Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(25): e2205073119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696564

ABSTRACT

Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.


Subject(s)
Asclepias , Butterflies , Cardenolides , Heteroptera , Plant Defense Against Herbivory , Adenosine Triphosphatases/metabolism , Animals , Asclepias/metabolism , Butterflies/metabolism , Cardenolides/chemistry , Cardenolides/metabolism , Cardenolides/toxicity , Herbivory , Heteroptera/metabolism , Seeds/metabolism
2.
J Chem Ecol ; 50(1-2): 52-62, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37932621

ABSTRACT

Plants have evolved a diverse arsenal of defensive secondary metabolites in their evolutionary arms race with insect herbivores. In addition to the bottom-up forces created by plant chemicals, herbivores face top-down pressure from natural enemies, such as predators, parasitoids and parasites. This has led to the evolution of specialist herbivores that do not only tolerate plant secondary metabolites but even use them to fight natural enemies. Monarch butterflies (Danaus plexippus) are known for their use of milkweed chemicals (cardenolides) as protection against vertebrate predators. Recent studies have shown that milkweeds with high cardenolide concentrations can also provide protection against a virulent protozoan parasite. However, whether cardenolides are directly responsible for these effects, and whether individual cardenolides or mixtures of these chemicals are needed to reduce infection, remains unknown. We fed monarch larvae the four most abundant cardenolides found in the anti-parasitic-milkweed Asclepias curassavica at varying concentrations and compositions to determine which provided the highest resistance to parasite infection. Measuring infection rates and infection intensities, we found that resistance is dependent on both concentration and composition of cardenolides, with mixtures of cardenolides performing significantly better than individual compounds, even when mixtures included lower concentrations of individual compounds. These results suggest that cardenolides function synergistically to provide resistance against parasite infection and help explain why only milkweed species that produce diverse cardenolide compounds provide measurable parasite resistance. More broadly, our results suggest that herbivores can benefit from consuming plants with diverse defensive chemical compounds through release from parasitism.


Subject(s)
Asclepias , Butterflies , Parasites , Parasitic Diseases , Animals , Butterflies/metabolism , Asclepias/chemistry , Cardenolides/pharmacology , Cardenolides/metabolism , Larva/metabolism
3.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33850021

ABSTRACT

For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly (Danaus plexippus) growth, sequestration, and oviposition when consuming tropical milkweed (Asclepias curassavica), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring-containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch's neural Na+/K+-ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch's typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.


Subject(s)
Asclepias/metabolism , Butterflies/metabolism , Plant Defense Against Herbivory/physiology , Animals , Biological Coevolution/physiology , Biological Evolution , Cardenolides/chemistry , Cardenolides/metabolism , Cardenolides/toxicity , Evolution, Molecular , Herbivory/physiology , Larva/growth & development , Plant Leaves/metabolism
4.
Plant Cell Physiol ; 64(1): 107-116, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36222367

ABSTRACT

Cardenolides are steroidal metabolites in Digitalis lanata with potent cardioactive effects on animals. In plants, cardenolides are likely involved in various stress responses. However, the molecular mechanism of cardenolide increase during stresses is mostly unknown. Additionally, cardenolides are proposed to arise from cholesterol, but indirect results show that phytosterols may also be substrates for cardenolide biosynthesis. Here, we show that cardenolides increased after methyl jasmonate (MJ), sorbitol, potassium chloride (KCl) and salicylic acid analog [2,1,3-benzothiadiazole (BTH)] treatments. However, the expression of three known genes for cardenolide biosynthesis did not correlate well with these increases. Specifically, the expression of progesterone-5ß-reductases (P5ßR and P5ßR2) did not correlate with the cardenolide increase. The expression of 3ß-hydroxysteroid dehydrogenase (3ßHSD) correlated with changes in cardenolide levels only during the BTH treatment. Mining the D. lanata transcriptome identified genes involved in cholesterol and phytosterol biosynthesis: C24 sterol sidechain reductase 1 (SSR1), C4 sterol methyl oxidase 1, and 3 (SMO1 and SMO3). Surprisingly, the expression of all three genes correlated well with the cardenolide increase after the BTH treatment. Phylogenetic analysis showed that SSR1 is likely involved in both cholesterol and phytosterol biosynthesis. In addition, SMO1 is likely specific to phytosterol biosynthesis, and SMO3 is specific to cholesterol biosynthesis. These results suggest that stress-induced increase of cardenolides in foxglove may correlate with cholesterol and phytosterol biosynthesis. In summary, this work shows that cardenolides are important for stress responses in D. lanata and reveals a potential link between phytosterol and cardenolide biosynthesis.


Subject(s)
Digitalis , Phytosterols , Animals , Digitalis/chemistry , Digitalis/genetics , Digitalis/metabolism , Cardenolides/analysis , Cardenolides/metabolism , Phylogeny , Oxidoreductases/metabolism
5.
J Chem Ecol ; 49(7-8): 418-427, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36745328

ABSTRACT

Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony's lifespan.


Subject(s)
Asclepias , Butterflies , Bees , Animals , Asclepias/metabolism , Cardenolides/toxicity , Cardenolides/metabolism , Butterflies/metabolism , Plant Nectar , Ouabain/metabolism , Drosophila melanogaster , Sodium-Potassium-Exchanging ATPase/metabolism
6.
Planta Med ; 89(8): 833-847, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37187191

ABSTRACT

3ß-hydroxy-Δ5-steroid dehydrogenases (3ßHSDs) are supposed to be involved in 5ß-cardenolide biosynthesis. Here, a novel 3ßHSD (Dl3ßHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3ßHSD1 and Dl3ßHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3ßHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3ßHSD1, Dl3ßHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3ßHSDs was realised by Agrobacterium-mediated transfer of Dl3ßHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3ßHSD1 and 35S:Dl3ßHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3ßHSD1 lines than in the controls. In the 35S:Dl3ßHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3ßHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3ß-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3ßHSD1 knockdown. These results can be taken as the first direct proof that Dl3ßHSD1 is indeed involved in 5ß-cardenolide biosynthesis.


Subject(s)
Digitalis , Digitalis/genetics , Digitalis/metabolism , Cardenolides/metabolism , Escherichia coli/genetics , RNA Interference , Oxidoreductases/genetics , Oxidoreductases/chemistry , Oxidoreductases/metabolism
7.
Pestic Biochem Physiol ; 187: 105173, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127039

ABSTRACT

Declines of the monarch butterfly population have prompted large-scale plantings of milkweed to restore the population. In North America, there are >73 species of milkweed to choose from for these nationwide plantings. However, it is unclear how different milkweed species affect monarch caterpillar physiology, particularly detoxification enzyme activity and gene expression, given the highly variable cardenolide composition across milkweed species. Here, we investigate the effects of a high cardenolide, tropical milkweed species and a low cardenolide, swamp milkweed species on pyrethroid sensitivity as well as detoxification enzyme activity and expression in monarch caterpillars. Caterpillars fed on each species through the fifth-instar stage and were topically treated with bifenthrin after reaching this final-instar stage. Esterase, glutathione S-transferase, and cytochrome P450 monooxygenase activities were quantified as well as the expression of selected esterase, glutathione S-transferase, ABC transporter, and cytochrome P450 monooxygenase transcripts. There were no significant differences in survival 24 h after treatment with bifenthrin. However, bifenthrin significantly increased glutathione S-transferase activity in caterpillars feeding on tropical milkweed and significantly decreased esterase activity in caterpillars feeding on tropical and swamp milkweed. Significant differential expression of ABC transporter, glutathione S-transferase, and esterase genes was observed for caterpillars feeding on tropical and swamp milkweed and not receiving bifenthrin treatment. Furthermore, significant differential expression of glutathione S-transferase and esterase genes was observed for bifenthrin-treated and -untreated caterpillars feeding on tropical milkweed relative to swamp milkweed. These results suggest that feeding on different milkweed species can affect detoxification and development mechanisms with which monarch caterpillars rely on to cope with their environment.


Subject(s)
Asclepias , Butterflies , Insecticides , Pyrethrins , ATP-Binding Cassette Transporters , Animals , Asclepias/metabolism , Butterflies/genetics , Cardenolides/metabolism , Esterases/genetics , Esterases/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Insecticides/metabolism , Insecticides/toxicity , Mixed Function Oxygenases/metabolism , Pyrethrins/metabolism , Pyrethrins/toxicity
8.
Plant Cell Rep ; 40(9): 1631-1646, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146141

ABSTRACT

KEY MESSAGE: Studying RNAi-mediated DlP5ßR1 and DlP5ßR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) in 5ß-cardenolide formation. Progesterone 5ß-reductases (P5ßR) are assumed to catalyze the reduction of progesterone to 5ß-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5ß-cardenolides. P5ßRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes. P5ßRs are substrate-promiscuous enone-1,4-reductases recently termed PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes). Two PRISE genes, termed DlP5ßR1 (AY585867.1) and DlP5ßR2 (HM210089.1) were isolated from Digitalis lanata. To give experimental evidence for the participation of PRISEs in 5ß-cardenolide formation, we here established several RNAi-mediated DlP5ßR1 and DlP5ßR2 knockdown shoot culture lines of D. lanata. Cardenolide contents were lower in D. lanata P5ßR-RNAi lines than in wild-type shoots. We considered that the gene knockdowns may have had pleiotropic effects such as an increase in glutathione (GSH) which is known to inhibit cardenolide formation. GSH levels and expression of glutathione reductase (GR) were measured. Both were higher in the Dl P5ßR-RNAi lines than in the wild-type shoots. Cardenolide biosynthesis was restored by buthionine sulfoximine (BSO) treatment in Dl P5ßR2-RNAi lines but not in Dl P5ßR1-RNAi lines. Since progesterone is a precursor of cardenolides but can also act as a reactive electrophile species (RES), we here discriminated between these by comparing the effects of progesterone and methyl vinyl ketone, a small RES but not a precursor of cardenolides. To the best of our knowledge, we here demonstrated for the first time that P5ßR1 is involved in cardenolide formation. We also provide further evidence that PRISEs are also important for plants dealing with stress by detoxifying reactive electrophile species (RES).


Subject(s)
Cardenolides/metabolism , Digitalis/genetics , Digitalis/metabolism , Oxidoreductases/genetics , Plant Proteins/genetics , Butanones/pharmacology , Buthionine Sulfoximine/pharmacology , Digitalis/drug effects , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Glutathione/pharmacology , Oxidoreductases/metabolism , Plant Proteins/metabolism , Plant Shoots/genetics , Plants, Genetically Modified , Progesterone/pharmacology , RNA Interference , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
J Chem Ecol ; 46(11-12): 1131-1143, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33180277

ABSTRACT

Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxigenin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a population of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single-locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype. Both herbivores accumulated cardenolides in proportion to the plant content, with T. ni accumulating higher total concentrations than M. persicae. Helveticoside, a relatively abundant cardenolide in E. cheiranthoides, was not detected in M. persicae feeding on these plants. Our results support the hypothesis that increased digitoxigenin glycosides provide improved protection against M. persicae and T. ni, despite an overall decrease in cardenolide content of the mutant line.


Subject(s)
Cardenolides/metabolism , Erysimum/genetics , Erysimum/metabolism , Herbivory/drug effects , Insect Repellents/metabolism , Animals , Aphids/physiology , Brassica/metabolism , Cardenolides/chemistry , Digitoxigenin/chemistry , Digitoxigenin/metabolism , Gene Expression , Glucosinolates/chemistry , Glucosinolates/metabolism , Insect Repellents/chemistry , Moths/metabolism , Mutation , Sodium-Potassium-Exchanging ATPase/metabolism , Strophanthidin/chemistry , Strophanthidin/metabolism
10.
J Chem Ecol ; 45(3): 264-277, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30793231

ABSTRACT

Monarch butterflies, Danaus plexippus, migrate long distances over which they encounter host plants that vary broadly in toxic cardenolides. Remarkably little is understood about the mechanisms of sequestration in Lepidoptera that lay eggs on host plants ranging in such toxins. Using closely-related milkweed host plants that differ more than ten-fold in cardenolide concentrations, we mechanistically address the intake, sequestration, and excretion of cardenolides by monarchs. We show that on high cardenolide plant species, adult butterflies saturate in cardenolides, resulting in lower concentrations than in leaves, while on low cardenolide plants, butterflies concentrate toxins. Butterflies appear to focus their sequestration on particular compounds, as the diversity of cardenolides is highest in plant leaves, lower in frass, and least in adult butterflies. Among the variety of cardenolides produced by the plant, sequestered compounds may be less toxic to the butterflies themselves, as they are more polar on average than those in leaves. In accordance with this, results from an in vitro assay based on inhibition of Na+/K+ ATPase (the physiological target of cardenolides) showed that on two milkweed species, including the high cardenolide A. perennis, extracts from butterflies have lower inhibitory effects than leaves when standardized by cardenolide concentration, indicating selective sequestration of less toxic compounds from these host plants. To understand how ontogeny shapes sequestration, we examined cardenolide concentrations in caterpillar body tissues and hemolymph over the course of development. Caterpillars sequestered higher concentrations of cardenolides as early instars than as late instars, but within the fifth instar, concentration increased with body mass. Although it appears that large amounts of sequestration occurs in early instars, a host switching experiment revealed that caterpillars can compensate for feeding on low cardenolide host plants with substantial sequestration in the fifth instar. We highlight commonalities and striking differences in the mechanisms of sequestration depending on host plant chemistry and developmental stage, which have important implications for monarch defense.


Subject(s)
Butterflies/metabolism , Cardenolides/metabolism , Larva/growth & development , Animals , Butterflies/growth & development , Chromatography, High Pressure Liquid , Female , Male
11.
J Chem Ecol ; 45(1): 50-60, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30523520

ABSTRACT

Cardenolides are classically studied steroidal defenses in chemical ecology and plant-herbivore coevolution. Although milkweed plants (Asclepias spp.) produce up to 200 structurally different cardenolides, all compounds seemingly share the same well-characterized mode of action, inhibition of the ubiquitous Na+/K+ ATPase in animal cells. Over their evolutionary radiation, milkweeds show a quantitative decline of cardenolide production and diversity. This reduction is contrary to coevolutionary predictions and could represent a cost-saving strategy, i.e. production of fewer but more toxic cardenolides. Here we test this hypothesis by tandem cardenolide quantification using HPLC (UV absorption of the unsaturated lactone) and a pharmacological assay (in vitro inhibition of a sensitive Na+/K+ ATPase) in a comparative study of 16 species of Asclepias. We contrast cardenolide concentrations in leaf tissue to the subset of cardenolides present in exuding latex. Results from the two quantification methods were strongly correlated, but the enzymatic assay revealed that milkweed cardenolide mixtures often cause stronger inhibition than equal amounts of a non-milkweed reference cardenolide, ouabain. Cardenolide concentrations in latex and leaves were positively correlated across species, yet latex caused 27% stronger enzyme inhibition than equimolar amounts of leaf cardenolides. Using a novel multiple regression approach, we found three highly potent cardenolides (identified as calactin, calotropin, and voruscharin) to be primarily responsible for the increased pharmacological activity of milkweed cardenolide mixtures. However, contrary to an expected trade-off between concentration and toxicity, later-diverging milkweeds had the lowest amounts of these potent cardenolides, perhaps indicating an evolutionary response to milkweed's diverse community of specialist cardenolide-sequestering insect herbivores.


Subject(s)
Asclepias/physiology , Butterflies/physiology , Cardenolides/metabolism , Herbivory , Latex/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Asclepias/chemistry , Asclepias/genetics , Butterflies/drug effects , Butterflies/enzymology , Cardenolides/analysis , Cardenolides/toxicity , Enzyme Inhibitors/analysis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/toxicity , Latex/chemistry , Latex/toxicity , Phylogeny , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
12.
Clin Sci (Lond) ; 132(12): 1215-1242, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29930141

ABSTRACT

Endogenous digitalis-like factor(s), originally proposed as a vasoconstrictor natriuretic hormone, was discovered in fetal and neonatal blood accidentally because it cross-reacts with antidigoxin antibodies (ADAs). Early studies using immunoassays with ADA identified the digoxin-like immuno-reactive factor(s) (EDLF) in maternal blood as well, and suggested it originated in the feto-placental unit. Mammalian digoxin-like factors have recently been identified as at least two classes of steroid compounds, plant derived ouabain (O), and several toad derived bufodienolides, most prominent being marinobufagenin (MBG). A synthetic pathway for MBG has been identified in mammalian placental tissue. Elevated maternal and fetal EDLF, O and MBG have been demonstrated in preeclampsia (PE), and inhibition of red cell membrane sodium, potassium ATPase (Na, K ATPase (NKA)) by EDLF is reversed by ADA fragments (ADA-FAB). Accordingly, maternal administration of a commercial ADA-antibody fragment (FAB) was tested in several anecdotal cases of PE, and two, small randomized, prospective, double-blind clinical trials. In the first randomized trial, ADA-FAB was administered post-partum, in the second antepartum. In the post-partum trial, ADA-FAB reduced use of antihypertensive drugs. In the second trial, there was no effect of ADA-FAB on blood pressure, but the fall in maternal creatinine clearance (CrCl) was prevented. In a secondary analysis using the pre-treatment maternal level of circulating Na, K ATPase (NKA) inhibitory activity (NKAI), ADA-FAB reduced the incidence of pulmonary edema and, unexpectedly, that of severe neonatal intraventricular hemorrhage (IVH). The fall in CrCl in patients given placebo was proportional to the circulating level of NKAI. The implications of these findings on the pathophysiology of the clinical manifestations PE are discussed, and a new model of the respective roles of placenta derived anti-angiogenic (AAG) factors (AAGFs) and EDLF is proposed.


Subject(s)
Cardenolides/metabolism , Pre-Eclampsia/metabolism , Saponins/metabolism , Birth Weight/physiology , Blood Pressure/physiology , Female , Fetal Blood/metabolism , Gestational Age , Humans , Infant, Newborn , Ouabain/metabolism , Placenta/metabolism , Pre-Eclampsia/physiopathology , Pregnancy
13.
Cell Mol Biol (Noisy-le-grand) ; 64(14): 89-95, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30511627

ABSTRACT

Digitalis nervosa is an important medicinal plant species belonging to the family of Scrophulariaceae that has the potential to be used for heart failure. 3ß-hydroxysteroid dehydrogenase (3ß-HSD) is a key gene in the biosynthesis of cardenolides for making digitalis effective compounds, hence identification of this gene is important for genetic engineering purposes towards increasing the yield of cardiac glycosides. In addition, mRNA-like non-coding RNAs (mlncRNAs), a class of long non coding RNAs, play key roles in various biological processes and may affect cardenolides pathway in digitalis plants.  In the present work, full sequence of 3ß-HSD was isolated from Digitalis nervosa. Gene expression patterns of 3ß-HSD along with three mlncRNAs including mlncRNA23, mlncRNA28 and mlncRNA30 were studied and the results indicated that they are differentially expressed in different tissues including roots, stems and leaves, with the highest expression levels in leaves.  Moreover, the transcript levels of these genes affected by the cold and drought stresses. The results obtained from the present study is important in order to understand the potential role of mlncRNAs in digitalis plants, especially in response to abiotic stresses.


Subject(s)
17-Hydroxysteroid Dehydrogenases/genetics , Digitalis/enzymology , Digitalis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Long Noncoding/genetics , Stress, Physiological/genetics , 17-Hydroxysteroid Dehydrogenases/chemistry , 17-Hydroxysteroid Dehydrogenases/metabolism , Amino Acid Sequence , Base Sequence , Biosynthetic Pathways/genetics , Cardenolides/chemistry , Cardenolides/metabolism , Cold Temperature , Digitalis/physiology , Droughts , Organ Specificity/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
BMC Evol Biol ; 17(1): 256, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29246105

