Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.772
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 301-316, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36750315

ABSTRACT

As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cellular damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. The three major components of the NLRP3 inflammasome are NLRP3, which captures the danger signals and recruits downstream molecules; caspase-1, which elicits maturation of the cytokines IL-1ß and IL-18 and processing of gasdermin D to mediate cytokine release and pyroptosis; and ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which functions as a bridge connecting NLRP3 and caspase-1. In this article, we review the structural information that has been obtained on the NLRP3 inflammasome and its components or subcomplexes, with special focus on the inactive NLRP3 cage, the active NLRP3-NEK7 (NIMA-related kinase 7)-ASC inflammasome disk, and the PYD-PYD and CARD-CARD homotypic filamentous scaffolds of the inflammasome. We further implicate structure-derived mechanisms for the assembly and activation of the NLRP3 inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Animals , Inflammasomes/chemistry , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apoptosis , Cytokines/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism
2.
Annu Rev Immunol ; 40: 249-269, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35080918

ABSTRACT

Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease.


Subject(s)
Caspases , Inflammasomes , Animals , Caspase 1/metabolism , Caspases/metabolism , Cell Death , Humans , Inflammasomes/metabolism , Pyroptosis
3.
Nat Immunol ; 24(2): 295-308, 2023 02.
Article in English | MEDLINE | ID: mdl-36604548

ABSTRACT

It has been shown that innate immune responses can adopt adaptive properties such as memory. Whether T cells utilize innate immune signaling pathways to diversify their repertoire of effector functions is unknown. Gasdermin E (GSDME) is a membrane pore-forming molecule that has been shown to execute pyroptotic cell death and thus to serve as a potential cancer checkpoint. In the present study, we show that human T cells express GSDME and, surprisingly, that this expression is associated with durable viability and repurposed for the release of the alarmin interleukin (IL)-1α. This property was restricted to a subset of human helper type 17 T cells with specificity for Candida albicans and regulated by a T cell-intrinsic NLRP3 inflammasome, and its engagement of a proteolytic cascade of successive caspase-8, caspase-3 and GSDME cleavage after T cell receptor stimulation and calcium-licensed calpain maturation of the pro-IL-1α form. Our results indicate that GSDME pore formation in T cells is a mechanism of unconventional cytokine release. This finding diversifies our understanding of the functional repertoire and mechanistic equipment of T cells and has implications for antifungal immunity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Th17 Cells , Humans , Caspase 1/metabolism , Gasdermins , Immunity, Innate , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
4.
Nat Immunol ; 24(4): 585-594, 2023 04.
Article in English | MEDLINE | ID: mdl-36941399

ABSTRACT

Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1ß and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.


Subject(s)
Apoptosis Regulatory Proteins , Inflammasomes , Mice , Humans , Animals , Inflammasomes/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Apoptosis , Caspase 1/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-1beta/metabolism , Adaptor Proteins, Signal Transducing/metabolism
5.
Nat Immunol ; 24(4): 595-603, 2023 04.
Article in English | MEDLINE | ID: mdl-36941400

ABSTRACT

Upon detecting pathogens or cell stress, several NOD-like receptors (NLRs) form inflammasome complexes with the adapter ASC and caspase-1, inducing gasdermin D (GSDMD)-dependent cell death and maturation and release of IL-1ß and IL-18. The triggers and activation mechanisms of several inflammasome-forming sensors are not well understood. Here we show that mitochondrial damage activates the NLRP10 inflammasome, leading to ASC speck formation and caspase-1-dependent cytokine release. While the AIM2 inflammasome can also sense mitochondrial demise by detecting mitochondrial DNA (mtDNA) in the cytosol, NLRP10 monitors mitochondrial integrity in an mtDNA-independent manner, suggesting the recognition of distinct molecular entities displayed by the damaged organelles. NLRP10 is highly expressed in differentiated human keratinocytes, in which it can also assemble an inflammasome. Our study shows that this inflammasome surveils mitochondrial integrity. These findings might also lead to a better understanding of mitochondria-linked inflammatory diseases.


Subject(s)
Cytokines , Inflammasomes , Humans , Inflammasomes/metabolism , Caspase 1/metabolism , Cytokines/metabolism , Cell Death , DNA, Mitochondrial/genetics , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism
6.
Cell ; 180(5): 941-955.e20, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109412

ABSTRACT

The pyroptosis execution protein GSDMD is cleaved by inflammasome-activated caspase-1 and LPS-activated caspase-11/4/5. The cleavage unmasks the pore-forming domain from GSDMD-C-terminal domain. How the caspases recognize GSDMD and its connection with caspase activation are unknown. Here, we show site-specific caspase-4/11 autoprocessing, generating a p10 product, is required and sufficient for cleaving GSDMD and inducing pyroptosis. The p10-form autoprocessed caspase-4/11 binds the GSDMD-C domain with a high affinity. Structural comparison of autoprocessed and unprocessed capase-11 identifies a ß sheet induced by the autoprocessing. In caspase-4/11-GSDMD-C complex crystal structures, the ß sheet organizes a hydrophobic GSDMD-binding interface that is only possible for p10-form caspase-4/11. The binding promotes dimerization-mediated caspase activation, rendering a cleavage independently of the cleavage-site tetrapeptide sequence. Crystal structure of caspase-1-GSDMD-C complex shows a similar GSDMD-recognition mode. Our study reveals an unprecedented substrate-targeting mechanism for caspases. The hydrophobic interface suggests an additional space for developing inhibitors specific for pyroptotic caspases.


Subject(s)
Inflammasomes/ultrastructure , Multiprotein Complexes/ultrastructure , Phosphate-Binding Proteins/ultrastructure , Pyroptosis/genetics , Animals , Caspase 1/chemistry , Caspase 1/genetics , Caspase 1/ultrastructure , Caspases, Initiator/chemistry , Caspases, Initiator/genetics , Crystallography, X-Ray , HEK293 Cells , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Inflammasomes/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Phosphate-Binding Proteins/chemistry , Phosphate-Binding Proteins/genetics , Protein Conformation, beta-Strand/genetics , Protein Domains/genetics , Protein Processing, Post-Translational/genetics , Proteolysis
7.
Nat Immunol ; 23(5): 705-717, 2022 05.
Article in English | MEDLINE | ID: mdl-35487985

ABSTRACT

Caspase-11 detection of intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria mediates noncanonical activation of the NLRP3 inflammasome. While avirulent bacteria do not invade the cytosol, their presence in tissues necessitates clearance and immune system mobilization. Despite sharing LPS, only live avirulent Gram-negative bacteria activate the NLRP3 inflammasome. Here, we found that bacterial mRNA, which signals bacterial viability, was required alongside LPS for noncanonical activation of the NLRP3 inflammasome in macrophages. Concurrent detection of bacterial RNA by NLRP3 and binding of LPS by pro-caspase-11 mediated a pro-caspase-11-NLRP3 interaction before caspase-11 activation and inflammasome assembly. LPS binding to pro-caspase-11 augmented bacterial mRNA-dependent assembly of the NLRP3 inflammasome, while bacterial viability and an assembled NLRP3 inflammasome were necessary for activation of LPS-bound pro-caspase-11. Thus, the pro-caspase-11-NLRP3 interaction nucleated a scaffold for their interdependent activation explaining their functional reciprocal exclusivity. Our findings inform new vaccine adjuvant combinations and sepsis therapy.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Caspase 1/metabolism , Caspases , Gram-Negative Bacteria , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger
8.
Nat Immunol ; 23(6): 892-903, 2022 06.
Article in English | MEDLINE | ID: mdl-35624206

ABSTRACT

Intracellular sensing of stress and danger signals initiates inflammatory innate immune responses by triggering inflammasome assembly, caspase-1 activation and pyroptotic cell death as well as the release of interleukin 1ß (IL-1ß), IL-18 and danger signals. NLRP3 broadly senses infectious patterns and sterile danger signals, resulting in the tightly coordinated and regulated assembly of the NLRP3 inflammasome, but the precise mechanisms are incompletely understood. Here, we identified NLRP11 as an essential component of the NLRP3 inflammasome in human macrophages. NLRP11 interacted with NLRP3 and ASC, and deletion of NLRP11 specifically prevented NLRP3 inflammasome activation by preventing inflammasome assembly, NLRP3 and ASC polymerization, caspase-1 activation, pyroptosis and cytokine release but did not affect other inflammasomes. Restored expression of NLRP11, but not NLRP11 lacking the PYRIN domain (PYD), restored inflammasome activation. NLRP11 was also necessary for inflammasome responses driven by NLRP3 mutations that cause cryopyrin-associated periodic syndrome (CAPS). Because NLRP11 is not expressed in mice, our observations emphasize the specific complexity of inflammasome regulation in humans.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Caspase 1/genetics , Caspases/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Licensure , Macrophages , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Nat Immunol ; 23(7): 1021-1030, 2022 07.
Article in English | MEDLINE | ID: mdl-35794369

ABSTRACT

Interleukin-33 (IL-33), an epithelial cell-derived cytokine that responds rapidly to environmental insult, has a critical role in initiating airway inflammatory diseases. However, the molecular mechanism underlying IL-33 secretion following allergen exposure is not clear. Here, we found that two cell events were fundamental for IL-33 secretion after exposure to allergens. First, stress granule assembly activated by allergens licensed the nuclear-cytoplasmic transport of IL-33, but not the secretion of IL-33. Second, a neo-form murine amino-terminal p40 fragment gasdermin D (Gsdmd), whose generation was independent of inflammatory caspase-1 and caspase-11, dominated cytosolic secretion of IL-33 by forming pores in the cell membrane. Either the blockade of stress granule assembly or the abolishment of p40 production through amino acid mutation of residues 309-313 (ELRQQ) could efficiently prevent the release of IL-33 in murine epithelial cells. Our findings indicated that targeting stress granule disassembly and Gsdmd fragmentation could reduce IL-33-dependent allergic airway inflammation.


Subject(s)
Allergens , Interleukin-33 , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Caspase 1/metabolism , Inflammation , Interleukin-1beta/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Peptide Hydrolases/metabolism , Stress Granules
10.
Immunity ; 57(7): 1533-1548.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38733997

ABSTRACT

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.


Subject(s)
Caspase 1 , Cryoelectron Microscopy , Interleukin-18 , Signal Transduction , Interleukin-18/metabolism , Caspase 1/metabolism , Humans , Inflammasomes/metabolism , Animals , Protein Conformation , Protein Binding , Binding Sites , Mice , Receptors, Interleukin-18/metabolism , Models, Molecular , Intercellular Signaling Peptides and Proteins
11.
Cell ; 175(6): 1651-1664.e14, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30392956

ABSTRACT

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.


Subject(s)
Immunity, Innate , Inflammasomes/immunology , Lipopolysaccharides/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Receptors, Cell Surface/immunology , Teichoic Acids/immunology , Animals , Caspase 1/genetics , Caspase 1/immunology , Caspases/genetics , Caspases/immunology , Caspases, Initiator , Inflammasomes/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Listeriosis/genetics , Listeriosis/pathology , Mice , Mice, Knockout , Receptors, Cell Surface/genetics
12.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29754819

ABSTRACT

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Subject(s)
Neurons/metabolism , Neutrophils/metabolism , Streptococcal Infections/pathology , Streptococcus pyogenes/pathogenicity , Animals , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Botulinum Toxins, Type A/administration & dosage , Calcitonin Gene-Related Peptide/metabolism , Caspase 1/deficiency , Caspase 1/genetics , Diterpenes/pharmacology , Fasciitis, Necrotizing/etiology , Fasciitis, Necrotizing/pathology , Fasciitis, Necrotizing/veterinary , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Neurons/drug effects , Neutrophils/immunology , Pain/etiology , Signal Transduction , Skin/metabolism , Skin/pathology , Streptococcal Infections/complications , Streptococcal Infections/veterinary , Streptococcus pyogenes/metabolism , Streptolysins/immunology , Streptolysins/metabolism , TRPV Cation Channels/deficiency , TRPV Cation Channels/genetics
13.
Nat Immunol ; 21(7): 736-745, 2020 07.
Article in English | MEDLINE | ID: mdl-32367036

ABSTRACT

Cytosolic sensing of pathogens and damage by myeloid and barrier epithelial cells assembles large complexes called inflammasomes, which activate inflammatory caspases to process cytokines (IL-1ß) and gasdermin D (GSDMD). Cleaved GSDMD forms membrane pores, leading to cytokine release and inflammatory cell death (pyroptosis). Inhibiting GSDMD is an attractive strategy to curb inflammation. Here we identify disulfiram, a drug for treating alcohol addiction, as an inhibitor of pore formation by GSDMD but not other members of the GSDM family. Disulfiram blocks pyroptosis and cytokine release in cells and lipopolysaccharide-induced septic death in mice. At nanomolar concentration, disulfiram covalently modifies human/mouse Cys191/Cys192 in GSDMD to block pore formation. Disulfiram still allows IL-1ß and GSDMD processing, but abrogates pore formation, thereby preventing IL-1ß release and pyroptosis. The role of disulfiram in inhibiting GSDMD provides new therapeutic indications for repurposing this safe drug to counteract inflammation, which contributes to many human diseases.


Subject(s)
Disulfiram/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phosphate-Binding Proteins/antagonists & inhibitors , Pyroptosis/drug effects , Sepsis/drug therapy , Animals , Caspase 1/genetics , Caspase 1/metabolism , Caspase Inhibitors/pharmacology , Caspases/metabolism , Caspases, Initiator/genetics , Caspases, Initiator/metabolism , Cell Line, Tumor , Disulfiram/therapeutic use , Drug Evaluation, Preclinical , Drug Repositioning , Female , HEK293 Cells , High-Throughput Screening Assays , Humans , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Liposomes , Mice , Mutagenesis, Site-Directed , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pyroptosis/immunology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sepsis/immunology , Sf9 Cells , Spodoptera
14.
Nat Immunol ; 21(1): 65-74, 2020 01.
Article in English | MEDLINE | ID: mdl-31848486

ABSTRACT

The cytokine interleukin (IL)-1ß is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1ß requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1ß production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1ß production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1ß synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1ß cleavage. The T cell-instructed IL-1ß resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1ß production and its consequences in CD4+ T cell-driven autoimmune pathology.


Subject(s)
Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , Inflammation/pathology , Interleukin-1beta/metabolism , Myeloid Cells/metabolism , Animals , Caspase 1/genetics , Caspase 8/metabolism , Cells, Cultured , Dendritic Cells/immunology , Fas Ligand Protein/metabolism , Immunity, Innate/immunology , Inflammasomes/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Immunity ; 56(4): 753-767.e8, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37001519

ABSTRACT

Intracellular sensing of lipopolysaccharide (LPS) by murine caspase-11 or human caspase-4 initiates a protease cascade, termed the non-canonical inflammasome, that results in gasdermin D (GSDMD) processing and subsequent NLRP3 inflammasome activation. In an effort aimed at identifying additional sensors for intracellular LPS by biochemical screening, we identified the nuclear orphan receptor Nur77 as an LPS-binding protein in macrophage lysates. Nr4a1-/- macrophages exhibited impaired activation of the NLRP3 inflammasome, but not caspase-11, in response to LPS. Biochemical mapping revealed that Nur77 bound LPS directly through a domain in its C terminus. Yeast two-hybrid assays identified NLRP3 as a binding partner for Nur77. The association between Nur77 and NLRP3 required the presence of LPS and dsDNA. The source of dsDNA was the mitochondria, requiring the formation of gasdermin-D pores. In vivo, Nur77 deficiency ameliorated host response to endotoxins. Thus, Nur77 functions as an intracellular LPS sensor, binding mitochondrial DNA and LPS to activate the non-canonical NLRP3 inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Humans , Mice , Caspase 1/metabolism , Caspases/metabolism , Gasdermins , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
16.
Nat Immunol ; 20(1): 64-72, 2019 01.
Article in English | MEDLINE | ID: mdl-30455460

ABSTRACT

Toxoplasma gondii is a common protozoan parasite that infects up to one third of the world's population. Notably, very little is known about innate immune sensing mechanisms for this obligate intracellular parasite by human cells. Here, by applying an unbiased biochemical screening approach, we show that human monocytes recognized the presence of T. gondii infection by detecting the alarmin S100A11 protein, which is released from parasite-infected cells via caspase-1-dependent mechanisms. S100A11 induced a potent chemokine response to T. gondii by engaging its receptor RAGE, and regulated monocyte recruitment in vivo by inducing expression of the chemokine CCL2. Our experiments reveal a sensing system for T. gondii by human cells that is based on the detection of infection-mediated release of S100A11 and RAGE-dependent induction of CCL2, a crucial chemokine required for host resistance to the parasite.


Subject(s)
Chemokine CCL2/metabolism , Immunity, Innate , S100 Proteins/metabolism , Toxoplasma/physiology , Toxoplasmosis/immunology , Animals , Antigens, Neoplasm/metabolism , Caspase 1/metabolism , Chemotaxis , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , RNA, Small Interfering/genetics , S100 Proteins/genetics , THP-1 Cells
17.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38092000

ABSTRACT

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Subject(s)
Acyltransferases , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Mice , Caspase 1/metabolism , Histidine/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipoylation , Macrophages/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism
18.
Immunity ; 54(7): 1392-1404.e10, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34019797

ABSTRACT

CARD8 detects intracellular danger signals and forms a caspase-1 activating inflammasome. Like the related inflammasome sensor NLRP1, CARD8 autoprocesses into noncovalently associated N-terminal (NT) and C-terminal (CT) fragments and binds the cellular dipeptidyl peptidases DPP8 and 9 (DPP8/9). Certain danger-associated signals, including the DPP8/9 inhibitor Val-boroPro (VbP) and HIV protease, induce proteasome-mediated NT degradation and thereby liberate the inflammasome-forming CT. Here, we report cryoelectron microscopy (cryo-EM) structures of CARD8 bound to DPP9, revealing a repressive ternary complex consisting of DPP9, full-length CARD8, and CARD8-CT. Unlike NLRP1-CT, CARD8-CT does not interact with the DPP8/9 active site and is not directly displaced by VbP. However, larger DPP8/9 active-site probes can directly weaken this complex in vitro, and VbP itself nevertheless appears to disrupt this complex, perhaps indirectly, in cells. Thus, DPP8/9 inhibitors can activate the CARD8 inflammasome by promoting CARD8 NT degradation and by weakening ternary complex stability.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , Animals , Caspase 1/metabolism , Catalytic Domain/physiology , Cell Line , Cryoelectron Microscopy/methods , HEK293 Cells , Humans , Proteolysis , Sf9 Cells
19.
Nature ; 631(8019): 207-215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926576

ABSTRACT

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Subject(s)
Macrophages , Oxylipins , Pyroptosis , Secretome , Wound Healing , Animals , Female , Humans , Mice , Caspase 1/metabolism , Cell Movement , Cell Proliferation , Cyclooxygenase 2/metabolism , Dinoprostone/biosynthesis , Dinoprostone/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Gasdermins/metabolism , Inflammasomes/metabolism , Interleukin-1beta , Lipidomics , Macrophages/metabolism , Macrophages/cytology , Mice, Inbred C57BL , Oxylipins/metabolism , Phosphate-Binding Proteins/metabolism , Secretome/metabolism , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL