Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 177(2): 446-462.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951671

ABSTRACT

Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Circulating MicroRNA/isolation & purification , RNA/isolation & purification , Adult , Body Fluids/chemistry , Cell Line , Extracellular Vesicles/metabolism , Female , Healthy Volunteers , Humans , Male , MicroRNAs/isolation & purification , MicroRNAs/metabolism , RNA/metabolism , Reproducibility of Results , Sequence Analysis, RNA/methods
2.
Anal Chem ; 96(29): 11942-11950, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38985898

ABSTRACT

The expanding horizon of diagnostic and therapeutic applications involving nucleic acids (NA) requires novel tools for purification, including minimal sample preparation. In this work, thin-film microextraction devices featuring five poly ionic sorbents were examined as anion exchange extraction phases for the rapid purification of NAs. Each sorbent is composed of a nonionic cross-linker and a methacrylate monomer containing a core tetra-alkyl ammonium moiety with an alkyl, anionic, or cationic residue. Extraction devices were produced through the application of the prepolymer sorbent mixture onto a functionalized nitinol metal support followed by photoinduced free-radical polymerization. The miniaturized extraction devices (10 mm × 3.5 mm) were directly immersed into aqueous samples to isolate NAs via electrostatic interactions with the polycation. The ammonium methacrylate (AMA) monomer containing a propyl trimethylammonium group (AMA-C3N(CH3)3) exhibited the highest affinity for DNA, with 80 ± 10% of DNA being isolated. Recovery of DNA from the sorbents required the introduction of ions in an aqueous solution to exchange the anionic biopolymer from the polycationic moiety. An investigation of three anion species revealed that the AMA-C3N(CH3)3 sorbent showed the highest recoveries, with the perchlorate anion producing a preconcentration factor of 4.36 ± 0.86 while requiring only 250 mM NaClO4. A directly compatible quantitative polymerase chain reaction assay was developed to quantify the recovery of spiked DNA with lengths of 830, 204, and 98 base pairs in heat-treated human plasma. The AMA-C3N(CH3)3 sorbent was uninhibited by the complex human plasma matrix and enabled high preconcentration factors for the spiked DNA at a biologically relevant concentration of 10 pg/mL. While Qiagen's circulating cell-free DNA MinElute extraction kit enabled higher preconcentration of all analytes, the methodology described in this work requires fewer steps, less user intervention, and minimal equipment requirements to isolate DNA, making it more amenable for high-throughput and low resource applications.


Subject(s)
Cell-Free Nucleic Acids , Humans , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/chemistry , Anions/chemistry , Polymers/chemistry , Methacrylates/chemistry , Ion Exchange , DNA/chemistry , DNA/blood
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 797-802, 2024 Jul 10.
Article in Zh | MEDLINE | ID: mdl-38946360

ABSTRACT

OBJECTIVE: To assess the efficiency of modified enrichment method for cell-free fetal DNA (cffDNA) through purified superparamagnetic beads during non-invasive prenatal testing (NIPT). METHODS: A total of 26 252 pregnant women undergoing NIPT at the Maternal and Child Health Care Hospital of Haidian District from December 2017 to September 2022 were recruited and randomly assigned into the conventional group (n = 10 573) and the modified enrichment group (n = 15 679), who were then subjected to the screening and enrichment of the cffDNA using a conventional and a modified technique, respectively. High-risk pregnant women detected by NIPT were subjected to invasive prenatal diagnosis. All women were followed up for their pregnancy outcomes, and the detection efficacy of the two methods was compared in terms of fragment size, concentration of cffDNA, duplicate detection rate, and indices of clinical laboratory tests. RESULTS: The fragment size of the main peak of the cell-free DNA library of the modified enrichment group was significantly lower than that of the conventional group [267 (264, 269) bp vs. 294 (292, 296) bp, P < 0.01], while the concentration of cffDNA was significantly higher [21.86% (17.61%, 26.36%) vs. 9.08% (6.87%, 11.87%), P < 0.01]. In addition, the duplicate detection rate (0.740% vs. 2.02%, X2 = 83.90, P < 0.01) and detection failure rate (0.006% vs. 0.057%, P < 0.05) in the modified enrichment group were significantly lower than those of the conventional group. The combined positive predictive value (PPV) in both high-risk (64.3% vs. 76.1%) and low-risk (35.3% vs. 45.5%) pregnant women from the modified enrichment group was slightly lower than those from the conventional group, though no significant difference was detected. There was one false negative case for trisomy 21 among the high-risk pregnant women from the conventional group, and no false negative case was found in the modified enrichment group. CONCLUSION: The modified technique to screen and enrich the cffDNA has significantly enhanced the relative concentration of cffDNA and reduced the failure and duplication detection rate of NIPT, which has significantly reduced the incidence of false negative cases due to the low concentration of cffDNA, and greatly increased the overall detection efficacy of NIPT.


Subject(s)
Cell-Free Nucleic Acids , Noninvasive Prenatal Testing , Humans , Female , Pregnancy , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Adult , Noninvasive Prenatal Testing/methods , Prenatal Diagnosis/methods , Fetus
4.
J Clin Microbiol ; 61(3): e0185922, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36809121

ABSTRACT

Timely diagnosis remains an unmet need in non-neutropenic patients at risk for aspergillosis, including those with COVID-19-associated pulmonary aspergillosis (CAPA), which in its early stages is characterized by tissue-invasive growth of the lungs with limited angioinvasion. Currently available mycological tests show limited sensitivity when testing blood specimens. Metagenomic next-generation sequencing (mNGS) to detect microbial cell-free DNA (mcfDNA) in plasma might overcome some of the limitations of conventional diagnostics. A two-center cohort study involving 114 COVID-19 intensive care unit patients evaluated the performance of plasma mcfDNA sequencing for the diagnosis of CAPA. Classification of CAPA was performed using the European Confederation for Medical Mycology (ECMM)/International Society for Human and Animal Mycoses (ISHAM) criteria. A total of 218 plasma samples were collected between April 2020 and June 2021 and tested for mcfDNA (Karius test). Only 6 patients were classified as probable CAPA, and 2 were classified as possible, while 106 patients did not fulfill CAPA criteria. The Karius test detected DNA of mold pathogens in 12 samples from 8 patients, including Aspergillus fumigatus in 10 samples from 6 patients. Mold pathogen DNA was detected in 5 of 6 (83% sensitivity) cases with probable CAPA (A. fumigatus in 8 samples from 4 patients and Rhizopus microsporus in 1 sample), while the test did not detect molds in 103 of 106 (97% specificity) cases without CAPA. The Karius test showed promising performance for diagnosis of CAPA when testing plasma, being highly specific. The test detected molds in all but one patient with probable CAPA, including cases where other mycological tests from blood resulted continuously negative, outlining the need for validation in larger studies.


Subject(s)
Aspergillosis , COVID-19 , COVID-19/complications , Aspergillosis/diagnosis , Aspergillosis/microbiology , Humans , Middle Aged , Cell-Free Nucleic Acids/isolation & purification , Male , Female
5.
Proc Natl Acad Sci U S A ; 117(3): 1658-1665, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31900366

ABSTRACT

We explored the presence of extrachromosomal circular DNA (eccDNA) in the plasma of pregnant women. Through sequencing following either restriction enzyme or Tn5 transposase treatment, we identified eccDNA molecules in the plasma of pregnant women. These eccDNA molecules showed bimodal size distributions peaking at ∼202 and ∼338 bp with distinct 10-bp periodicity observed throughout the size ranges within both peaks, suggestive of their nucleosomal origin. Also, the predominance of the 338-bp peak of eccDNA indicated that eccDNA had a larger size distribution than linear DNA in human plasma. Moreover, eccDNA of fetal origin were shorter than the maternal eccDNA. Genomic annotation of the overall population of eccDNA molecules revealed a preference of these molecules to be generated from 5'-untranslated regions (5'-UTRs), exonic regions, and CpG island regions. Two sets of trinucleotide repeat motifs flanking the junctional sites of eccDNA supported multiple possible models for eccDNA generation. This work highlights the topologic analysis of plasma DNA, which is an emerging direction for circulating nucleic acid research and applications.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , DNA, Circular/isolation & purification , Plasma/chemistry , Cell-Free Nucleic Acids/chemistry , Cell-Free Nucleic Acids/genetics , DNA, Circular/chemistry , DNA, Circular/genetics , Female , Genome, Human , Hong Kong , Humans , Noninvasive Prenatal Testing , Pregnancy
6.
Anal Chem ; 94(4): 2134-2141, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35067041

ABSTRACT

Methylated cell-free DNA (cfDNA) has been deemed a promising biomarker for ovarian cancer (OvCa) prognosis and therapy selection. However, exploring the methylation profiles of tumor suppressor genes in cfDNA remains a challenge due to their extremely low concentrations and complicated protocols, as well as methodological constraints. In this study, an integrated microfluidic system was developed to automatically (1) capture methylated cfDNA in plasma by magnetic beads coated with the methyl-CpG-binding domain and (2) quantify the methylation level of tumor suppressor genes by on-chip quantitative polymerase chain reaction (qPCR). For capturing methylated cfDNA from a very small amount of plasma, samples along with beads were mixed in a new micromixer to enhance the capture rate. With a high capture rate (72%) and a limit of quantification of 0.1 pg/µL (3 orders of magnitude lower than that of the benchtop method), the compact system could detect the methylated cfDNA from only 20 µL of plasma sample in 2 h. Furthermore, the dynamic range, from 0.1 to 2000 pg/µL of methylated cfDNA, spans the physiological range in plasma, signifying that this device has great potential for personalized medicine in OvCa.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Microfluidics , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/isolation & purification , DNA Methylation , Oligonucleotide Array Sequence Analysis , Prognosis
7.
Prenat Diagn ; 42(2): 240-253, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032044

ABSTRACT

OBJECTIVES: Increase the yield and purity of cell-free DNA (cfDNA) extracted from plasma for non-invasive prenatal testing (NIPT) as inefficiencies in this extraction and purification can dramatically affect the sensitivity and specificity of the test. METHODS: This work integrates cfDNA extraction from plasma with a microfluidic chip platform by combining magnetic bead-based extraction and electroosmotic flow on the microfluidic chip. Various wash buffers and voltage conditions were simulated using COMSOL Multiphysics Modeling and tested experimentally. RESULTS: When performing the first wash step of this assay on the microfluidic chip with 300 V applied across the channel there was a six-fold increase in the A260 /A230 ratio showing a significant improvement (p value 0.0005) in the purity of the extracted sample all while maintaining a yield of 68.19%. These values are critical as a high yield results in more sample to analyze and an increase in A260 /A230 ratio corresponds to a decrease in salt contaminants such as guanidinium thiocyanate which can interfere with downstream processes during DNA library preparation and potentially hinder the NIPT screening results. CONCLUSIONS: This technique has the potential to improve NIPT outcomes and other clinically relevant workflows that use cfDNA as an analyte such as cancer detection.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Microfluidics/methods , Noninvasive Prenatal Testing/methods , Biomarkers/blood , Cell-Free Nucleic Acids/blood , Female , Humans , Magnets , Microfluidics/instrumentation , Noninvasive Prenatal Testing/instrumentation , Pregnancy
8.
Proc Natl Acad Sci U S A ; 116(37): 18738-18744, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31451660

ABSTRACT

High-throughput metagenomic sequencing offers an unbiased approach to identify pathogens in clinical samples. Conventional metagenomic sequencing, however, does not integrate information about the host, which is often critical to distinguish infection from infectious disease, and to assess the severity of disease. Here, we explore the utility of high-throughput sequencing of cell-free DNA (cfDNA) after bisulfite conversion to map the tissue and cell types of origin of host-derived cfDNA, and to profile the bacterial and viral metagenome. We applied this assay to 51 urinary cfDNA isolates collected from a cohort of kidney transplant recipients with and without bacterial and viral infection of the urinary tract. We find that the cell and tissue types of origin of urinary cfDNA can be derived from its genome-wide profile of methylation marks, and strongly depend on infection status. We find evidence of kidney and bladder tissue damage due to viral and bacterial infection, respectively, and of the recruitment of neutrophils to the urinary tract during infection. Through direct comparison to conventional metagenomic sequencing as well as clinical tests of infection, we find this assay accurately captures the bacterial and viral composition of the sample. The assay presented here is straightforward to implement, offers a systems view into bacterial and viral infections of the urinary tract, and can find future use as a tool for the differential diagnosis of infection.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Host-Pathogen Interactions/genetics , Metagenome/genetics , Metagenomics/methods , Postoperative Complications/diagnosis , Urinary Tract Infections/diagnosis , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacterial Infections/urine , Biomarkers/urine , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/urine , DNA Methylation/genetics , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/urine , DNA, Viral/genetics , DNA, Viral/isolation & purification , DNA, Viral/urine , Diagnosis, Differential , Female , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/immunology , Humans , Kidney/cytology , Kidney/immunology , Kidney/microbiology , Kidney/pathology , Kidney Failure, Chronic/surgery , Kidney Transplantation/adverse effects , Male , Neutrophil Infiltration/immunology , Postoperative Complications/immunology , Postoperative Complications/microbiology , Postoperative Complications/urine , Transplant Recipients , Urinary Bladder/cytology , Urinary Bladder/immunology , Urinary Bladder/microbiology , Urinary Bladder/pathology , Urinary Tract Infections/immunology , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine , Virus Diseases/diagnosis , Virus Diseases/immunology , Virus Diseases/urine , Virus Diseases/virology
9.
J Biol Chem ; 295(46): 15677-15691, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32900851

ABSTRACT

Progress in the study of circulating, cell-free nuclear DNA (ccf-nDNA) in cancer detection has led to the development of noninvasive clinical diagnostic tests and has accelerated the evaluation of ccf-nDNA abundance as a disease biomarker. Likewise, circulating, cell-free mitochondrial DNA (ccf-mtDNA) is under similar investigation. However, optimal ccf-mtDNA isolation parameters have not been established, and inconsistent protocols for ccf-nDNA collection, storage, and analysis have hindered its clinical utility. Until now, no studies have established a method for high-throughput isolation that considers both ccf-nDNA and ccf-mtDNA. We initially optimized human plasma digestion and extraction conditions for maximal recovery of these DNAs using a magnetic bead-based isolation method. However, when we incorporated this method onto a high-throughput platform, initial experiments found that DNA isolated from identical human plasma samples displayed plate edge effects resulting in low ccf-mtDNA reproducibility, whereas ccf-nDNA was less affected. Therefore, we developed a detailed protocol optimized for both ccf-mtDNA and ccf-nDNA recovery that uses a magnetic bead-based isolation process on an automated 96-well platform. Overall, we calculate an improved efficiency of recovery of ∼95-fold for ccf-mtDNA and 20-fold for ccf-nDNA when compared with the initial procedure. Digestion conditions, liquid-handling characteristics, and magnetic particle processor programming all contributed to increased recovery without detectable positional effects. To our knowledge, this is the first high-throughput approach optimized for ccf-mtDNA and ccf-nDNA recovery and serves as an important starting point for clinical studies.


Subject(s)
Cell Nucleus/genetics , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/blood , High-Throughput Screening Assays/methods , Mitochondria/genetics , Automation , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/metabolism , DNA, Mitochondrial/isolation & purification , DNA, Mitochondrial/metabolism , Endopeptidase K/metabolism , Humans , Magnetics , Microarray Analysis , Real-Time Polymerase Chain Reaction , Temperature
10.
Clin Infect Dis ; 73(7): e2355-e2361, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32584965

ABSTRACT

BACKGROUND: Laboratory confirmation of early Lyme borreliosis (LB) is challenging. Serology is insensitive during the first days to weeks of infection, and blood polymerase chain reaction (PCR) offers similarly poor performance. Here, we demonstrate that detection of Borrelia burgdorferi (B.b.) cell-free DNA (cfDNA) in plasma can improve diagnosis of early LB. METHODS: B.b. detection in plasma samples using unbiased metagenomic cfDNA sequencing performed by a commercial laboratory (Karius Inc) was compared with serology and blood PCR in 40 patients with physician-diagnosed erythema migrans (EM), 28 of whom were confirmed to have LB by skin biopsy culture (n = 18), seroconversion (n = 2), or both (n = 8). B.b. sequence analysis was performed using investigational detection thresholds, different from Karius' clinical test. RESULTS: B.b. cfDNA was detected in 18 of 28 patients (64%) with laboratory-confirmed EM. In comparison, sensitivity of acute-phase serology using modified 2-tiered testing (MTTT) was 50% (P = .45); sensitivity of blood PCR was 7% (P = .0002). Combining B.b. cfDNA detection and MTTT increased diagnostic sensitivity to 86%, significantly higher than either approach alone (P ≤ .04). B.b. cfDNA sequences matched precisely with strain-specific sequence generated from the same individual's cultured B.b. isolate. B.b. cfDNA was not observed at any level in plasma from 684 asymptomatic ambulatory individuals. Among 3000 hospitalized patients tested as part of clinical care, B.b. cfDNA was detected in only 2 individuals, both of whom had clinical presentations consistent with LB. CONCLUSIONS: This is the first report of B.b. cfDNA detection in early LB and a demonstration of potential diagnostic utility. The combination of B.b. cfDNA detection and acute-phase MTTT improves clinical sensitivity for diagnosis of early LB.


Subject(s)
Cell-Free Nucleic Acids , Erythema Chronicum Migrans , Lyme Disease , Borrelia burgdorferi/isolation & purification , Cell-Free Nucleic Acids/isolation & purification , DNA, Bacterial/isolation & purification , Erythema Chronicum Migrans/diagnosis , Erythema Chronicum Migrans/microbiology , Humans , Lyme Disease/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL