenceABSTRACT
The roles of cytosolic O-acetylserine-(thiol)-lyase A (OASTLA), chloroplastic OASTLB, and mitochondrial OASTLC in plant selenate resistance were studied in Arabidopsis. Impairment in OASTLA and OASTLB resulted in reduced biomass, chlorophyll and soluble protein content compared with selenate-treated OASTLC-impaired and wild-type plants. The generally lower total selenium (Se), protein-Se, organic-sulfur and protein-sulfur (S) content in oastlA and oastlB compared with wild-type and oastlC leaves indicated that Se accumulation was not the main cause for the stress symptoms in these mutants. Notably, the application of selenate positively induced S-starvation markers and the OASTLs, followed by increased sulfite reductase, sulfite oxidase activities, and increased sulfite and sulfide concentrations. Taken together, our results indicate a futile anabolic S-starvation response that resulted in lower glutathione and increased oxidative stress symptoms in oastlA and oastlB mutants. In-gel assays of l-cysteine and l-seleno-cysteine, desulfhydrase activities revealed that two of the three OASTL activity bands in each of the oastl single mutants were enhanced in response to selenate, whereas the impaired proteins exhibited a missing activity band. The absence of differently migrated activity bands in each of the three oastl mutants indicates that these OASTLs are major components of desulfhydrase activity, degrading l-cysteine and l-seleno-cysteine in Arabidopsis.
Subject(s)
Arabidopsis , Lyases , Selenium , Arabidopsis/metabolism , Carbon-Oxygen Lyases/metabolism , Cysteine/metabolism , Lyases/metabolism , Selenic Acid , Selenium/metabolism , Serine/analogs & derivatives , Sulfhydryl Compounds/metabolism , Sulfites/metabolism , Sulfur/metabolismABSTRACT
MqnD catalyzes the conversion of cyclic dehypoxanthine futalosine (6) to 5,8-dihydroxy-2-naphthoic acid (7) and an uncharacterized product. This study describes a chemoenzymatic synthesis of 6. This synthesis achieved a 2-fold yield enhancement by using titanium(III) citrate as the reducing agent and another 5-fold yield enhancement using a fluorinated analogue of dehypoxanthine futalosine (5) that was converted to 6 by an ipso substitution mechanism. This synthetic route enabled the synthesis of 6 in sufficient quantity to identify the second reaction product and to determine that the MqnD-catalyzed reaction proceeds by a hemiacetal ring opening-tautomerization-retroaldol sequence.
Subject(s)
Bacterial Proteins/chemistry , Carbon-Oxygen Lyases/chemistry , Nucleosides/chemistry , Bacillus/enzymology , Models, Chemical , Nucleosides/chemical synthesis , Vitamin K 2/metabolismABSTRACT
The synthesis of essential amino acids in plants is pivotal for their viability and growth, and these cellular pathways are therefore targeted for the discovery of new molecules for weed control. Herein, we describe the discovery and design of small molecule inhibitors of cystathionine gamma-synthase, a key enzyme in the biosynthesis of methionine. Based on in silico screening and filtering of a large molecular database followed by the in vitro selection of molecules, we identified small molecules capable of binding the target enzyme. Molecular modelling of the interaction and direct biophysical binding enabled us to explore a focussed chemical expansion set of molecules characterized by an active phenyl-benzamide chemical group. These molecules are bio-active and efficiently inhibit the viability of BY-2 tobacco cells and seedlings growth of Arabidopsis thaliana on agar plates.
Subject(s)
Arabidopsis , Carbon-Oxygen Lyases , Methionine , NicotianaABSTRACT
The gene NT01CX_1210 of pathogenic bacterium Clostridium novyi annotated as encoding O-acetylhomoserine sulfhydrylase was cloned and expressed in Escherichia coli. The gene product having O-acetylhomoserine sulfhydrylase activity was purified to homogeneity. The protein showed molecular mass of approximately 184 kDa for the native form and 46 kDa for the subunit. The enzyme catalyzes the γ-substitution reaction of O-acetylhomoserine with maximum activity at pH 7.5. Analysis of C. novyi genome allowed us to suggest that there is only one way for the synthesis of l-methionine in the bacterium. The data obtained may provide the basis for further study of the role of OAHS in Clostridium bacteria and an ascertainment of its mechanism.
Subject(s)
Bacterial Proteins , Carbon-Oxygen Lyases , Cloning, Molecular , Clostridium/genetics , Gene Expression , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Carbon-Oxygen Lyases/biosynthesis , Carbon-Oxygen Lyases/chemistry , Carbon-Oxygen Lyases/genetics , Carbon-Oxygen Lyases/isolation & purification , Clostridium/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purificationABSTRACT
Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.
Subject(s)
Antiprotozoal Agents/chemistry , Carbon-Oxygen Lyases/chemistry , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Amino Acid Sequence , Antiprotozoal Agents/pharmacology , Binding Sites , Carbon-Oxygen Lyases/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Leishmania major/enzymology , Molecular Conformation , Protein Binding , Small Molecule Libraries , Structure-Activity RelationshipABSTRACT
Pyridoxal phosphate (PLP)-dependent enzymes can catalyze transformations of l-amino acids at α, ß, and γ positions. These enzymes are frequently involved in the biosynthesis of nonproteinogenic amino acids as building blocks of natural products and are attractive biocatalysts. Here, we report the discovery of a two-step enzymatic synthesis of (2S,6S)-6-methyl pipecolate 1, from the biosynthetic pathway of citrinadin. The key enzyme CndF is PLP-dependent and catalyzes the synthesis of (S)-2-amino-6-oxoheptanoate 3 that is in equilibrium with the cyclic Schiff base. The second enzyme CndE is a stereoselective imine reductase that gives 1. Biochemical characterization of CndF showed this enzyme performs γ-elimination of O-acetyl-l-homoserine to generate the vinylglycine ketimine, which is subjected to nucleophilic attack by acetoacetate to form the new Cγ-Cδ bond in 3 and complete the γ-substitution reaction. CndF displays promiscuity toward different ß-keto carboxylate and esters. With use of an Aspergillus strain expressing CndF and CndE, feeding various alkyl-ß-keto esters led to the biosynthesis of 6-substituted l-pipecolates. The discovery of CndF expands the repertoire of reactions that can be catalyzed by PLP-dependent enzymes.
Subject(s)
Amino Acids/metabolism , Carbon-Oxygen Lyases/metabolism , Oxidoreductases/metabolism , Pipecolic Acids/metabolism , Pyridoxal Phosphate/metabolism , Amino Acids/chemistry , Biocatalysis , Carbon-Oxygen Lyases/chemistry , Molecular Structure , Oxidoreductases/chemistry , Pipecolic Acids/chemistry , Pyridoxal Phosphate/chemistryABSTRACT
Isoprenoids are an abundant and diverse class of natural products with various applications in the pharmaceutical, cosmetics and biofuel industries. A methanotroph-based biorefinery is an attractive scenario for the production of a variety of value-added compounds from methane, because methane is a promising alternative feedstock for industrial biomanufacturing. In this study, we metabolically engineered Methylotuvimicrobium alcaliphilum 20Z for de novo synthesis of a sesquiterpenoid from methane, using α-humulene as a model compound, via optimization of the native methylerythritol phosphate (MEP) pathway. Expression of codon-optimized α-humulene synthase from Zingiber zerumbet in M. alcaliphilum 20Z resulted in an initial yield of 0.04 mg/g dry cell weight. Overexpressing key enzymes (IspA, IspG, and Dxs) for debottlenecking of the MEP pathway increased α-humulene production 5.2-fold compared with the initial strain. Subsequently, redirecting the carbon flux through the Embden-Meyerhof-Parnas pathway resulted in an additional 3-fold increase in α-humulene production. Additionally, a genome-scale model using flux scanning based on enforced objective flux method was used to identify potential overexpression targets to increase flux towards isoprenoid production. Several target reactions from cofactor synthesis pathways were probed and evaluated for their effects on α-humulene synthesis, resulting in α-humulene yield up to 0.75 mg/g DCW with 18.8-fold enhancement from initial yield. This study first demonstrates production of a sesquiterpenoid from methane using methanotrophs as the biocatalyst and proposes potential strategies to enhance production of sesquiterpenoid and related isoprenoid products in engineered methanotrophic bacteria.
Subject(s)
Carbon-Oxygen Lyases , Methane/metabolism , Methylococcaceae , Monocyclic Sesquiterpenes/metabolism , Plant Proteins , Zingiber officinale/genetics , Carbon-Oxygen Lyases/genetics , Carbon-Oxygen Lyases/metabolism , Zingiber officinale/enzymology , Metabolic Engineering , Methylococcaceae/genetics , Methylococcaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolismABSTRACT
Coenzyme M is an essential coenzyme for the biochemical production of methane. This Communication reports on the identification of an enzyme catalyzing the last step in the biosynthesis of coenzyme M in methanogens. Data presented here show that the enzyme, derived from mj1681, catalyzes the conversion of the aldehyde functional group of sulfoacetaldehyde into the thiol group of 2-mercaptoethanesulfonic acid. Thus, a putative coenzyme M synthase (comF) has similarities in sequence with both MJ0100 and MJ0099 proteins previously shown to be involved in the biosynthesis of homocysteine [Allen, K. D., et al. (2015) Biochemistry 54, 3129-3132], and both reactions likely proceed by the same mechanism. In the MJ0100-catalyzed reaction, Rauch has proposed [Rauch, B. L. (2017) Biochemistry 56, 1051-1061] that MJ1526 and its homologues in other methanogens likely supply the sulfane sulfur required for the reaction.
Subject(s)
Acetaldehyde/analogs & derivatives , Mesna/metabolism , Methane/metabolism , Methanococcus/metabolism , Acetaldehyde/metabolism , Biocatalysis , Carbon-Oxygen Lyases/metabolism , Homocysteine/metabolism , Sulfhydryl Compounds/metabolism , Sulfur/metabolismABSTRACT
Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.
Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Carbon-Oxygen Lyases/metabolism , Phosphoproteins/metabolism , Protein Interaction Maps , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Carbon Cycle , Carbon-Oxygen Lyases/chemistry , Crystallography, X-Ray , Models, Molecular , Phosphoproteins/chemistry , Protein Conformation , Protein MultimerizationABSTRACT
Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.
Subject(s)
Carbon-Oxygen Lyases/metabolism , Edwardsiella/enzymology , Edwardsiella/growth & development , Host-Pathogen Interactions , Mitogen-Activated Protein Kinase 8/metabolism , eIF-2 Kinase/metabolism , Animals , Cell Line , Enterobacteriaceae Infections/microbiology , Macrophages/microbiology , Mice , ProteolysisABSTRACT
BACKGROUND: Salmonella enterica subspecies enterica is an animal and zoonotic pathogen of global importance. Cattle are a significant reservoir of human non-typhoidal salmonellosis and can suffer enteric and systemic disease owing to the ability of Salmonella to survive within the bovine lymphatic system and intestines. Contamination of food can occur due to the incorporation of contaminated peripheral lymph nodes or by direct contamination of carcasses with gut contents. It is essential to understand the mechanisms used by Salmonella to enter and persist within the bovine lymphatic system and how they differ from those required for intestinal colonization to minimize zoonotic infections. RESULTS: Transposon-directed insertion site sequencing (TraDIS) was applied to pools of mutants recovered from mesenteric lymph nodes (MLNs) draining the distal ileum of calves after oral inoculation with a library of 8550 random S. Typhimurium mini-Tn5Km2 mutants in pools of 475 mutants per calf. A total of 8315 mutants representing 2852 different genes were detected in MLNs and their in vivo fitness was calculated. Using the same improved algorithm for analysis of transposon-flanking sequences, the identity and phenotype of mutants recovered from the distal ileal mucosa of the same calves was also defined, enabling comparison with previously published data and of mutant phenotypes across the tissues. Phenotypes observed for the majority of mutants were highly significantly correlated in the two tissues. However, 32 genes were identified in which transposon insertions consistently resulted in differential fitness in the ileal wall and MLNs, suggesting niche-specific roles for these genes in pathogenesis. Defined null mutations affecting ptsN and spvC were confirmed to result in tissue-specific phenotypes in calves, thus validating the TraDIS dataset. CONCLUSIONS: This validation of the role of thousands of Salmonella genes and identification of genes with niche-specific roles in a key target species will inform the design of control strategies for bovine salmonellosis and zoonotic infections, for which efficacious and cross-protective vaccines are currently lacking.
Subject(s)
DNA Transposable Elements/genetics , Salmonella Infections/genetics , Salmonella enterica/genetics , Salmonella typhimurium/genetics , Animals , Carbon-Oxygen Lyases/genetics , Cattle , Cattle Diseases/genetics , Cattle Diseases/microbiology , Disease Reservoirs/microbiology , Humans , Ileum/microbiology , Intestines/microbiology , Lymph Nodes/microbiology , Mutation , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella enterica/pathogenicity , Salmonella typhimurium/pathogenicityABSTRACT
KEY MESSAGE: This research demonstrated the conservation and diversification of the functions of the O-acetylserine-(thiol) lyase gene family genes in Solanum lycopersicum L. Cysteine is the first sulfur-containing organic molecule generated by plants and is the precursor of many important biomolecules and defense compounds. Cysteine and its derivatives are also essential in various redox signaling-related processes. O-acetylserine(thiol)lyase (OASTL) proteins catalyze the last step of cysteine biosynthesis. Previously, researches focused mainly on OASTL proteins which were the most abundant or possessed the authentic OASTL activity, whereas few studies have ever given a comprehensive view of the functions of all the OASTL members in one specific species. Here, we characterized 8 genes belonging to the OASTL gene family from tomato genome (SlOAS2 to SlOAS9), including the sequence analyses, subcellular localization, enzymatic activity assays, expression patterns, as well as the interaction property with SATs. Apart from SlOAS3, all the other genes encoded OASTL-like proteins. Tomato OASTLs were differentially expressed during the development of tomato plants, and their encoded proteins had diverse compartmental distributions and functions. SlOAS5 and SlOAS6 catalyzed the biogenesis of cysteine in chloroplasts and in the cytosol, respectively, and this was in consistent with their interaction abilities with SlSATs. SlOAS4 catalyzed the generation of hydrogen sulfide, similar to its Arabidopsis ortholog, DES1. SlOAS2 also functioned as an L-cysteine desulfhydrase, but its expression pattern was very different from that of SlOAS4. Additionally, SlOAS8 might be a ß-cyanoalanine synthase in mitochondria, and the S-sulfocysteine synthase activity appeared lost in tomato plants. SlOAS7 exhibited a transactivational ability in yeast; while the subcellular localization of SlOAS9 was in the peroxisome and correlated with the process of leaf senescence, indicating that these two genes might have novel roles.
Subject(s)
Carbon-Oxygen Lyases/genetics , Multigene Family , Solanum lycopersicum/enzymology , Carbon-Oxygen Lyases/metabolism , Chloroplasts/metabolism , Cysteine/metabolism , Cytosol/metabolism , Lyases/genetics , Lyases/metabolism , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolismABSTRACT
Enzyme-catalyzed ß-lactone formation from ß-hydroxy acids is a crucial step in bacterial biosynthesis of ß-lactone natural products and membrane hydrocarbons. We developed a novel, continuous assay for ß-lactone synthetase activity using synthetic ß-hydroxy acid substrates with alkene or alkyne moieties. ß-Lactone formation is followed by rapid decarboxylation to form a conjugated triene chromophore for real-time evaluation by UV/Vis spectroscopy. The assay was used to determine steady-state kinetics of a long-chain ß-lactone synthetase, OleC, from the plant pathogen Xanthomonas campestris. Site-directed mutagenesis was used to test the involvement of conserved active site residues in Mg2+ and ATP binding. A previous report suggested OleC adenylated the substrate hydroxy group. Here we present several lines of evidence, including hydroxylamine trapping of the AMP intermediate, to demonstrate the substrate carboxyl group is adenylated prior to making the ß-lactone final product. A panel of nine substrate analogues were used to investigate the substrate specificity of X.â campestris OleC by HPLC and GC-MS. Stereoisomers of 2-hexyl-3hydroxyoctanoic acid were synthesized and OleC preferred the (2R,3S) diastereomer consistent with the stereo-preference of upstream and downstream pathway enzymes. This biochemical knowledge was used to guide phylogenetic analysis of the ß-lactone synthetases to map their functional diversity within the acyl-CoA synthetase, NRPS adenylation domain, and luciferase superfamily.
Subject(s)
Carbon-Oxygen Lyases/chemistry , Carbon-Oxygen Lyases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Carbon-Oxygen Lyases/genetics , Catalysis , Catalytic Domain/genetics , Enzyme Assays/methods , Hydroxy Acids/metabolism , Kinetics , Magnesium/metabolism , Models, Chemical , Mutagenesis, Site-Directed , Phylogeny , Protein Binding , Sequence Alignment , Substrate Specificity , Xanthomonas campestris/enzymologyABSTRACT
O-acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis. In this study, we report gene cloning, protein purification, and some biochemical characteristics of OAHS from Clostridioides difficile. The enzyme is a tetramer with molecular weight of 185 kDa. It possesses a high activity in the reaction of L-homocysteine synthesis, comparable to reported activities of OAHSes from other sources. OAHS activity is inhibited by metabolic end product L-methionine. L-Propargylglycine was found to be a suicide inhibitor of the enzyme. Substrate analogue Nγ -acetyl-L-2,4-diaminobutyric acid is a competitive inhibitor of OAHS with Ki = 0.04 mM. Analysis of C. difficile genome allows to suggest that the bacterium uses the way of direct sulfhydrylation for the synthesis of L-methionine. The data obtained may provide the basis for further study of the role of OAHS in the pathogenic bacterium and the development of potential inhibitors.
Subject(s)
Alkynes/metabolism , Carbon-Oxygen Lyases/metabolism , Cloning, Molecular/methods , Clostridioides difficile/enzymology , Glycine/analogs & derivatives , Methionine/biosynthesis , Pyridoxal Phosphate/metabolism , Sulfhydryl Compounds/metabolism , Amino Acid Sequence , Carbon-Oxygen Lyases/genetics , Clostridioides difficile/genetics , Genome, Bacterial , Glycine/metabolism , Sequence Homology , Substrate SpecificityABSTRACT
Upon recognition of host plants, Colletotrichum orbiculare, an anthracnose disease fungus of cucurbitaceous plants, initiates morphological differentiation, including conidial germination and appressorium formation on the cuticle layer. The series of infection processes of C. orbiculare requires enormous nutrient and energy, but the surface of the cucurbitaceous hosts is hardly nutrient-rich. Hence, C. orbiculare must exert tight management of its intracellular nutrients in order to properly induce infection-related morphogenesis. Here, we carried out a large-scale insertional mutagenesis screen using Agrobacterium tumefaciens-mediated transformation to identify novel genes involved in the pathogenicity of C. orbiculare and found that CoTHR4-encoded threonine synthase, a homolog of Saccharomyces cerevisiae THR4, is required for pathogenicity and conidiation in C. orbiculare. Threonine supplementation allowed the cothr4 mutant to produce conidia to a level equivalent to that of the wild-type. The conidia produced from the threonine-treated cothr4 mutant failed to germinate in the absence of threonine, but retained the ability to germinate and to form appressoria in the presence of threonine. However, the conidia produced from the threonine-treated cothr4 mutant remained attenuated in pathogenicity on cucumber cotyledons even in the presence of threonine. Cytorrhysis assays revealed that appressoria of the cothr4 mutant induced by exogenous threonine treatment showed low turgor generation. Taken together, these results showed that threonine synthase CoThr4 plays a pivotal role in infection-related morphogenesis during the pre-penetration stage of C. orbiculare.
Subject(s)
Carbon-Oxygen Lyases/metabolism , Colletotrichum/enzymology , Colletotrichum/pathogenicity , Morphogenesis , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Carbon-Oxygen Lyases/genetics , Colletotrichum/genetics , Cucumis sativus , Gene Expression Regulation, Fungal , Hyphae/growth & development , Infections , Mutation , Phenotype , Plant Diseases/microbiology , Saccharomyces cerevisiae/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Spores, Fungal/metabolism , Threonine/metabolism , VirulenceABSTRACT
Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2 ) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing 13 C labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.
Subject(s)
Carbon Dioxide/metabolism , Glycogen/metabolism , Propylene Glycol/metabolism , Synechocystis/metabolism , Autotrophic Processes , Bacterial Proteins/metabolism , Carbon-Oxygen Lyases/metabolism , Light , Photosynthesis , Synechocystis/enzymologyABSTRACT
Cysteine (Cys) is the first identified molecule in plant metabolism which includes both sulfur and nitrogen. It can be synthesized in three cellular compartments, containing chloroplast, cytoplasm and mitochondrion. The final step of cysteine biosynthesis is catalyzed by the O-acetylserine(thiol)lyase enzyme (OASTL, E.C. 4.2.99). In the present study, seven members of the OASTL gene family in the sorghum (Sorghum bicolor) genome were identified at a genome-wide scale and comparative bioinformatics analyses were performed between sorghum and Arabidopsis OASTLs. In all OASTL proteins, a pyridoxal-phosphate dependent domain structure (PALP, PF00291) was identified. The gene ontology annotations also revealed that all sorghum OASTL genes have KOG1252 (Cystathionine beta-synthase and related enzyme) and K01738 (cysteine synthase A) activities. In promotor sequences of OASTL genes, diverse cis-acting elements were found, including hormone and light responsiveness, abiotic stress responsiveness, and tissue-specific ones (meristem and endosperm). Sorghum OASTL genes demonstrated medium or high level expressions in anatomical parts and developmental stages based on the digital expression data. Expression of OASTL genes were also analyzed under cadmium (Cd) stress in sorghum by Real Time-quantitative PCR (RT-qPCR). The results exclusively showed that OASTL A1-2 gene was 1.12 fold up-regulated in roots, whereas cysteine synthase 26 was 2.25 fold down-regulated in leaves. The predicted 3D structure of OASTLs indicated some structural diversities as well as variations in the secondary structures.
Subject(s)
Carbon-Oxygen Lyases/genetics , Sorghum/genetics , Arabidopsis/genetics , Cadmium/adverse effects , Cadmium/pharmacology , Carbon-Oxygen Lyases/physiology , Chloroplasts/metabolism , Cysteine/biosynthesis , Gene Ontology , Genome, Plant/genetics , Plant Leaves/metabolism , Plant Roots/metabolism , Sorghum/metabolism , Stress, Physiological/genetics , Sulfhydryl Compounds/metabolism , Transcriptome/geneticsABSTRACT
Undesired browning of Parmesan cheese can occur during the latter period of ripening and cold storage despite the relative absence of reducing sugars and high temperatures typically associated with Maillard browning. Highly reactive α-dicarbonyls such as methylglyoxal (MG) are products and accelerants of Maillard browning chemistry and can result from the microbial metabolism of sugars and AA by lactic acid bacteria. We demonstrate the effects of microbially produced MG in a model Parmesan cheese extract using a strain of Lactobacillus casei 12A engineered for inducible overexpression of MG synthase (mgsA) from Thermoanaerobacterium thermosaccharolyticum HG-8. Maximum induction of plasmid-born mgsA led to 1.6 mM MG formation in Parmesan cheese extract and its distinct discoloration. The accumulation of heterocyclic amines including ß-carboline derivatives arising from mgsA expression were determined by mass spectrometry. Potential MG-contributing reaction mechanisms for the formation of heterocyclic amines are proposed. These findings implicate nonstarter lactic acid bacteria may cause browning and influence nutritional aspects of Parmesan by enzymatic conversion of triosephosphates to MG. Moreover, these findings indicate that the microbial production of MG can lead to the formation of late-stage Maillard reaction products such as melanoidin and ß-carbolines, effectively circumventing the thermal requirement of the early- and intermediate- stage Maillard reaction. Therefore, the identification and control of offending microbiota may prevent late-stage browning of Parmesan. The gene mgsA may serve as a genetic biomarker for cheeses with a propensity to undergo MG-mediated browning.