ABSTRACT

BACKGROUND: The Na,K-ATPase is a vital animal cell-membrane protein that maintains the cell's resting potential, among other functions. Cardenolides, a group of potent plant toxins, bind to and inhibit this pump. The gene encoding the α-subunit of the pump has undergone duplication events in some insect species known to feed on plants containing cardenolides. Here we test the function of these duplicated gene copies in the cardenolide-adapted milkweed bug, Oncopeltus fasciatus, which has three known copies of the gene: α1A, α1B and α1C. RESULTS: Using RT-qPCR analyses we demonstrate that the α1C is highly expressed in neural tissue, where the pump is generally thought to be most important for neuron excitability. With the use of in vivo RNAi in adult bugs we found that α1C knockdowns suffered high mortality, where as α1A and α1B did not, supporting that α1C is most important for effective ion pumping. Next we show a role for α1A and α1B in the handling of cardenolides: expression results find that both copies are primarily expressed in the Malpighian tubules, the primary insect organ responsible for excretion, and when we injected either α1A or α1B knockdowns with cardenolides this proved fatal (whereas not in controls). CONCLUSIONS: These results show that the Na,K-ATPα gene-copies have taken on diverse functions. Having multiple copies of this gene appears to have allowed the newly arisen duplicates to specialize on resistance to cardenolides, whereas the ancestral copy of the pump remains comparatively sensitive, but acts as a more efficient ion carrier. Interestingly both the α1A and α1B were required for cardenolide handling, suggesting that these two copies have separate and vital functions. Gene duplications of the Na,K-ATPase thus represent an excellent example of subfunctionalization in response to a new environmental challenge.


Subject(s)
Evolution, Molecular , Gene Duplication , Heteroptera/enzymology , Heteroptera/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Amino Acid Sequence , Animals , Cardenolides/chemistry , Cardenolides/metabolism , Gene Dosage , Gene Expression Profiling , Gene Knockdown Techniques , Organ Specificity , Phenotype , Sodium-Potassium-Exchanging ATPase/chemistry
15.
Planta Med ; 83(12-13): 1035-1043, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28486743

ABSTRACT

Recent studies demonstrate that cardiac glycosides, known to inhibit Na+/K+-ATPase in humans, have increased susceptibility to cancer cells that can be used in tumor therapy. One of the most promising candidates identified so far is glucoevatromonoside, which can be isolated from the endangered species Digitalis mariana ssp. heywoodii. Due to its complex structure, glucoevatromonoside cannot be obtained economically by total chemical synthesis. Here we describe two methods for glucoevatromonoside production, both using evatromonoside obtained by chemical degradation of digitoxin as the precursor. 1) Catalyst-controlled, regioselective glycosylation of evatromonoside to glucoevatromonoside using 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide as the sugar donor and 2-aminoethyldiphenylborinate as the catalyst resulted in an overall 30 % yield. 2) Biotransformation of evatromonoside using Digitalis lanata plant cell suspension cultures was less efficient and resulted only in overall 18 % pure product. Structural proof of products has been provided by extensive NMR data. Glucoevatromonoside and its non-natural 1-3 linked isomer neo-glucoevatromonoside obtained by semisynthesis were evaluated against renal cell carcinoma and prostate cancer cell lines.


Subject(s)
Antineoplastic Agents/metabolism , Cardenolides/metabolism , Cardiac Glycosides/metabolism , Digitalis/metabolism , Digitoxin/chemistry , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Biotransformation , Cardenolides/chemical synthesis , Cardenolides/isolation & purification , Cardenolides/pharmacology , Cardiac Glycosides/chemical synthesis , Cardiac Glycosides/isolation & purification , Cardiac Glycosides/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Digitalis/chemistry , Digitoxin/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/metabolism , Glycosylation , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Sodium-Potassium-Exchanging ATPase/metabolism
16.
J Anim Ecol ; 85(5): 1246-54, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27286503

ABSTRACT

The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies. Overall, our results suggest that the use of antiparasitic compounds carries substantial costs, which could constrain host investment in medication behaviours.


Subject(s)
Apicomplexa/physiology , Asclepias/physiology , Biological Evolution , Butterflies/physiology , Genetic Fitness , Oviposition , Animals , Butterflies/growth & development , Butterflies/parasitology , Cardenolides/metabolism , Host-Parasite Interactions , Larva/growth & development , Larva/parasitology , Larva/physiology
17.
Postepy Hig Med Dosw (Online) ; 70: 243-50, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27117099

ABSTRACT

Endogenous cardiotonic steroids (CTS), also called digitalis-like factors, are a group of steroid hormones linking high salt intake and elevated blood pressure and in part responsible for target organ damage in arterial hypertension. CTS act primarily through their ability to inhibit the ubiquitous transport enzyme sodium-potassium adenosine triphosphatase (Na⁺/K⁺-ATPase). A portion of Na⁺/K⁺-ATPase does not seem to actively "pump" sodium and potassium but is closely associated with other key signaling proteins. Plasma concentration and urine excretion of CTS are increased in experimental models with volume expansion and on a high salt diet. Elevated plasma concentration of marinobufagenin has been shown in volume-expanded states such as essential hypertension, primary aldosteronism, chronic renal failure, congestive heart failure and pregnancy. In experimental models marinobufagenin induces heart and kidney fibrosis to the same extent as observed in uremia. Neutralization of marinobufagenin with antibodies prevents such heart remodeling. Expanding our understanding of this new class of hormones may lead to development of novel and effective therapeutic strategies in hypertensive patients with renal and cardiovascular complications.


Subject(s)
Cardenolides/metabolism , Cardiac Glycosides/metabolism , Cardiotonic Agents/metabolism , Hypertension/metabolism , Saponins/metabolism , Animals , Blood Pressure/physiology , Bufanolides/blood , Humans , Hypertension/blood , Hypertension/physiopathology , Kidney Diseases/physiopathology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Ventricular Remodeling/physiology
18.
Proc Biol Sci ; 282(1817): 20151993, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26468247

ABSTRACT

Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems.


Subject(s)
Apicomplexa/physiology , Asclepias/chemistry , Asclepias/physiology , Butterflies/parasitology , Host-Parasite Interactions , Mycorrhizae/metabolism , Animals , Apicomplexa/pathogenicity , Cardenolides/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Plant Roots/microbiology
19.
Proc Biol Sci ; 282(1818): 20151865, 2015 11 07.
Article in English | MEDLINE | ID: mdl-26538594

ABSTRACT

Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium-potassium pump (Na(+)/K(+)-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na(+)/K(+)-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na(+)/K(+)-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na(+)/K(+)-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na(+)/K(+)-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na(+)/K(+)-ATPase, but had systematically reduced effects on Na(+)/K(+)-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na(+)/K(+)-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects.


Subject(s)
Asclepias/chemistry , Butterflies/drug effects , Cardenolides/metabolism , Adaptation, Biological , Animals , Asclepias/parasitology , Biological Evolution , Butterflies/growth & development , Butterflies/metabolism , Diet , Hemolymph/chemistry , Larva/drug effects , Larva/growth & development , Sodium-Potassium-Exchanging ATPase/metabolism , Species Specificity
20.
Proc Biol Sci ; 282(1805)2015 04 22.
Article in English | MEDLINE | ID: mdl-25808891

ABSTRACT

Despite sequestration of toxins being a common coevolutionary response to plant defence in phytophagous insects, the macroevolution of the traits involved is largely unaddressed. Using a phylogenetic approach comprising species from four continents, we analysed the ability to sequester toxic cardenolides in the hemipteran subfamily Lygaeinae, which is widely associated with cardenolide-producing Apocynaceae. In addition, we analysed cardenolide resistance of their Na(+)/K(+)-ATPases, the molecular target of cardenolides. Our data indicate that cardenolide sequestration and cardenolide-resistant Na(+)/K(+)-ATPase are basal adaptations in the Lygaeinae. In two species that shifted to non-apocynaceous hosts, the ability to sequester was secondarily reduced, yet Na(+)/K(+)-ATPase resistance was maintained. We suggest that both traits evolved together and represent major coevolutionary adaptations responsible for the evolutionary success of lygaeine bugs. Moreover, specialization on cardenolides was not an evolutionary dead end, but enabled this insect lineage to host shift to cardenolide-producing plants from distantly related families.


Subject(s)
Adaptation, Biological , Cardenolides/metabolism , Heteroptera/physiology , Insect Proteins/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Animals , Apocynaceae/growth & development , Biological Evolution , Food Chain , Heteroptera/enzymology , Insect Proteins/metabolism , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL