Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(3): e1012036, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457376

ABSTRACT

Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection.


Subject(s)
Cardiovirus , Enterovirus Infections , Enterovirus , Picornaviridae , Humans , Enterovirus/physiology , Encephalomyocarditis virus/physiology , Virus Replication , Enterovirus B, Human/physiology , HeLa Cells
2.
PLoS Pathog ; 18(12): e1011042, 2022 12.
Article in English | MEDLINE | ID: mdl-36508477

ABSTRACT

Proteins from some unrelated pathogens, including small RNA viruses of the family Picornaviridae, large DNA viruses such as Kaposi sarcoma-associated herpesvirus and even bacteria of the genus Yersinia can recruit cellular p90-ribosomal protein S6 kinases (RSKs) through a common linear motif and maintain the kinases in an active state. On the one hand, pathogens' proteins might hijack RSKs to promote their own phosphorylation (direct target model). On the other hand, some data suggested that pathogens' proteins might dock the hijacked RSKs toward a third interacting partner, thus redirecting the kinase toward a specific substrate. We explored the second hypothesis using the Cardiovirus leader protein (L) as a paradigm. The L protein is known to trigger nucleocytoplasmic trafficking perturbation, which correlates with hyperphosphorylation of phenylalanine-glycine (FG)-nucleoporins (FG-NUPs) such as NUP98. Using a biotin ligase fused to either RSK or L, we identified FG-NUPs as primary partners of the L-RSK complex in infected cells. An L protein mutated in the central RSK-interaction motif was readily targeted to the nuclear envelope whereas an L protein mutated in the C-terminal domain still interacted with RSK but failed to interact with the nuclear envelope. Thus, L uses distinct motifs to recruit RSK and to dock the L-RSK complex toward the FG-NUPs. Using an analog-sensitive RSK2 mutant kinase, we show that, in infected cells, L can trigger RSK to use NUP98 and NUP214 as direct substrates. Our data therefore illustrate a novel virulence mechanism where pathogens' proteins hijack and retarget cellular protein kinases toward specific substrates, to promote their replication or to escape immunity.


Subject(s)
Cardiovirus , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Protein Kinases/metabolism , Phosphorylation
3.
PLoS Pathog ; 17(8): e1009739, 2021 08.
Article in English | MEDLINE | ID: mdl-34347852

ABSTRACT

Long polycytidine (polyC) tracts varying in length from 50 to 400 nucleotides were first described in the 5'-noncoding region (NCR) of genomes of picornaviruses belonging to the Cardio- and Aphthovirus genera over 50 years ago, but the molecular basis of their function is still unknown. Truncation or complete deletion of the polyC tracts in picornaviruses compromises virulence and pathogenicity but do not affect replicative fitness in vitro, suggesting a role as "viral security" RNA element. The evidence available suggests that the presence of a long polyC tract is required for replication in immune cells, which impacts viral distribution and targeting, and, consequently, pathogenic progression. Viral attenuation achieved by reduction of the polyC tract length has been successfully used for vaccine strategies. Further elucidation of the role of the polyC tract in viral replication cycle and its connection with replication in immune cells has the potential to expand the arsenal of tools in the fight against cancer in oncolytic virotherapy (OV). Here, we review the published data on the biological significance and mechanisms of action of the polyC tract in viral pathogenesis in Cardio- and Aphthoviruses.


Subject(s)
Aphthovirus/genetics , Cardiovirus/genetics , Oncolytic Virotherapy/methods , Poly C/genetics , Virus Replication , Animals , Humans
4.
Virol J ; 20(1): 175, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550694

ABSTRACT

BACKGROUND: Saffold virus (SAFV), which belongs to the genus Cardiovirus of the family Picornaviridae, is associated with acute respiratory or gastrointestinal illnesses in children; it is also suspected to cause severe diseases, such as acute flaccid paralysis and aseptic meningitis. However, the understanding of the mechanism of its pathogenicity is still limited due to the many unknowns about its lifecycle; for example, the cellular receptor for its infection remains to be determined. A system to monitor SAFV infection in vitro and in vivo is required in order to accelerate research on SAFV. RESULTS: We generated a recombinant SAFV expressing green fluorescent protein (GFP) or UnaG, a novel fluorescent protein derived from Japanese eel. HeLa cells infected by either GFP or UnaG-expressing SAFV showed a bright green fluorescent signal, enabling convenient monitoring of SAFV infection. However, the expression of GFP but not UnaG was quickly lost during virus passaging due to the difference in genetic stability in the SAFV virus genome; the UnaG gene was stably maintained in the virus genome after at least five passages. CONCLUSIONS: SAFV infection of cultured cells can easily be monitored using UnaG-expressing SAFV, which is superior to GFP in terms of genetic stability in the virus genome. This virus could be a useful tool for SAFV research, such as comparing the susceptibility of various cells to SAFV infection and evaluating the effects of antivirals on SAFV infection in high-throughput screening.


Subject(s)
Cardiovirus , Picornaviridae , Virus Diseases , Child , Humans , HeLa Cells , Cardiovirus/genetics , Picornaviridae/genetics , Genome, Viral , Virus Diseases/genetics , Green Fluorescent Proteins/genetics
5.
Biomacromolecules ; 23(3): 789-797, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35034439

ABSTRACT

Antiviral lignin was produced by acidic microwave glycerolysis of sugarcane bagasse. The lignin exhibited antiviral activity against nonenveloped (encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelitis virus (TMEV)) and enveloped (vesicular stomatitis virus (VSV), Sindbis virus (SINV), and Newcastle disease virus (NDV)) viruses. A series of lignins with different antiviral activities were prepared by reacting bagasse at 140, 160, 180, and 200 °C to analyze the antiviral mechanism. No difference in ζ-potential was observed among the lignin preparations; however, the lignin prepared at 200 °C (FR200) showed the strongest anti-EMCV activity, smallest hydrodynamic diameter, highest hydrophilicity, and highest affinity for EMCV. FR200 inhibited viral propagation through contact with the virion at the attachment stage to host cells, and the EMCV RNA was intact after treatment. Therefore, the lignin inhibits viral entry to host cells through interactions with the capsid surface. The nonvolatile antiviral substance is potentially useful for preventing the spread of viruses in human living and livestock breeding environments.


Subject(s)
Cardiovirus , Saccharum , Animals , Antiviral Agents/pharmacology , Cellulose/pharmacology , Encephalomyocarditis virus/genetics , Humans , Lignin/pharmacology , Mice , Microwaves
6.
J Med Virol ; 93(6): 3980-3984, 2021 06.
Article in English | MEDLINE | ID: mdl-32827319

ABSTRACT

Viral gastroenteritis is a major source of morbidity and mortality, predominantly caused by so-called NOROAD viruses (norovirus, rotavirus, and adenovirus). In approximately onethird of all cases, however, the exact etiology is unknown. The in 2007 discovered human cardiovirus Saffold virus (SAFV) may prove to be a plausible candidate to explain this diagnostic gap. This virus, a member of the Picornaviridae family which is closely related to the murine viruses Theiler's murine encephalomyelitis virus and Theravirus, is a widespread pathogen and causes infection early in life. Screening of 238 fecal or vomitus samples obtained from NOROAD-negative, elderly patients with acute gastroenteritis at the University Hospital of Linköping showed that SAFV is present in low abundance (4.6%). Phylogenetic analysis of the VP1 gene revealed a Swedish isolate belonging to the highly common and in Europe widespread SAFV-3 genotype. This genotype is also related to previously reported Asian strains. This study describes the first molecular typing of a Swedish SAFV isolate and is the first report to document the circulation of SAFV among elderly people. The pathogenicity of SAFV is, as of yet, still under debate; further studies are necessary to determine its role in the development of disease.


Subject(s)
Cardiovirus Infections/epidemiology , Cardiovirus/classification , Cardiovirus/genetics , Gastroenteritis/epidemiology , Gastroenteritis/virology , Acute Disease/epidemiology , Aged , Aged, 80 and over , Cardiovirus/pathogenicity , Cardiovirus Infections/virology , Feces/virology , Genome, Viral , Genotype , Humans , Phylogeny , Sweden/epidemiology
7.
Lett Appl Microbiol ; 70(2): 102-108, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31742735

ABSTRACT

Saffold virus (SAFV) is an emerging human cardiovirus associated with respiratory and gastrointestinal infection, and, more recently, to symptoms related to the endocrine, cardiovascular, and neurological systems. Information about SAFV circulation in Italy is scarce. In order to provide insights into the epidemiology of SAFV in Italy, 141 raw sewage samples collected throughout Italy were tested using broad-range nested RT-PCR primers targeting the 5'-NC region. Seven samples (5·0%) were confirmed as SAFV in samples collected in North, Centre and Southern Italy. Typing was attempted through amplification of the VP1 coding region, using both published and newly designed primers, and one sample was characterized as SAFV-2. SIGNIFICANCE AND IMPACT OF THE STUDY: Prevalence, genetic diversity and geographic distribution of SAFV in Italy is currently unknown. This study represents the first detection of SAFV in sewage samples in Italy, suggesting that it is circulating in the population despite lack of clinical reporting. Whether the virus is associated with asymptomatic cases or with undetected gastroenteritis or respiratory illness is unknown. Further studies are needed to investigate on the occurrence and persistence of SAFV in water environments and its waterborne transmission potential.


Subject(s)
Cardiovirus Infections/epidemiology , Cardiovirus/isolation & purification , Gastrointestinal Diseases/epidemiology , Respiratory Tract Infections/epidemiology , Sewage/virology , Capsid Proteins/genetics , Cardiovirus/classification , Cardiovirus/genetics , Cardiovirus Infections/virology , Environmental Monitoring , Gastrointestinal Diseases/virology , Humans , Italy/epidemiology , Prevalence , Respiratory Tract Infections/virology
8.
Intervirology ; 62(1): 45-50, 2019.
Article in English | MEDLINE | ID: mdl-31207600

ABSTRACT

BACKGROUND/AIMS: Cardiovirus is a genus of viruses belonging to the family Picornaviridae. Here, we used viral metagenomic techniques to detect the viral nucleic acid in the fecal samples from wild rats in Zhenjiang city in China. METHOD: Fecal samples were collected from 20 wild rats and pooled into four sample pools and then subjected to libraries construction which were then sequenced on Illumina MiSeq platform. The sequenced reads were analyzed using viral metagenomic analysis pipeline. RESULTS: A novel cardiovirus from feces of a wild rat was identified, named amzj-2018, of which the complete genome was acquired. Phylogenetic analysis based on the complete amino acid sequence of polyprotein revealed that amzj-2018 formed a separate branch located between clusters of Saffold virus and Rat Theilovirus 1 (RTV-1). Phylogenetic analysis based on different regions of the polyproteins, including P1, P2, P3, and P2+P3, respectively, showed discordant trees, where the tree based on P3 region indicated that amzj-2018 clustered separately between Theiler's murine encephalomyelitis virus and RTV-1. CONCLUSION: The complete genome of a cardiovirus was determined from the feces of wild rats which belonged to a novel type of cardiovirus based on phylogenetic analysis. Whether it is associated with disease needs further investigation.


Subject(s)
Cardiovirus Infections/veterinary , Cardiovirus/classification , Feces/virology , Metagenomics , Rats/virology , Animals , Cardiovirus/isolation & purification , China , Cities , Genome, Viral , Phylogeny , RNA, Viral/genetics , Viral Proteins/genetics
9.
J Med Virol ; 90(1): 34-40, 2018 01.
Article in English | MEDLINE | ID: mdl-28851118

ABSTRACT

Although Saffold virus (SAFV) was reported as a novel human cardiovirus in 2007, no causative association between SAFV and clinical disease has been proven and the longitudinal epidemiology of SAFVs is not available. To establish the relationship between SAFVs and acute respiratory infections (ARIs) and to clarify the longitudinal epidemiology of SAFVs, 7258 nasopharyngeal specimens were collected from children with ARIs in Yamagata, Japan between 2008 and 2015. The specimens were inoculated on a microplate including six cell lines as part of routine surveillance, and molecular screening was performed for SAFVs using a reverse transcription (RT)-PCR method. Throughout the study period, 95 (1.3%) SAFV genotype 2 (SAFV2), and 28 (0.4%) SAFV3 were detected, mainly between September and November. There were two outbreaks of SAFV2 in 2009 and 2013, and one outbreak of SAFV3 in 2012 and the positive rates during these outbreaks were 12.1% (53/439), 11% (35/319), and 4.4% (20/453), respectively. Sixty-three SAFV2 and 28 SAFV3 strains were detected as a single virus from children with ARIs such as pharyngitis, herpangina, and tonsillitis. These results suggested that SAFV2 and SAFV3 are possible causative agents of ARIs among children and their infections occur mainly in the autumn season in Japan.


Subject(s)
Cardiovirus Infections/virology , Cardiovirus/isolation & purification , Respiratory Tract Infections/virology , Acute Disease/epidemiology , Adolescent , Cardiovirus/genetics , Cardiovirus Infections/diagnosis , Cardiovirus Infections/epidemiology , Child , Child, Preschool , Disease Outbreaks/statistics & numerical data , Feces/virology , Female , Genome, Viral , Genotype , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Nasopharynx/virology , Phylogeny , Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology
10.
Virol J ; 15(1): 58, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587779

ABSTRACT

BACKGROUND: Cardioviruses cause severe illnesses in rodents and humans. In recent years, novel cardioviruses have been frequently found, which promoted further studies of the genetic diversity of cardioviruses. Using viral metagenomics, we genetically characterized a novel cardiovirus (named SX1) from wild rat feces. The genomic structure of SX1 shared similar features with those of the Theiler's murine encephalomyelitis viruses, including a leader protein, four structural proteins and seven non-structural proteins. Phylogenetic analysis based on both structural proteins and non-structural proteins coding regions showed that SX1 was formed into a separate branch, being located between the branches of Theiler's murine encephalomyelitis viruses and Thera viruses. Variable resides presented in the Ser/Thr rich domain of L protein, VP1 loops, and VP2 puffs distinguished SX1 from Theiler's murine encephalomyelitis viruses, suggesting the different antigenicity and pathogenicity of SX1.


Subject(s)
Cardiovirus/classification , Cardiovirus/genetics , Phylogeny , Animals , Animals, Wild/virology , China , Feces/virology , Genome, Viral/genetics , Metagenomics , Rats , Sequence Alignment , Species Specificity , Viral Proteins/genetics
11.
J Virol ; 90(17): 7628-39, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27279624

ABSTRACT

UNLABELLED: In order to initiate an infection, viruses need to deliver their genomes into cells. This involves uncoating the genome and transporting it to the cytoplasm. The process of genome delivery is not well understood for nonenveloped viruses. We address this gap in our current knowledge by studying the uncoating of the nonenveloped human cardiovirus Saffold virus 3 (SAFV-3) of the family Picornaviridae SAFVs cause diseases ranging from gastrointestinal disorders to meningitis. We present a structure of a native SAFV-3 virion determined to 2.5 Å by X-ray crystallography and an 11-Å-resolution cryo-electron microscopy reconstruction of an "altered" particle that is primed for genome release. The altered particles are expanded relative to the native virus and contain pores in the capsid that might serve as channels for the release of VP4 subunits, N termini of VP1, and the RNA genome. Unlike in the related enteroviruses, pores in SAFV-3 are located roughly between the icosahedral 3- and 5-fold axes at an interface formed by two VP1 and one VP3 subunit. Furthermore, in native conditions many cardioviruses contain a disulfide bond formed by cysteines that are separated by just one residue. The disulfide bond is located in a surface loop of VP3. We determined the structure of the SAFV-3 virion in which the disulfide bonds are reduced. Disruption of the bond had minimal effect on the structure of the loop, but it increased the stability and decreased the infectivity of the virus. Therefore, compounds specifically disrupting or binding to the disulfide bond might limit SAFV infection. IMPORTANCE: A capsid assembled from viral proteins protects the virus genome during transmission from one cell to another. However, when a virus enters a cell the virus genome has to be released from the capsid in order to initiate infection. This process is not well understood for nonenveloped viruses. We address this gap in our current knowledge by studying the genome release of Human Saffold virus 3 Saffold viruses cause diseases ranging from gastrointestinal disorders to meningitis. We show that before the genome is released, the Saffold virus 3 particle expands, and holes form in the previously compact capsid. These holes serve as channels for the release of the genome and small capsid proteins VP4 that in related enteroviruses facilitate subsequent transport of the virus genome into the cell cytoplasm.


Subject(s)
Cardiovirus/physiology , Cardiovirus/ultrastructure , Viral Structures , Virus Uncoating , Cardiovirus/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , HeLa Cells , Humans , Image Processing, Computer-Assisted
12.
PLoS Pathog ; 11(3): e1004733, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25799064

ABSTRACT

The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.


Subject(s)
Antiviral Agents/chemistry , Cardiovirus/enzymology , Enterovirus B, Human/enzymology , Poliovirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Animals , Binding Sites , Chlorocebus aethiops , HeLa Cells , Humans , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
13.
Biochem Biophys Res Commun ; 480(2): 187-193, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27743889

ABSTRACT

LGP2 and MDA5 cooperate to detect viral RNA in the cytoplasm of Picornavirus-infected cells and activate innate immune responses. To further define regulatory components of RNA recognition by LGP2/MDA5, a yeast two-hybrid screen was used to identify LGP2-interacting proteins. The screening has identified the TAR-RNA binding protein (TRBP), which is known to be an essential factor for RNA interference (RNAi). Immuno-precipitation experiments demonstrated that TRBP interacted specifically with LGP2 but not with related RIG-I-like receptors, RIG-I or MDA5. siRNA knockdown experiments indicate that TRBP is important for Cardiovirus-triggered interferon responses, but TRBP is not involved in Sendai virus-triggered interferon response that is mediated mainly by RIG-I. To support functional interaction with LGP2, overexpressed TRBP increased Cardiovirus-triggered interferon promoter activity only when LGP2 and MDA5 are co-expressed but not MDA5 alone. Together, our findings illustrate a possible connection between an RNAi-regulatory factor and antiviral RNA recognition that is specifically required for a branch of the virus induced innate immune response.


Subject(s)
Cardiovirus Infections/metabolism , Host-Pathogen Interactions , RNA-Binding Proteins/metabolism , Animals , Cardiovirus/pathogenicity , Cardiovirus Infections/immunology , Chlorocebus aethiops , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-beta/genetics , Mice , Promoter Regions, Genetic , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Small Interfering , RNA-Binding Proteins/genetics , Receptors, Immunologic , Sendai virus/pathogenicity , Vero Cells
14.
J Virol ; 88(10): 5595-607, 2014 May.
Article in English | MEDLINE | ID: mdl-24600002

ABSTRACT

UNLABELLED: Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE: The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.


Subject(s)
Cardiovirus/enzymology , Catalytic Domain , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Cardiovirus/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation
15.
J Gen Virol ; 95(Pt 9): 1945-1957, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24899154

ABSTRACT

Human cardioviruses or Saffold viruses (SAFVs) of the family Picornaviridae are newly emerging viruses whose genetic and phenotypic diversity are poorly understood. We report here the full genome sequence of 11 SAFV genotypes from Pakistan and Afghanistan, along with a re-evaluation of their genetic diversity and recombination. We detected 88 SAFV from stool samples of 943 acute flaccid paralysis cases using reverse transcriptase-PCR targeting the 5' untranslated region (UTR). Further characterization based on complete VP1 analysis revealed 71 SAFVs belonging to 11 genotypes, including three previously unidentified genotypes. SAFV showed high genetic diversity and recombination based on phylogenetic, pairwise distance distributions and recombination mapping analyses performed herein. Phylogenies based on non-structural and UTRs were highly incongruent indicating frequent recombination events among SAFVs. We improved the SAFV genotyping classification criteria by determining new VP1 thresholds based on the principles used for the classification of enteroviruses. For genotype assignment, we propose a threshold of 23 and 10 % divergence for VP1 nucleotide and amino acid sequences, respectively. Other members of the species Theilovirus, such as Thera virus and Theiler's murine encephalomyelitis virus, are difficult to classify in the same species as SAFV, because they are genetically distinct from SAFV, with 41-56 % aa pairwise distances. The new genetic information obtained in this study will improve our understanding of the evolution and classification of SAFV.


Subject(s)
Cardiovirus/classification , Cardiovirus/genetics , Genome, Viral/genetics , Viral Proteins/genetics , 5' Untranslated Regions/genetics , Afghanistan , Amino Acid Sequence , Base Sequence , Biological Evolution , Capsid Proteins/genetics , Cardiovirus Infections/virology , Chromosome Mapping , Feces/virology , Genetic Variation , Genotype , Humans , Molecular Sequence Data , Muscle Hypotonia/virology , Pakistan , Phenotype , Sequence Analysis, RNA , Theilovirus/genetics
16.
Proc Natl Acad Sci U S A ; 108(46): E1111-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22025686

ABSTRACT

The genus Cardiovirus (family Picornaviridae) currently comprises the species Encephalomyocarditis virus (EMCV) and Theilovirus. Cardioviruses have a positive-sense, single-stranded RNA genome that encodes a large polyprotein (L-1ABCD-2ABC-3ABCD) that is cleaved to produce approximately 12 mature proteins. We report on a conserved ORF that overlaps the 2B-encoding sequence of EMCV in the +2 reading frame. The ORF is translated as a 128-129 amino acid transframe fusion (2B*) with the N-terminal 11-12 amino acids of 2B, via ribosomal frameshifting at a conserved GGUUUUY motif. Mutations that knock out expression of 2B* result in a small-plaque phenotype. Curiously, although theilovirus sequences lack a long ORF in the +2 frame at this genomic location, they maintain a conserved GGUUUUU motif just downstream of the 2A-2B junction, and a highly localized peak in conservation at polyprotein-frame synonymous sites suggests that theiloviruses also utilize frameshifting here, albeit into a very short +2-frame ORF. Unlike previous cases of programmed -1 frameshifting, here frameshifting is modulated by virus infection, thus suggesting a novel regulatory role for frameshifting in these viruses.


Subject(s)
Cardiovirus/genetics , Frameshifting, Ribosomal , Ribosomes/chemistry , Viral Proteins/genetics , 5' Untranslated Regions , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , Cricetinae , Cricetulus , Encephalomyocarditis virus/genetics , Genome, Viral , Molecular Sequence Data , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Polyproteins/chemistry , RNA, Viral/metabolism , Sequence Homology, Nucleic Acid , Theilovirus/genetics
17.
J Virol ; 86(3): 1292-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22114344

ABSTRACT

Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important.


Subject(s)
Cardiovirus/pathogenicity , Animals , Cardiovirus/genetics , Cardiovirus/isolation & purification , Cardiovirus Infections/virology , Genome, Viral , Humans , Mice , Viral Proteins/chemistry , Viral Proteins/isolation & purification , Viral Proteins/metabolism
18.
Emerg Infect Dis ; 18(1): 7-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22261113

ABSTRACT

The first human virus in the genus Cardiovirus was described in 2007 and named Saffold virus (SAFV). Cardioviruses can cause severe infections of the myocardium and central nervous system in animals, but SAFV has not yet been convincingly associated with disease in humans. To study a possible association between SAFV and infections in the human central nervous system, we designed a real-time PCR for SAFV and tested cerebrospinal fluid (CSF) samples from children <4 years of age. SAFV was detected in 2 children: in the CSF and a fecal sample from 1 child with monosymptomatic ataxia caused by cerebellitis; and in the CSF, blood, and myocardium of another child who died suddenly with no history of illness. Virus from each child was sequenced and shown to be SAFV type 2. These findings demonstrate that SAFV can cause serious invasive infection in children.


Subject(s)
Cardiovirus Infections/pathology , Cardiovirus/isolation & purification , Central Nervous System Infections/virology , Cardiovirus/classification , Cardiovirus/genetics , Cardiovirus Infections/cerebrospinal fluid , Central Nervous System Infections/pathology , Child, Preschool , Fatal Outcome , Feces/virology , Female , Genome, Viral , Humans , Infant , Male , Phylogeny , Real-Time Polymerase Chain Reaction
19.
J Virol ; 85(14): 7411-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21543476

ABSTRACT

Saffold viruses (SAFV) are a recently discovered group of human Cardioviruses closely related to Theiler's murine encephalomyelitis viruses (TMEV). Unlike TMEV and encephalomyocarditis virus, each of which is monotypic, SAFV are genetically diverse and include at least eight genotypes. To date, only Saffold virus 3 (SAFV-3) has been grown efficiently in mammalian cells in vitro. Here, we report the successful adaptation of SAFV-2 for efficient growth in HeLa cells after 13 passages in the alpha/beta interferon-deficient human glial cell line U118 MG. Nine amino acid changes were found in the adapted virus, with single mutations in VP2, VP3, and 2B, while 6 mutations arose in VP1. Most capsid mutations were in surface loops. Analysis of SAFV-2 revealed virus growth and cytopathic effect only in human cell lines, with large plaques forming in HeLa cells, with minimal cell association, and without using sialic acid to enter cells. Despite the limited growth of SAFV-2 in rodent cells in vitro, BALB/c mice inoculated with SAFV-2 showed antibody titers of >1:10(6), and fluorescence-activated cell sorting (FACS) analysis revealed only minimal cross-reactivity with SFV-3. Intracerebral inoculation of 6-week-old FVB/n mice produced paralysis and acute neuropathological changes, including meningeal infiltrates, encephalitis, particularly of the limbic system, and spinal cord white matter inflammation.


Subject(s)
Adaptation, Physiological , Cardiovirus/physiology , Animals , Capsid/metabolism , Cardiovirus/genetics , Cardiovirus/growth & development , Enzyme-Linked Immunosorbent Assay , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Mutation , Reverse Transcriptase Polymerase Chain Reaction
20.
Infect Genet Evol ; 103: 105347, 2022 09.
Article in English | MEDLINE | ID: mdl-35932998

ABSTRACT

Recently a growing number of novel cardioviruses have been frequently discovered, which boosts interest in the search for the genetic diversity of cardioviruses. However, wild-marmot cardioviruses have been rarely reported. Here, a novel cardiovirus (tentatively named HHMCDV) was identified in fecal samples from wild Himalayan marmots in Qinghai Tibetan Plateau, China, by viral metagenomics analysis. 3 out of 99 fecal samples from Himalayan marmots were positive for HHMCDV, with the viral loads ranging from 2.7 × 105 to 1.3 × 107 gene copies/g. The complete genomic sequence of HHMCDV was 8108 nucleotides in length, with the typical cardiovirus genome organization and motifs. Coincidentally, while the data was analyzing, one marmot cardiovirus HT7 partial sequence was available in the Genbank, showing 95.1%, 95.6% and 96.0% amino acid (aa) identity in P1, P2 and P3, respectively. However, sequence analysis revealed that HHMCDV and HT7 are more closely related to species Cardiovirus F strain with 65.7%, 61.9-65.6%, 58.9-59.7%, 71.1-71.7%, 69.1-69.4% and 71.4-72.2% aa identity in polyprotein, P1, P2, P3, 2C and 3CD proteins, respectively. Phylogenetic analysis of P1, P2, P3 and 3CD aa sequences indicated that HHMCDV and HT7 clustered tightly and formed a distinct cluster in the Cardiovirus genus. Based on these data, we propose that HHMCDV and HT7 should be two different members of a potential novel species within the genus Cardiovirus. Further studies are needed to investigate the epidemiology and potential pathogenicity of the virus in Himalayan marmots.


Subject(s)
Cardiovirus , Animals , Cardiovirus/genetics , Feces , Genome, Viral , Marmota/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL