Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.315
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(6): 735-745, 2021 06.
Article in English | MEDLINE | ID: mdl-34017124

ABSTRACT

Regulatory T (Treg) cells are a barrier for tumor immunity and a target for immunotherapy. Using single-cell transcriptomics, we found that CD4+ T cells infiltrating primary and metastatic colorectal cancer and non-small-cell lung cancer are highly enriched for two subsets of comparable size and suppressor function comprising forkhead box protein P3+ Treg and eomesodermin homolog (EOMES)+ type 1 regulatory T (Tr1)-like cells also expressing granzyme K and chitinase-3-like protein 2. EOMES+ Tr1-like cells, but not Treg cells, were clonally related to effector T cells and were clonally expanded in primary and metastatic tumors, which is consistent with their proliferation and differentiation in situ. Using chitinase-3-like protein 2 as a subset signature, we found that the EOMES+ Tr1-like subset correlates with disease progression but is also associated with response to programmed cell death protein 1-targeted immunotherapy. Collectively, these findings highlight the heterogeneity of Treg cells that accumulate in primary tumors and metastases and identify a new prospective target for cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Clonal Hematopoiesis/immunology , Colorectal Neoplasms/immunology , Lung Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Carcinoma, Non-Small-Cell Lung/therapy , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Proliferation/genetics , Chemotherapy, Adjuvant/methods , Chitinases/metabolism , Colectomy , Colon/pathology , Colon/surgery , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Datasets as Topic , Disease Progression , Drug Resistance, Neoplasm/immunology , Female , Flow Cytometry , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic/immunology , Granzymes/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Primary Cell Culture , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA-Seq , Single-Cell Analysis , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism
2.
Cell ; 169(3): 497-509.e13, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431248

ABSTRACT

The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.


Subject(s)
Aging/pathology , Chitin/toxicity , Chitinases/metabolism , Lung Diseases/pathology , Animals , Aspergillus niger , Chitinases/genetics , Cytokines/metabolism , Epithelial Cells/pathology , Fibrosis/pathology , Gene Knock-In Techniques , Inflammation/pathology , Lung/pathology , Mice , Mice, Knockout , Pyroglyphidae/chemistry , Signal Transduction
3.
Nature ; 624(7992): 611-620, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907096

ABSTRACT

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Subject(s)
Cellular Senescence , Chitinases , Microglia , Motor Neurons , Primates , Spinal Cord , Animals , Humans , Biomarkers/metabolism , Chitinases/metabolism , Microglia/enzymology , Microglia/metabolism , Microglia/pathology , Motor Neurons/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Primates/metabolism , Reproducibility of Results , Single-Cell Gene Expression Analysis , Spinal Cord/metabolism , Spinal Cord/pathology
4.
Nat Immunol ; 17(5): 538-44, 2016 May.
Article in English | MEDLINE | ID: mdl-27043413

ABSTRACT

Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.


Subject(s)
Chitinases/immunology , Gastrointestinal Tract/immunology , Immunity/immunology , Strongylida Infections/immunology , Animals , Chitinases/genetics , Chitinases/metabolism , Chloride Channels/genetics , Chloride Channels/immunology , Chloride Channels/metabolism , Flow Cytometry , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/parasitology , Gene Expression/immunology , Hormones, Ectopic/genetics , Hormones, Ectopic/immunology , Hormones, Ectopic/metabolism , Host-Parasite Interactions/immunology , Hypersensitivity/genetics , Hypersensitivity/immunology , Hypersensitivity/metabolism , Immunity/genetics , Intercellular Signaling Peptides and Proteins , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Lectins/genetics , Lectins/immunology , Lectins/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Nematospiroides dubius/immunology , Nematospiroides dubius/physiology , Nippostrongylus/immunology , Nippostrongylus/physiology , Reverse Transcriptase Polymerase Chain Reaction , Strongylida Infections/metabolism , Strongylida Infections/parasitology , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/immunology , beta-N-Acetylhexosaminidases/metabolism
5.
Semin Immunol ; 67: 101759, 2023 05.
Article in English | MEDLINE | ID: mdl-37031560

ABSTRACT

Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.


Subject(s)
Asthma , Chitinases , Hypersensitivity , Animals , Humans , Chitinases/metabolism , Inflammation , Chitin/metabolism , Mammals/metabolism
6.
PLoS Pathog ; 20(9): e1012560, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39283899

ABSTRACT

The interaction between bacteria and the intestinal mucus is crucial during the early pathogenesis of many enteric diseases in mammals. A critical step in this process employed by both commensal and pathogenic bacteria focuses on the breakdown of the protective layer presented by the intestinal mucus by mucolytic enzymes. C. perfringens type G, the causative agent of necrotic enteritis in broilers, produces two glycosyl hydrolase family 18 chitinases, ChiA and ChiB, which display distinct substrate preferences. Whereas ChiB preferentially processes linear substrates such as chitin, ChiA prefers larger and more branched substrates, such as carbohydrates presented by the chicken intestinal mucus. Here, we show via crystal structures of ChiA and ChiB in the apo and ligand-bound forms that the two enzymes display structural features that explain their substrate preferences providing a structural blueprint for further interrogation of their function and inhibition. This research focusses on the roles of ChiA and ChiB in bacterial proliferation and mucosal attachment, two processes leading to colonization and invasion of the gut. ChiA and ChiB, either supplemented or produced by the bacteria, led to a significant increase in C. perfringens growth. In addition to nutrient acquisition, the importance of chitinases in bacterial attachment to the mucus layer was shown using an in vitro binding assay of C. perfringens to chicken intestinal mucus. Both an in vivo colonization trial and a necrotic enteritis trial were conducted, demonstrating that a ChiA chitinase mutant strain was less capable to colonize the intestine and was hampered in its disease-causing ability as compared to the wild-type strain. Our findings reveal that the pathogen-specific chitinases produced by C. perfringens type G strains play a fundamental role during colonization, suggesting their potential as vaccine targets.


Subject(s)
Chickens , Chitinases , Clostridium Infections , Clostridium perfringens , Enteritis , Poultry Diseases , Animals , Clostridium perfringens/enzymology , Clostridium perfringens/pathogenicity , Chickens/microbiology , Chitinases/metabolism , Chitinases/genetics , Poultry Diseases/microbiology , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Enteritis/microbiology , Necrosis , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
7.
J Biol Chem ; 300(9): 107622, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098522

ABSTRACT

The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.


Subject(s)
Chitin , Chitinases , Chitinases/metabolism , Chitinases/chemistry , Chitinases/genetics , Animals , Chitin/metabolism , Chitin/chemistry , Moths/metabolism , Moths/enzymology , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Microscopy, Atomic Force , Hydrolysis , Protein Binding
8.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750795

ABSTRACT

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Subject(s)
Chitin , Chitinase-3-Like Protein 1 , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/chemistry , Humans , Chitin/metabolism , Chitin/chemistry , Chitinases/metabolism , Chitinases/genetics , Chitinases/chemistry , Evolution, Molecular , Hexosaminidases/metabolism , Hexosaminidases/chemistry , Hexosaminidases/genetics , Catalytic Domain , Amino Acid Substitution , Exons , Amino Acid Sequence
9.
PLoS Pathog ; 19(4): e1011306, 2023 04.
Article in English | MEDLINE | ID: mdl-37018381

ABSTRACT

As a facultative intracellular pathogen, Salmonella enterica serovar Typhimurium is one of the leading causes of food-borne diseases in humans. With the ingestion of fecal contaminated food or water, S. Typhimurium reaches the intestine. Here, the pathogen efficiently invades intestinal epithelial cells of the mucosal epithelium by the use of multiple virulence factors. Recently, chitinases have been described as emerging virulence factors of S. Typhimurium that contribute to the attachment and invasion of the intestinal epithelium, prevent immune activation, and modulate the host glycome. Here we find that the deletion of chiA leads to diminished adhesion and invasion of polarized intestinal epithelial cells (IEC) compared to wild-type S. Typhimurium. Interestingly, no apparent impact on interaction was detected when using non-polarized IEC or HeLa epithelial cells. In concordance, we demonstrate that chiA gene and ChiA protein expression was solely induced when bacteria gain contact with polarized IEC. The induction of chiA transcripts needs the specific activity of transcriptional regulator ChiR, which is co-localized with chiA in the chitinase operon. Moreover, we established that after chiA is induced, a major portion of the bacterial population expresses chiA, analyzed by flow cytometry. Once expressed, we found ChiA in the bacterial supernatants using Western blot analyses. ChiA secretion was completely abolished when accessory genes within the chitinase operon encoding for a holin and a peptidoglycan hydrolase were deleted. Holins, peptidoglycan hydrolases, and large extracellular enzymes in close proximity have been described as components of the bacterial holin/peptidoglycan hydrolase-dependent protein secretion system or Type 10 Secretion System. Overall, our results confirm that chitinase A is an important virulence factor, tightly regulated by ChiR, that promotes adhesion and invasion upon contact with polarized IEC and is likely secreted by a Type 10 Secretion System (T10SS).


Subject(s)
Chitinases , Virulence Factors , Humans , Virulence Factors/genetics , Virulence Factors/metabolism , Salmonella typhimurium , Chitinases/genetics , Chitinases/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Serogroup , Intestinal Mucosa/microbiology , Bacterial Secretion Systems , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
10.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L293-L303, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38915287

ABSTRACT

Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.


Subject(s)
Aspergillus fumigatus , Asthma , Chitin , Chitinases , Animals , Chitin/metabolism , Asthma/immunology , Asthma/microbiology , Asthma/metabolism , Asthma/pathology , Chitinases/metabolism , Aspergillus fumigatus/immunology , Mice , Lung/metabolism , Lung/pathology , Lung/microbiology , Lung/immunology , Mice, Inbred C57BL , Allergens/immunology , Mice, Knockout , Female
11.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790016

ABSTRACT

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Subject(s)
Chitinases , Disease Resistance , Fusarium , Plant Diseases , Triticum , Chitinases/genetics , Chitinases/metabolism , Disease Resistance/genetics , Fusarium/genetics , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Iran , Plant Diseases/microbiology , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/microbiology
12.
BMC Plant Biol ; 24(1): 760, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118060

ABSTRACT

BACKGROUND: Soil-borne plant diseases represent a severe problem that negatively impacts the production of food crops. Actinobacteria play a vital role in biocontrolling soil-borne fungi. AIM AND OBJECTIVES: The target of the present study is to test the antagonistic activity of chitinase-producing Streptomyces cellulosae Actino 48 (accession number, MT573878) against Rhizoctonia solani. Subsequently, maximization of Actino 48 production using different fermentation processes in a stirred tank bioreactor. Finally, preparation of bio-friendly formulations prepared from the culture broth of Actino 48 using talc powder (TP) and bentonite in a natural as well as nano forms as carriers. Meanwhile, investigating their activities in reducing the damping-off and root rot diseases of peanut plants, infected by R. solani under greenhouse conditions. RESULTS: Actino 48 was found to be the most significant antagonistic isolate strain at p ≤ 0.05 and showed the highest inhibition percentage of fungal mycelium growth, which reached 97%. The results of scanning electron microscope (SEM) images analysis showed a large reduction in R. solani mycelia mass. Additionally, many aberrations changes and fungal hypha damages were found. Batch fermentation No. 2, which was performed using agitation speed of 200 rpm, achieved high chitinase activity of 0.1163 U mL- 1 min- 1 with a yield coefficient of 0.004 U mL- 1 min- 1 chitinase activity/g chitin. Nano-talc formulation of Actino 48 had more a significant effect compared to the other formulations in reducing percentages of damping-off and root rot diseases that equal to 19.05% and 4.76% with reduction percentages of 60% and 80%, respectively. The healthy survival percentage of peanut plants recorded 76.19%. Furthermore, the nano-talc formulation of Actino 48 was sufficient in increasing the dry weight of the peanut plants shoot, root systems, and the total number of peanut pods with increasing percentages of 47.62%, 55.62%, and 38.07%, respectively. CONCLUSION: The bio-friendly formulations of actinobacteria resulting from this investigation may play an active role in managing soil-borne diseases.


Subject(s)
Arachis , Chitinases , Fermentation , Plant Diseases , Rhizoctonia , Streptomyces , Streptomyces/enzymology , Rhizoctonia/physiology , Chitinases/metabolism , Arachis/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology
13.
PLoS Pathog ; 18(4): e1010167, 2022 04.
Article in English | MEDLINE | ID: mdl-35482787

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.


Subject(s)
Chitinases , Salmonella enterica , Animals , Chitin , Chitinases/genetics , Chitinases/metabolism , Mammals , Mice , Salmonella enterica/metabolism , Salmonella typhimurium , Serogroup , Virulence Factors/genetics , Virulence Factors/metabolism
14.
PLoS Pathog ; 18(4): e1010407, 2022 04.
Article in English | MEDLINE | ID: mdl-35482710

ABSTRACT

Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella.


Subject(s)
Chitinases , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Chitinases/genetics , Chitinases/metabolism , Glycoside Hydrolases , Humans , Immunity , Mice , Salmonella typhi , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
15.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982358

ABSTRACT

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Subject(s)
Alternaria , Endophytes , Plant Diseases , Plant Leaves , Solanum tuberosum , Talaromyces , Alternaria/growth & development , Alternaria/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Solanum tuberosum/microbiology , Talaromyces/genetics , Talaromyces/growth & development , Endophytes/physiology , Endophytes/isolation & purification , Endophytes/genetics , Plant Leaves/microbiology , Hyphae/growth & development , Antibiosis , Chitinases/metabolism , Biological Control Agents , Pest Control, Biological/methods
16.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030474

ABSTRACT

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Subject(s)
Antifungal Agents , Candida auris , Chitinases , Microbial Sensitivity Tests , Nanoparticles , Chitinases/pharmacology , Chitinases/metabolism , Chitinases/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanoparticles/chemistry , Candida auris/drug effects , Candida auris/genetics , Enzymes, Immobilized/chemistry , Talaromyces/drug effects , Talaromyces/chemistry , Talaromyces/enzymology , Drug Resistance, Multiple, Fungal , Hydrolysis , Chitin/chemistry , Chitin/pharmacology
17.
New Phytol ; 244(3): 980-996, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39224928

ABSTRACT

Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.


Subject(s)
Chitinases , Endophytes , Plant Roots , Transcriptome , Chitinases/metabolism , Chitinases/genetics , Plant Roots/microbiology , Transcriptome/genetics , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Symbiosis/genetics , Ascomycota/physiology , Ascomycota/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Fungal/drug effects
18.
Microb Pathog ; 190: 106616, 2024 May.
Article in English | MEDLINE | ID: mdl-38492826

ABSTRACT

Root rot is a common disease, that severely affects the yield and quality of alfalfa. Biocontrol is widely used to control plant diseases caused by pathogenic fungi, however, biocontrol strains for alfalfa root rot are very limited. In this study, a Bacillus subtilis CG-6 strain with a significant biocontrol effect on alfalfa root rot was isolated. CG-6 secretes antibacterial enzymes and siderophore, phosphate solubilization and indoleacetic acid (IAA). The inhibition rate of strain CG-6 against Fusarium oxysporum was 87.33%, and it showed broad-spectrum antifungal activity. Inoculation with CG-6 significantly reduced the incidence of alfalfa root rot, the control effect of greenhouse cultivation reached 58.12%, and CG-6 treatment significantly increased alfalfa plant height, root length, fresh weight, and dry weight. The treatment with CG-6 significantly increased the levels of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and lipoxygenase) in alfalfa leaves by 15.52%-34.03%. Defensive enzymes (chitinase and ß-1,3-glucanase) increased by 24.37% and 28.08%, respectively. The expression levels of regulatory enzyme genes (MsCAT, MsPOD, MsCu, Zn-SOD1, MsCu, Zn-SOD2, MsCu, Zn-SOD3, and MsLOX2) and systemic resistance genes (MsPR1, MsPDF1.2, and MsVSP2) increased by 0.50-2.85 fold, which were higher than those in the pathogen treatment group. Therefore, CG-6 could be used as a potential strain to develop biopesticides against alfalfa root rot.


Subject(s)
Bacillus subtilis , Fusarium , Medicago sativa , Plant Diseases , Plant Roots , Medicago sativa/microbiology , Bacillus subtilis/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Fusarium/growth & development , Antibiosis , Indoleacetic Acids/metabolism , Antioxidants/metabolism , Plant Leaves/microbiology , Chitinases/metabolism , Biological Control Agents , Superoxide Dismutase/metabolism , Antifungal Agents/pharmacology
19.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160324

ABSTRACT

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Subject(s)
Chitinases , Houseflies , Animals , Houseflies/genetics , Houseflies/metabolism , Chitinases/metabolism , Larva , Recombinant Proteins/genetics , Chitin/metabolism
20.
Plant Cell ; 33(4): 1319-1340, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33793825

ABSTRACT

In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.


Subject(s)
Ascomycota/pathogenicity , Chitin/metabolism , Chitinases/metabolism , Cucumis melo/microbiology , Plant Immunity/physiology , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/metabolism , Cell Wall/metabolism , Chitin/immunology , Chitinases/chemistry , Chitinases/genetics , Cucumis melo/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Silencing , Host-Pathogen Interactions/physiology , Multigene Family , Phylogeny , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL