Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.810
Filter
Add more filters

Publication year range
1.
Cell ; 165(5): 1037, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27203103

ABSTRACT

Alirocumab and evolocumab are monoclonal antibodies that block proprotein convertase subtilisin/kexin type 9 (PCSK9), a circulating protein that degrades low-density lipoprotein (LDL) receptors. These therapies increase LDL receptors on the cell surface and reduce plasma LDL cholesterol. Both therapies are approved to lower LDL cholesterol, a causative agent for atherosclerotic cardiovascular disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Anticholesteremic Agents/therapeutic use , Antibodies, Monoclonal, Humanized , Cholesterol, LDL/blood , Humans
2.
Annu Rev Pharmacol Toxicol ; 64: 135-157, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37506332

ABSTRACT

Lipoprotein(a) [Lp(a)] is a molecule bound to apolipoprotein(a) with some similarity to low-density lipoprotein cholesterol (LDL-C), which has been found to be a risk factor for cardiovascular disease (CVD). Lp(a) appears to induce inflammation, atherogenesis, and thrombosis. Approximately 20% of the world's population has increased Lp(a) levels, determined predominantly by genetics. Current clinical practices for the management of dyslipidemia are ineffective in lowering Lp(a) levels. Evolving RNA-based therapeutics, such as the antisense oligonucleotide pelacarsen and small interfering RNA olpasiran, have shown promising results in reducing Lp(a) levels. Phase III pivotal cardiovascular outcome trials [Lp(a)HORIZON and OCEAN(a)] are ongoing to evaluate their efficacy in secondary prevention of major cardiovascular events in patients with elevated Lp(a). The future of cardiovascular residual risk reduction may transition to a personalized approach where further lowering of either LDL-C, triglycerides, or Lp(a) is selected after high-intensity statin therapy based on the individual risk profile and preferences of each patient.


Subject(s)
Cardiovascular Diseases , Humans , Cholesterol, LDL/metabolism , Cholesterol, LDL/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Risk Factors , Lipoprotein(a)/genetics , Lipoprotein(a)/metabolism , Lipoprotein(a)/therapeutic use , Heart Disease Risk Factors
3.
N Engl J Med ; 390(19): 1770-1780, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38587249

ABSTRACT

BACKGROUND: Reducing the levels of triglycerides and triglyceride-rich lipoproteins remains an unmet clinical need. Olezarsen is an antisense oligonucleotide targeting messenger RNA for apolipoprotein C-III (APOC3), a genetically validated target for triglyceride lowering. METHODS: In this phase 2b, randomized, controlled trial, we assigned adults either with moderate hypertriglyceridemia (triglyceride level, 150 to 499 mg per deciliter) and elevated cardiovascular risk or with severe hypertriglyceridemia (triglyceride level, ≥500 mg per deciliter) in a 1:1 ratio to either a 50-mg or 80-mg cohort. Patients were then assigned in a 3:1 ratio to receive monthly subcutaneous olezarsen or matching placebo within each cohort. The primary outcome was the percent change in the triglyceride level from baseline to 6 months, reported as the difference between each olezarsen group and placebo. Key secondary outcomes were changes in levels of APOC3, apolipoprotein B, non-high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. RESULTS: A total of 154 patients underwent randomization at 24 sites in North America. The median age of the patients was 62 years, and the median triglyceride level was 241.5 mg per deciliter. The 50-mg and 80-mg doses of olezarsen reduced triglyceride levels by 49.3 percentage points and 53.1 percentage points, respectively, as compared with placebo (P<0.001 for both comparisons). As compared with placebo, each dose of olezarsen also significantly reduced the levels of APOC3, apolipoprotein B, and non-HDL cholesterol, with no significant change in the LDL cholesterol level. The risks of adverse events and serious adverse events were similar in the three groups. Clinically meaningful hepatic, renal, or platelet abnormalities were uncommon, with similar risks in the three groups. CONCLUSIONS: In patients with predominantly moderate hypertriglyceridemia at elevated cardiovascular risk, olezarsen significantly reduced levels of triglycerides, apolipoprotein B, and non-HDL cholesterol, with no major safety concerns identified. (Funded by Ionis Pharmaceuticals; Bridge-TIMI 73a ClinicalTrials.gov number, NCT05355402.).


Subject(s)
Apolipoprotein C-III , Cardiovascular Diseases , Hypertriglyceridemia , Oligonucleotides , Triglycerides , Humans , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/complications , Hypertriglyceridemia/blood , Middle Aged , Male , Female , Apolipoprotein C-III/blood , Triglycerides/blood , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Oligonucleotides/therapeutic use , Oligonucleotides/adverse effects , Aged , Adult , Double-Blind Method , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/adverse effects , Heart Disease Risk Factors , Cholesterol, LDL/blood , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/adverse effects , Apolipoproteins B/blood
4.
Nature ; 593(7859): 429-434, 2021 05.
Article in English | MEDLINE | ID: mdl-34012082

ABSTRACT

Gene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.


Subject(s)
CRISPR-Cas Systems , Cholesterol, LDL/blood , Gene Editing , Models, Animal , Proprotein Convertase 9/genetics , Adenine/metabolism , Animals , Cells, Cultured , Female , Hepatocytes/metabolism , Humans , Liver/enzymology , Loss of Function Mutation , Macaca fascicularis/blood , Macaca fascicularis/genetics , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Proprotein Convertase 9/blood , Proprotein Convertase 9/metabolism , Time Factors
5.
PLoS Genet ; 20(4): e1011249, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669290

ABSTRACT

Polygenic scores (PGS) are measures of genetic risk, derived from the results of genome wide association studies (GWAS). Previous work has proposed the coefficient of determination (R2) as an appropriate measure by which to compare PGS performance in a validation dataset. Here we propose correlation-based methods for evaluating PGS performance by adapting previous work which produced a statistical framework and robust test statistics for the comparison of multiple correlation measures in multiple populations. This flexible framework can be extended to a wider variety of hypothesis tests than currently available methods. We assess our proposed method in simulation and demonstrate its utility with two examples, assessing previously developed PGS for low-density lipoprotein cholesterol and height in multiple populations in the All of Us cohort. Finally, we provide an R package 'coranova' with both parametric and nonparametric implementations of the described methods.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , Genetic Predisposition to Disease , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Body Height/genetics , Computer Simulation , Genetics, Population/methods
6.
Hum Mol Genet ; 33(7): 583-593, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38142287

ABSTRACT

To control genetic background and early life milieu in genome-wide DNA methylation analysis for blood lipids, we recruited Chinese discordant monozygotic twins to explore the relationships between DNA methylations and total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). 132 monozygotic (MZ) twins were included with discordant lipid levels and completed data. A linear mixed model was conducted in Epigenome-wide association study (EWAS). Generalized estimating equation model was for gene expression analysis. We conducted Weighted correlation network analysis (WGCNA) to build co-methylated interconnected network. Additional Qingdao citizens were recruited for validation. Inference about Causation through Examination of Familial Confounding (ICE FALCON) was used to infer the possible direction of these relationships. A total of 476 top CpGs reached suggestively significant level (P < 10-4), of which, 192 CpGs were significantly associated with TG (FDR < 0.05). They were used to build interconnected network and highlight crucial genes from WGCNA. Finally, four CpGs in GATA4 were validated as risk factors for TC; six CpGs at ITFG2-AS1 were negatively associated with TG; two CpGs in PLXND1 played protective roles in HDL-C. ICE FALCON indicated abnormal TC was regarded as the consequence of DNA methylation in CpGs at GATA4, rather than vice versa. Four CpGs in ITFG2-AS1 were both causes and consequences of modified TG levels. Our results indicated that DNA methylation levels of 12 CpGs in GATA4, ITFG2-AS1, and PLXND1 were relevant to TC, TG, and HDL-C, respectively, which might provide new epigenetic insights into potential clinical treatment of dyslipidemia.


Subject(s)
Epigenesis, Genetic , Twins, Monozygotic , Humans , Epigenesis, Genetic/genetics , Twins, Monozygotic/genetics , DNA Methylation/genetics , Lipids/genetics , Triglycerides/genetics , Cholesterol, LDL/genetics , China
7.
Circ Res ; 134(4): 411-424, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38258600

ABSTRACT

BACKGROUND: APOE is a known genetic contributor to cardiovascular disease, but the differential role APOE alleles play in subclinical atherosclerosis remains unclear. METHODS: The PESA (Progression of Early Subclinical Atherosclerosis) is an observational cohort study that recruited 4184 middle-aged asymptomatic individuals to be screened for cardiovascular risk and multiterritorial subclinical atherosclerosis. Participants were APOE-genotyped, and omics data were additionally evaluated. RESULTS: In the PESA study, the frequencies for APOE -ε2, -ε3, and -ε4 alleles were 0.060, 0.844, and 0.096, respectively. This study included a subcohort of 3887 participants (45.8±4.3 years of age; 62% males). As expected, APOE-ε4 carriers were at the highest risk for cardiovascular disease and had significantly greater odds of having subclinical atherosclerosis compared with ε3/ε3 carriers, which was mainly explained by their higher levels of low-density lipoprotein (LDL)-cholesterol. In turn, APOE-ε2 carriers were at the lowest risk for cardiovascular disease and had significantly lower odds of having subclinical atherosclerosis in several vascular territories (carotids: 0.62 [95% CI, 0.47-0.81]; P=0.00043; femorals: 0.60 [0.47-0.78]; P=9.96×10-5; coronaries: 0.53 [0.39-0.74]; P=0.00013; and increased PESA score: 0.58 [0.48-0.71]; P=3.16×10-8). This APOE-ε2 atheroprotective effect was mostly independent of the associated lower LDL-cholesterol levels and other cardiovascular risk factors. The protection conferred by the ε2 allele was greater with age (50-54 years: 0.49 [95% CI, 0.32-0.73]; P=0.00045), and normal (<150 mg/dL) levels of triglycerides (0.54 [0.44-0.66]; P=4.70×10-9 versus 0.90 [0.57-1.43]; P=0.67 if ≥150 mg/dL). Omics analysis revealed an enrichment of several canonical pathways associated with anti-inflammatory mechanisms together with the modulation of erythrocyte homeostasis, coagulation, and complement activation in ε2 carriers that might play a relevant role in the ε2's atheroprotective effect. CONCLUSIONS: This work sheds light on the role of APOE in cardiovascular disease development with important therapeutic and prevention implications on cardiovascular health, especially in early midlife. REGISTRATION: URL: https://www.clinicaltrials.gov: NCT01410318.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Male , Middle Aged , Humans , Female , Apolipoprotein E2/genetics , Genetic Predisposition to Disease , Apolipoproteins E/genetics , Cardiovascular Diseases/genetics , Genotype , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Cholesterol, LDL , Alleles
8.
Nature ; 582(7810): 73-77, 2020 06.
Article in English | MEDLINE | ID: mdl-32494083

ABSTRACT

High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular risk-changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.


Subject(s)
Cholesterol, LDL/blood , Hypercholesterolemia/blood , Hypercholesterolemia/epidemiology , Internationality , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , Cholesterol, HDL/blood , Female , Humans , Male , Middle Aged , Myocardial Ischemia/blood , Myocardial Ischemia/epidemiology , Stroke/blood , Stroke/epidemiology , Triglycerides/blood , Young Adult
9.
PLoS Genet ; 19(9): e1010934, 2023 09.
Article in English | MEDLINE | ID: mdl-37733769

ABSTRACT

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviating from two well-measured phenotypes. We first applied our methods to standing height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted height. We show that these individuals are enriched for self-reporting being shorter or taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol (LDL-C). We classified 156 (0.12%) individuals as misaligned to their genetically predicted LDL-C and show that these individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than expected based on the genetic predictor were also at higher risk of developing coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly consistent when performing sensitivity analysis based on a variety of parametric and non-parametric methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential importance of quantitatively identifying individuals for further follow-up based on deviation from genetic predictions.


Subject(s)
Coronary Artery Disease , Genome-Wide Association Study , Humans , Child , Cholesterol, LDL/genetics , Phenotype , Coronary Artery Disease/genetics , Follow-Up Studies , Mendelian Randomization Analysis , Risk Factors , Polymorphism, Single Nucleotide
10.
Circulation ; 149(3): 217-226, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38014550

ABSTRACT

BACKGROUND: Although low-density lipoprotein cholesterol (LDL-C) remains the primary cholesterol target in clinical practice in children and adults, non-high-density lipoprotein cholesterol (non-HDL-C) has been suggested as a more accurate measure of atherosclerotic cardiovascular disease (ASCVD) risk. We examined the associations of childhood non-HDL-C and LDL-C levels with adult ASCVD events and determined whether non-HDL-C has better utility than LDL-C in predicting adult ASCVD events. METHODS: This prospective cohort study included 21 126 participants from the i3C Consortium (International Childhood Cardiovascular Cohorts). Proportional hazards regressions were used to estimate the risk for incident fatal and fatal/nonfatal ASCVD events associated with childhood non-HDL-C and LDL-C levels (age- and sex-specific z scores; concordant/discordant categories defined by guideline-recommended cutoffs), adjusted for sex, Black race, cohort, age at and calendar year of child measurement, body mass index, and systolic blood pressure. Predictive utility was determined by the C index. RESULTS: After an average follow-up of 35 years, 153 fatal ASCVD events occurred in 21 126 participants (mean age at childhood visits, 11.9 years), and 352 fatal/nonfatal ASCVD events occurred in a subset of 11 296 participants who could be evaluated for this outcome. Childhood non-HDL-C and LDL-C levels were each associated with higher risk of fatal and fatal/nonfatal ASCVD events (hazard ratio ranged from 1.27 [95% CI, 1.14-1.41] to 1.35 [95% CI, 1.13-1.60] per unit increase in the risk factor z score). Non-HDL-C had better discriminative utility than LDL-C (difference in C index, 0.0054 [95% CI, 0.0006-0.0102] and 0.0038 [95% CI, 0.0008-0.0068] for fatal and fatal/nonfatal events, respectively). The discordant group with elevated non-HDL-C and normal LDL-C had a higher risk of ASCVD events compared with the concordant group with normal non-HDL-C and LDL-C (fatal events: hazard ratio, 1.90 [95% CI, 0.98-3.70]; fatal/nonfatal events: hazard ratio, 1.94 [95% CI, 1.23-3.06]). CONCLUSIONS: Childhood non-HDL-C and LDL-C levels are associated with ASCVD events in midlife. Non-HDL-C is better than LDL-C in predicting adult ASCVD events, particularly among individuals who had normal LDL-C but elevated non-HDL-C. These findings suggest that both non-HDL-C and LDL-C are useful in identifying children at higher risk of ASCVD events, but non-HDL-C may provide added prognostic information when it is discordantly higher than the corresponding LDL-C and has the practical advantage of being determined without a fasting sample.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Male , Adult , Female , Child , Humans , Cholesterol, LDL , Prospective Studies , Cholesterol , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Lipoproteins , Risk Factors , Cholesterol, HDL
11.
Circulation ; 149(6): 417-426, 2024 02 06.
Article in English | MEDLINE | ID: mdl-37970713

ABSTRACT

BACKGROUND: Tools for mortality prediction in patients with the severe hypercholesterolemia phenotype (low-density lipoprotein cholesterol ≥190 mg/dL) are limited and restricted to specific racial and ethnic cohorts. We sought to evaluate the predictors of long-term mortality in a large racially and ethnically diverse US patient cohort with low-density lipoprotein cholesterol ≥190 mg/dL. METHODS: We conducted a retrospective analysis of all patients with a low-density lipoprotein cholesterol ≥190 mg/dL seeking care at Montefiore from 2010 through 2020. Patients <18 years of age or with previous malignancy were excluded. The primary end point was all-cause mortality. Analyses were stratified by age, sex, and race and ethnicity. Patients were stratified by primary and secondary prevention. Cox regression analyses were used to adjust for demographic, clinical, and treatment variables. RESULTS: A total of 18 740 patients were included (37% non-Hispanic Black, 30% Hispanic, 12% non-Hispanic White, and 2% non-Hispanic Asian patients). The mean age was 53.9 years, and median follow-up was 5.2 years. Both high-density lipoprotein cholesterol and body mass index extremes were associated with higher mortality in univariate analyses. In adjusted models, higher low-density lipoprotein cholesterol and triglyceride levels were associated with an increased 9-year mortality risk (adjusted hazard ratio [HR], 1.08 [95% CI, 1.05-1.11] and 1.04 [95% CI, 1.02-1.06] per 20-mg/dL increase, respectively). Clinical factors associated with higher mortality included male sex (adjusted HR, 1.31 [95% CI, 1.08-1.58]), older age (adjusted HR, 1.19 per 5-year increase [95% CI, 1.15-1.23]), hypertension (adjusted HR, 2.01 [95% CI, 1.57-2.57]), chronic kidney disease (adjusted HR, 1.68 [95% CI, 1.36-2.09]), diabetes (adjusted HR, 1.79 [95% CI, 1.50-2.15]), heart failure (adjusted HR, 1.51 [95% CI, 1.16-1.95]), myocardial infarction (adjusted HR, 1.41 [95% CI, 1.05-1.90]), and body mass index <20 kg/m2 (adjusted HR, 3.36 [95% CI, 2.29-4.93]). A significant survival benefit was conferred by lipid-lowering therapy (adjusted HR, 0.57 [95% CI, 0.42-0.77]). In the primary prevention group, high-density lipoprotein cholesterol <40 mg/dL was independently associated with higher mortality (adjusted HR, 1.49 [95% CI, 1.06-2.09]). Temporal trend analyses showed a reduction in statin use over time (P<0.001). In the most recent time period (2019-2020), 56% of patients on primary prevention and 85% of those on secondary prevention were on statin therapy. CONCLUSIONS: In a large, diverse cohort of US patients with the severe hypercholesterolemia phenotype, we identified several patient characteristics associated with increased 9-year all-cause mortality and observed a decrease in statin use over time, in particular for primary prevention. Our results support efforts geared toward early recognition and consistent treatment for patients with severe hypercholesterolemia.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Humans , Male , Middle Aged , Hypercholesterolemia/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Retrospective Studies , Cholesterol, LDL , Cholesterol, HDL , Phenotype , Risk Factors
12.
Circulation ; 149(5): 354-362, 2024 01 30.
Article in English | MEDLINE | ID: mdl-37850379

ABSTRACT

BACKGROUND: Homozygous familial hypercholesterolemia is a genetic disease characterized by extremely high levels of low-density lipoprotein cholesterol (LDL-C) and a high risk of premature cardiovascular events. The proof-of-concept study ORION-2 (A Study of Inclisiran in Participants With Homozygous Familial Hypercholesterolemia) showed that inclisiran, a small interfering RNA that prevents production of the hepatic PCSK9 protein (proprotein convertase subtilisin/kexin type 9), could lead to durable reductions in LDL-C levels when added to statins and ezetimibe in patients with homozygous familial hypercholesterolemia. METHODS: ORION-5 was a phase 3, 2-part, multicenter study in 56 patients with homozygous familial hypercholesterolemia and elevated LDL-C levels despite maximum tolerated doses of LDL-C-lowering therapies with or without lipoprotein apheresis. Patients eligible for part 1 (double-blind, 6 months) were randomized 2:1 to receive either 300 mg of inclisiran sodium (equivalent to 284 mg of inclisiran) or placebo. Placebo-treated patients from part 1 were transitioned to inclisiran in part 2 (open-label, 18 months). The primary end point was the percentage change in LDL-C levels from baseline to day 150. RESULTS: The mean age of the patients was 42.7 years, and 60.7% were women. The mean baseline LDL-C levels were 294.0 mg/dL and 356.7 mg/dL in the inclisiran and placebo groups, respectively. The placebo-corrected percentage change in LDL-C level from baseline to day 150 was -1.68% (95% CI, -29.19% to 25.83%; P=0.90), and the difference was not statistically significant between the inclisiran and placebo groups. The placebo-corrected percentage change in PCSK9 levels from baseline to day 150 was -60.6% with inclisiran treatment (P<0.0001); this was sustained throughout the study, confirming the effect of inclisiran on its biological target of PCSK9. No statistically significant differences between the inclisiran and placebo groups were observed in the levels of other lipids and lipoproteins (apolipoprotein B, total cholesterol, and non-high-density lipoprotein cholesterol). Adverse events and serious adverse events did not differ between the inclisiran and placebo groups throughout the study. CONCLUSIONS: Inclisiran treatment did not reduce LDL-C levels in patients with homozygous familial hypercholesterolemia despite substantial lowering of PCSK9 levels. Inclisiran was well-tolerated, and the safety findings were consistent with previously reported studies and the overall safety profile. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03851705.


Subject(s)
Anticholesteremic Agents , Homozygous Familial Hypercholesterolemia , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Female , Adult , Male , Proprotein Convertase 9/metabolism , Cholesterol, LDL , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , RNA, Small Interfering/adverse effects , Cholesterol , Anticholesteremic Agents/adverse effects
13.
Circulation ; 149(3): 192-203, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37632469

ABSTRACT

BACKGROUND: Lipoprotein(a) is a risk factor for cardiovascular events and modifies the benefit of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors. Lipoprotein(a) concentration can be measured with immunoassays reporting mass or molar concentration or a reference measurement system using mass spectrometry. Whether the relationships between lipoprotein(a) concentrations and cardiovascular events in a high-risk cohort differ across lipoprotein(a) methods is unknown. We compared the prognostic and predictive value of these types of lipoprotein(a) tests for major adverse cardiovascular events (MACE). METHODS: The ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) compared the PCSK9 inhibitor alirocumab with placebo in patients with recent acute coronary syndrome. We compared risk of a MACE in the placebo group and MACE risk reduction with alirocumab according to baseline lipoprotein(a) concentration measured by Siemens N-latex nephelometric immunoassay (IA-mass; mg/dL), Roche Tina-Quant turbidimetric immunoassay (IA-molar; nmol/L), and a noncommercial mass spectrometry-based test (MS; nmol/L). Lipoprotein(a) values were transformed into percentiles for comparative modeling. Natural cubic splines estimated continuous relationships between baseline lipoprotein(a) and outcomes in each treatment group. Event rates were also determined across baseline lipoprotein(a) quartiles defined by each assay. RESULTS: Among 11 970 trial participants with results from all 3 tests, baseline median (Q1, Q3) lipoprotein(a) concentrations were 21.8 (6.9, 60.0) mg/dL, 45.0 (13.2, 153.8) nmol/L, and 42.2 (14.3, 143.1) nmol/L for IA-mass, IA-molar, and MS, respectively. The strongest correlation was between IA-molar and MS (r=0.990), with nominally weaker correlations between IA-mass and MS (r=0.967) and IA-mass and IA-molar (r=0.972). Relationships of lipoprotein(a) with MACE risk in the placebo group were nearly identical with each test, with estimated cumulative incidences differing by ≤0.4% across lipoprotein(a) percentiles, and all were incrementally prognostic after accounting for low-density lipoprotein cholesterol levels (all spline P≤0.0003). Predicted alirocumab treatment effects were also nearly identical for each of the 3 tests, with estimated treatment hazard ratios differing by ≤0.07 between tests across percentiles and nominally less relative risk reduction by alirocumab at lower percentiles for all 3 tests. Absolute risk reduction with alirocumab increased with increasing lipoprotein(a) measured by each test, with significant linear trends across quartiles. CONCLUSIONS: In patients with recent acute coronary syndrome, 3 lipoprotein(a) tests were similarly prognostic for MACE in the placebo group and predictive of MACE reductions with alirocumab at the cohort level. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01663402.


Subject(s)
Acute Coronary Syndrome , Anticholesteremic Agents , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Proprotein Convertase 9 , Cholesterol, LDL , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/epidemiology , Lipoprotein(a) , Treatment Outcome , Anticholesteremic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
14.
Circulation ; 149(5): 343-353, 2024 01 30.
Article in English | MEDLINE | ID: mdl-37860863

ABSTRACT

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder characterized by severely elevated low-density lipoprotein cholesterol (LDL-C) levels due to profoundly defective LDL receptor (LDLR) function. Given that severely elevated LDL-C starts in utero, atherosclerosis often presents during childhood or adolescence, creating a largely unmet need for aggressive LDLR-independent lipid-lowering therapies in young patients with HoFH. Here we present the first evaluation of the efficacy and safety of evinacumab, a novel LDLR-independent lipid-lowering therapy, in pediatric patients with HoFH from parts A and B of a 3-part study. METHODS: The phase 3, part B, open-label study treated 14 patients 5 to 11 years of age with genetically proven HoFH (true homozygotes and compound heterozygotes) with LDL-C >130 mg/dL, despite optimized lipid-lowering therapy (including LDLR-independent apheresis and lomitapide), with intravenous evinacumab 15 mg/kg every 4 weeks. RESULTS: Evinacumab treatment rapidly and durably (through week 24) decreased LDL-C with profound reduction in the first week, with a mean (SE) LDL-C reduction of -48.3% (10.4%) from baseline to week 24. ApoB (mean [SE], -41.3% [9.0%]), non-high-density lipoprotein cholesterol (-48.9% [9.8%]), and total cholesterol (-49.1% [8.1%]) were similarly decreased. Treatment-emergent adverse events were reported in 10 (71.4%) patients; however, only 2 (14.3%) reported events that were considered to be treatment-related (nausea and abdominal pain). One serious treatment-emergent adverse event of tonsillitis occurred (n=1), but this was not considered treatment-related. CONCLUSIONS: Evinacumab constitutes a new treatment for pediatric patients with HoFH and inadequately controlled LDL-C despite optimized lipid-lowering therapy, lowering LDL-C levels by nearly half in these extremely high-risk and difficult-to-treat individuals. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04233918.


Subject(s)
Antibodies, Monoclonal , Anticholesteremic Agents , Homozygous Familial Hypercholesterolemia , Hyperlipoproteinemia Type II , Adolescent , Humans , Child , Cholesterol, LDL/genetics , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/genetics , Anticholesteremic Agents/adverse effects , Homozygote
15.
EMBO J ; 40(14): e106871, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34124795

ABSTRACT

Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.


Subject(s)
Biological Transport/physiology , Cholesterol, LDL/metabolism , Endosomes/metabolism , Focal Adhesion Kinase 1/metabolism , Phosphatidylinositol Phosphates/metabolism , Receptors, Steroid/metabolism , Cell Adhesion/physiology , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement/physiology , Humans
16.
Am J Hum Genet ; 109(7): 1286-1297, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35716666

ABSTRACT

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Cholesterol, LDL , Gene Expression , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics
17.
Lancet ; 403(10421): 55-66, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38101429

ABSTRACT

BACKGROUND: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. METHODS: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. FINDINGS: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. INTERPRETATION: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. FUNDING: Pfizer, Amgen, Merck Sharp & Dohme, Sanofi-Aventis, Daiichi Sankyo, and Regeneron.


Subject(s)
Hypercholesterolemia , Hyperlipoproteinemia Type II , Adult , Child , Humans , Male , Female , Adolescent , Child, Preschool , Cholesterol, LDL , Cross-Sectional Studies , Hypercholesterolemia/diagnosis , Hypercholesterolemia/epidemiology , Hypercholesterolemia/genetics , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Genetic Testing
18.
N Engl J Med ; 387(21): 1923-1934, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36342113

ABSTRACT

BACKGROUND: High triglyceride levels are associated with increased cardiovascular risk, but whether reductions in these levels would lower the incidence of cardiovascular events is uncertain. Pemafibrate, a selective peroxisome proliferator-activated receptor α modulator, reduces triglyceride levels and improves other lipid levels. METHODS: In a multinational, double-blind, randomized, controlled trial, we assigned patients with type 2 diabetes, mild-to-moderate hypertriglyceridemia (triglyceride level, 200 to 499 mg per deciliter), and high-density lipoprotein (HDL) cholesterol levels of 40 mg per deciliter or lower to receive pemafibrate (0.2-mg tablets twice daily) or matching placebo. Eligible patients were receiving guideline-directed lipid-lowering therapy or could not receive statin therapy without adverse effects and had low-density lipoprotein (LDL) cholesterol levels of 100 mg per deciliter or lower. The primary efficacy end point was a composite of nonfatal myocardial infarction, ischemic stroke, coronary revascularization, or death from cardiovascular causes. RESULTS: Among 10,497 patients (66.9% with previous cardiovascular disease), the median baseline fasting triglyceride level was 271 mg per deciliter, HDL cholesterol level 33 mg per deciliter, and LDL cholesterol level 78 mg per deciliter. The median follow-up was 3.4 years. As compared with placebo, the effects of pemafibrate on lipid levels at 4 months were -26.2% for triglycerides, -25.8% for very-low-density lipoprotein (VLDL) cholesterol, -25.6% for remnant cholesterol (cholesterol transported in triglyceride-rich lipoproteins after lipolysis and lipoprotein remodeling), -27.6% for apolipoprotein C-III, and 4.8% for apolipoprotein B. A primary end-point event occurred in 572 patients in the pemafibrate group and in 560 of those in the placebo group (hazard ratio, 1.03; 95% confidence interval, 0.91 to 1.15), with no apparent effect modification in any prespecified subgroup. The overall incidence of serious adverse events did not differ significantly between the groups, but pemafibrate was associated with a higher incidence of adverse renal events and venous thromboembolism and a lower incidence of nonalcoholic fatty liver disease. CONCLUSIONS: Among patients with type 2 diabetes, mild-to-moderate hypertriglyceridemia, and low HDL and LDL cholesterol levels, the incidence of cardiovascular events was not lower among those who received pemafibrate than among those who received placebo, although pemafibrate lowered triglyceride, VLDL cholesterol, remnant cholesterol, and apolipoprotein C-III levels. (Funded by the Kowa Research Institute; PROMINENT ClinicalTrials.gov number, NCT03071692.).


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertriglyceridemia , Hypolipidemic Agents , PPAR alpha , Humans , Apolipoprotein C-III/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cholesterol/blood , Cholesterol, LDL/blood , Diabetes Mellitus, Type 2/complications , Double-Blind Method , Heart Disease Risk Factors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperlipidemias/blood , Hyperlipidemias/drug therapy , Hypertriglyceridemia/blood , Hypertriglyceridemia/complications , Hypertriglyceridemia/drug therapy , Risk Factors , Triglycerides/blood , Hypolipidemic Agents/therapeutic use , PPAR alpha/agonists , Cholesterol, HDL/blood
19.
Ann Neurol ; 95(5): 876-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38400785

ABSTRACT

OBJECTIVES: To investigate whether post-stroke statin therapy reduces subsequent major vascular events in statin-naïve patients with pretreatment low-density lipoprotein cholesterol (LDL-C) below the recommended target (≤70 mg/dL for atherosclerotic stroke and ≤100 mg/dL for non-atherosclerotic stroke) at stroke onset. METHODS: Patients from an ongoing stroke registry who had an ischemic stroke between 2011 and 2020 were screened. Statin naïve patients with baseline LDL-C below the target were assessed. The effect of post-stroke statin therapy on major vascular events (composite of recurrent stroke, myocardial infarction, and death) was investigated using weighted Cox regression analyses using stabilized inverse probability treatment weighting. RESULTS: The baseline LDL-C level of the 1,858 patients (mean age 67.9 ± 15.3 years, 61.4% men, 13.2% atherosclerotic stroke) included in the study was 75.7 ± 17.0 mg/dL. Statins were prescribed to 1,256 (67.7%) patients (low-to-moderate intensity, 23.5%; high intensity, 44.1%). Post-stroke statin therapy was associated with a lower risk of major vascular events during 1-year follow-up (weighted hazard ratio 0.55, 95% confidence interval 0.42-0.71). In a subgroup of patients who were at very high risk of atherosclerotic cardiovascular disease with LDL-C <55 mg/dL or patients who were not at very high risk of atherosclerotic cardiovascular disease with LDL-C <70 mg/dL, post-stroke statin therapy was also associated with a reduction in major vascular events (weighted hazard ratio 0.45, 95% confidence interval 0.29-0.70). The intensity of the most beneficial statin varied by subtype of stroke. INTERPRETATION: Statin therapy may improve vascular outcomes after ischemic stroke, even in cases of LDL-C below the target without pre-stroke lipid-lowering therapy. ANN NEUROL 2024;95:876-885.


Subject(s)
Cholesterol, LDL , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Stroke , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Male , Female , Aged , Cholesterol, LDL/blood , Middle Aged , Aged, 80 and over , Stroke/blood , Stroke/drug therapy , Registries , Treatment Outcome , Ischemic Stroke/drug therapy , Ischemic Stroke/blood , Cardiovascular Diseases/drug therapy
20.
FASEB J ; 38(1): e23399, 2024 01.
Article in English | MEDLINE | ID: mdl-38174870

ABSTRACT

Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.


Subject(s)
Bacteriophages , Cardiovascular Diseases , Hyperlipidemias , Metabolic Diseases , Humans , Mice , Animals , Angiopoietin-Like Protein 3 , Cholesterol, LDL , Angiopoietin-like Proteins/metabolism , Hyperlipidemias/drug therapy , Molecular Docking Simulation , Triglycerides , Apolipoproteins B
SELECTION OF CITATIONS
SEARCH DETAIL