Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
Add more filters

Publication year range
1.
Mol Cell Biochem ; 476(2): 1109-1121, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33219441

ABSTRACT

The development of new models to study diabetes in invertebrates is important to ensure adherence to the 3R's principle and to expedite knowledge of the complex molecular events underlying glucose toxicity. Streptozotocin (STZ)-an alkylating and highly toxic agent that has tropism to mammalian beta cells-is used as a model of type 1 diabetes in rodents, but little is known about STZ effects in insects. Here, the cockroach; Nauphoeta cinerea was used to determine the acute toxicity of 74 and 740 nmol of STZ injection per cockroach. STZ increased the glucose content, mRNA expression of glucose transporter 1 (GLUT1) and markers of oxidative stress in the head. Fat body glycogen, insect survival, acetylcholinesterase activity, triglyceride content and viable cells in head homogenate were reduced, which may indicate a disruption in glucose utilization by the head and fat body of insects after injection of 74 and 740 nmol STZ per nymph. The glutathione S-transferase (GST) activity and reduced glutathione levels (GSH) were increased, possibly via activation of nuclear factor erythroid 2 related factor as a compensatory response against the increase in reactive oxygen species. Our data present the potential for metabolic disruption in N. cinerea by glucose analogues and opens paths for the study of brain energy metabolism in insects. We further phylogenetically demonstrated conservation between N. cinerea glucose transporter 1 and the GLUT of other insects in the Neoptera infra-class.


Subject(s)
Brain/metabolism , Cockroaches/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Oxidative Stress , Phylogeny , Streptozocin/pharmacology , Animals , Antibiotics, Antineoplastic/pharmacology , Brain/drug effects , Cockroaches/drug effects , Cockroaches/genetics , Glucose Transport Proteins, Facilitative/genetics , Glutathione/metabolism , Glutathione Transferase/metabolism
2.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576043

ABSTRACT

The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.


Subject(s)
Insecticides/pharmacology , Neonicotinoids/pharmacology , Nicotinic Antagonists/pharmacology , Nitro Compounds/pharmacology , Thiazines/pharmacology , Animals , Cockroaches/drug effects , Nicotinic Agonists/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Receptors, Nicotinic , Xenopus laevis
3.
J Zoo Wildl Med ; 52(2): 710-714, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34130415

ABSTRACT

This study investigated the efficacy of isoflurane in Madagascar hissing cockroaches (Gromphadorhina portentosa). Cockroaches (n = 12) were placed in a 2-L anesthesia chamber with isoflurane initiated at 5% at 2 L/m. Movement of antennae, mandibles, and legs and righting reflex were assessed, with full induction achieved when all responses had ceased for 2 m. Cockroach movement became ataxic on average (±SD) 3.5 ± 0.9 m after isoflurane treatment, and induction occurred on average 18.7 ± 4.4 m after treatment. Loss of righting reflex was the most consistent indication of full induction. Cockroaches fully recovered on average 16.2 ± 5.6 m after removal of isoflurane inhalant. Induction was uneventful, and no mortality or obvious morbidity was observed in treated cockroaches up to 30 d posttreatment. The authors conclude that the use of inhalant isoflurane is both safe and effective for anesthesia of Madagascar hissing cockroaches.


Subject(s)
Anesthetics, Inhalation/pharmacology , Cockroaches/drug effects , Isoflurane/pharmacology , Animals
4.
Article in English | MEDLINE | ID: mdl-32955634

ABSTRACT

Many relevant aspects of mammal's cardiac physiology have been mainly investigated in insect models such as Drosophila melanogaster and Periplaneta americana. Cardiac function has been poorly studied in the cockroach Gromphadorhina portentosa, which has some advantages for experimental purposes such as an easier culture, bigger organs and a robust physiology. On the other hand, the study of cardiac physiology in insects has been largely improved since the arrival of digital imaging technologies for recording purposes. In the present work, we introduce a methodology of video recording coupled to an isotonic transducer for a three-dimensional analysis of the heart and intracardiac valves of G. portentosa. We used this methodology for assessing the physiological responses of the cockroach heart upon the application of different cholinergic neurotransmitters (acetylcholine, nicotine and muscarine). We recorded in detail the relationship between intracardiac valves movement, hemolymph flow, diastole and systole. Acetylcholine and nicotine induced a biphasic effect on the cardiac frequency. Acetylcholine increased the diastolic opening. Nicotine at high concentration caused paralysis. Muscarine induced no major effects. These findings suggest a combined action of cholinergic agonists for a finely tuned the cardiac frequency, intracardiac valves function and cardiac cycle.


Subject(s)
Acetylcholine/pharmacology , Cholinergic Agonists/pharmacology , Cockroaches/drug effects , Cockroaches/physiology , Animals , Heart/drug effects , Heart/physiology , Imaging, Three-Dimensional/methods , Video Recording/methods
5.
Arch Insect Biochem Physiol ; 105(2): e21731, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32761928

ABSTRACT

Jaburetox is a recombinant peptide derived from one of the Canavalia ensiformis urease isoforms. This peptide induces several toxic effects on insects of different orders, including interference on muscle contractility in cockroaches, modulation of UDP-N-acetylglucosamine pyrophosphorylase (UAP) and nitric oxide synthase (NOS) activities in the central nervous system of triatomines, as well as activation of the immune system in Rhodnius prolixus. When injected, the peptide is lethal for R. prolixus and Triatoma infestans. Here, we evaluated Jaburetox toxicity to Nauphoeta cinerea cockroaches, exploring the effects on the central nervous system through the activities of UAP, NOS, acid phosphatases (ACP), and acetylcholinesterase (AChE). The results indicated that N. cinerea is not susceptible to the lethal effect of the peptide. Moreover, both in vivo and in vitro treatments with Jaburetox inhibited NOS activity, without modifying the protein levels. No alterations on ACP activity were observed. In addition, the enzyme activity of UAP only had its activity affected at 18 hr after injection. The peptide increased the AChE activity, suggesting a mechanism involved in overcoming the toxic effects. In conclusion, our findings indicate that Jaburetox affects the nitrinergic signaling as well as the AChE and UAP activities and establishes N. cinerea as a Jaburetox-resistant model for future comparative studies.


Subject(s)
Cockroaches/drug effects , Cockroaches/enzymology , Plant Proteins/toxicity , Urease/toxicity , Acetylcholinesterase/drug effects , Acid Phosphatase/drug effects , Animals , Central Nervous System/drug effects , Female , Male , Nitric Oxide Synthase/drug effects , Nucleotidyltransferases/drug effects , Recombinant Proteins/toxicity
6.
Ecotoxicol Environ Saf ; 171: 138-145, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30599431

ABSTRACT

The detection of cyanotoxins, such as the anatoxin-a(s), is essential to ensure the biological safety of water environments. Here, we propose the use of Nauphoeta cinerea cockroaches as an alternative biological model for the biomonitoring of the activity of anatoxin-a(s) in aquatic systems. In order to validate our proposed model, we compared the effects of a cyanobacterial extract containing anatoxin-a(s) (CECA) with those of the organophosphate trichlorfon (Tn) on biochemical and physiological parameters of the nervous system of Nauphoeta cinerea cockroaches. In brain homogenates from cockroaches, CECA (5 and 50 µg/g) inhibited acetylcholinesterase (AChE) activity by 53 ±â€¯2% and 51 ±â€¯7%, respectively, while Tn (5 and 50 µg/g) inhibited AChE activity by 35 ±â€¯4% and 80 ±â€¯9%, respectively (p < 0.05; n = 6). Moreover, CECA at concentrations of 5, 25, and 50 µg/g decreased the locomotor activity of the cockroaches, diminishing the distance travelled and increasing the frequency and duration of immobile episodes similarly to Tn (0.3 µg/g) (p < 0.05, n = 40, respectively). CECA (5, 25 and 50 µg/g) induced an increase in the leg grooming behavior, but not in the movement of antennae, similarly to the effect of Tn (0.3 µg/g). In addition, both CECA (50 µg/200 µl) and Tn (0.3 µg/200 µl) induced a negative chronotropism in the insect heart (37 ±â€¯1 and 47 ±â€¯8 beats/min in 30 min, respectively) (n = 9, p > 0.05). Finally, CECA (50 µg/g), Tn (0.3 µg/g) and neostigmine (50 µg/g) caused significant neuromuscular failure, as indicated by the monitoring of the in vivo neuromuscular function of the cockroaches, during 100 min (n = 6, p < 0.05, respectively). In conclusion, sublethal doses of CECA provoked entomotoxicity. The Tn-like effects of CECA on Nauphoeta cinerea cockroaches encompass both the central and peripheral nervous systems in our insect model. The inhibitory activity of CECA on AChE boosts a cascade of signaling events involving octopaminergic/dopaminergic neurotransmission. Therefore, this study indicates that this insect model could potentially be used as a powerful, practical, and inexpensive tool to understand the impacts of eutrophication and for orientating decontamination processes.


Subject(s)
Cholinesterase Inhibitors/toxicity , Cockroaches/drug effects , Cyanobacteria/chemistry , Insecticides/toxicity , Neurotoxins/toxicity , Trichlorfon/toxicity , Tropanes/toxicity , Acetylcholinesterase/metabolism , Animals , Behavior, Animal/drug effects , Cockroaches/physiology , Cyanobacteria Toxins , Female , Locomotion/drug effects , Male , Synaptic Transmission/drug effects
7.
Pestic Biochem Physiol ; 158: 101-111, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31378344

ABSTRACT

Standard chemical insecticides present mainly neurotoxic effects and are becoming less and less effective due to insects developing resistance to them. One of the innovative strategies to control insects pests is to find a way to increase the sensitivity of the target sites in the insect nervous system to the applied insecticides. In the presented research, we proposed menthol, a component of essential oils, as a factor increasing the effectiveness of bendiocarb, a carbamate insecticide. The aim of our study was to evaluate the potentiation of the bendiocarb effect by menthol. In toxicity tests performed on Periplaneta americana, menthol (0.1 µM) accelerated the lethal effect of bendiocarb, primarily in its low concentrations (lower than 0.05 mM). In the presence of menthol (1 and 0.1 µM), the ability of insects to turn back from its dorsal to the normal ventral side was significantly lower than with bendiocarb (1 µM) alone. We also evaluated the effectiveness of chemicals on the activity of the ventral nerve cord of the cockroach. In this preparation, bendiocarb (1 µM and higher concentrations) caused an irregular, spontaneous bursts of action potentials. The total nerve activity (including the response to stimulation and spontaneous firing) was much higher when bendiocarb was applied in the presence of menthol (1 µM). The effect of menthol was similar to the octopamine effect and was abolished by phentolamine, the octopamine receptor antagonist. Our results clearly indicated a strengthening effect of menthol on bendiocarb effectiveness; potentiation occurred through octopamine receptors activation.


Subject(s)
Carbamates/pharmacology , Cockroaches/drug effects , Insecticides/pharmacology , Menthol/pharmacology , Oils, Volatile/chemistry , Phenylcarbamates/pharmacology , Acetylcholinesterase/metabolism , Animals , Drug Interactions , Insecticide Resistance
8.
Pestic Biochem Physiol ; 153: 67-76, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30744898

ABSTRACT

Jaburetox (Jbtx) is an insecticidal peptide derived from Canavalia ensiformis urease, whose mechanism of action is not completely elucidated. We employed behavioral, electromyographical and electrophysiological protocols to identify the cellular and molecular targets involved in the Jbtx entomotoxicity in cockroaches and locusts. In Nauphoeta cinerea, Jbtx (32 µg/g) altered the locomotory behaviour inducing a significative decrease in the distance travelled followed by a significant increase in stopped time (52 ±â€¯85 cm and 2573 ±â€¯89 s, p < .05, n = 40). Jbtx (8 to 32 µg/g body weight, respectively) also increased the leg and antennae grooming activities (p < .05, n = 40, respectively). Jbtx (8 to 16 µg/g) induced a maximum neuromuscular blockade of 80.72% (n = 6, p < .05) and was cardiotoxic, decreasing the cockroach heart rate. The electrophysiological profiles of both muscle and nerve of L. migratoria showed that Jbtx (2.5 × 10-7 and 2.5 × 10-3 µg/ body weight) induced a significant increase in the amplitude of nerve action potentials (n = 5, p < .05). Voltage clamp analysis of Jbtx (200 nM) applied in Xenopus laevis oocytes heterologously expressed with Nav 1.1 channels showed a significant increase in the sodium currents. In conclusion, this work revealed that the entomotoxic activity of Jbtx involves complex behavioral alterations that begins with an initial activation of voltage-gated sodium channels.


Subject(s)
Biological Control Agents/pharmacology , Cockroaches/drug effects , Grasshoppers/drug effects , Insecticides/pharmacology , Urease/pharmacology , Voltage-Gated Sodium Channels/physiology , Animals , Behavior, Animal/drug effects , Cockroaches/physiology , Female , Grasshoppers/physiology , Locomotion/drug effects , Male , Plant Proteins
9.
Bioorg Med Chem ; 26(12): 3541-3550, 2018 07 23.
Article in English | MEDLINE | ID: mdl-29866480

ABSTRACT

A series of novel anthranilic diamides derivatives (7a-s) containing halogen, trifluoromethyl group and cyano group were designed, synthesized, and characterized by melting point, 1H NMR, 13C NMR and elemental analyses. The bioactivity revealed that most of them showed moderate to excellent activities against oriental armyworm (Mythimna separata) and diamondback moth (Plutella xylostella). Above all, the larvicidal activity of 7o against oriental armyworm was 100% and 40% at 0.25 and 0.1 mg L-1, comparable to that of the standard chlorantraniliprole (100%, 0.25 mg L-1 and 20%, 0.1 mg L-1). What is more, 7o against diamondback moth displayed 90% insecticidal activity at 0.01 mg L-1, superior to chlorantraniliprole (45%, 0.01 mg L-1). The experiments 7o on the American cockroach (Periplaneta Americana) heart beating rates (Dorsal vessel) and contractile force were compared with chlorantraniliprole. In addition, 7o could affect the calcium homeostasis in the central neurons of the third larvae of oriental armyworm, which revealed that the ryanodine receptor is the potential target of 7o. The density functional theory (DFT) calculation results revealed the amide bridge, the benzene ring of anthraniloyl moiety and pyrazole ring might play an important role in the insecticidal activity through hydrophobic interactions and π-π conjugations.


Subject(s)
Diamide/chemistry , Insecticides/chemical synthesis , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Cockroaches/drug effects , Cockroaches/physiology , Diamide/chemical synthesis , Diamide/pharmacology , Heart Rate/drug effects , Insecticides/chemistry , Insecticides/toxicity , Isoxazoles/chemistry , Larva/drug effects , Moths/growth & development , Moths/metabolism , Quantum Theory , Ryanodine Receptor Calcium Release Channel/chemistry , Structure-Activity Relationship
10.
Arch Toxicol ; 92(1): 337-346, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28932886

ABSTRACT

The chemical agent sulfur mustard (SM) causes erythema, skin blisters, ulcerations, and delayed wound healing. It is accepted that the underlying molecular toxicology is based on DNA alkylation. With an expected delay, DNA damage causes impairment of protein biosynthesis and disturbance of cell division. However, using the cockroach model Blaptica dubia, the presented results show that alkylating compounds provoke immediate behavior responses along with fast changes in the electrical field potential (EFP) of neurons, suggesting that lesions of DNA are probably not the only effect of alkylating compounds. Blaptica dubia was challenged with SM or 2-chloroethyl-ethyl sulfide (CEES). Acute toxicity was objectified by a disability score. Physiological behavior responses (antennae pullback reflex, escape attempts, and grooming) were monitored after exposure. To estimate the impact of alkylating agents on neuronal activity, EFP recordings of the antennae and the thoracic ganglion were performed. After contact to neat SM, a pullback reflex of the antennae was the first observation. Subsequently, a striking escape behavior occured which was characterized by persistent movement of the legs. In addition, an instantaneous processing of the electrical firing pattern from the antennae to the descending ganglia was detectable. Remarkably, comparing the toxicity of the applied alkylating agents, effects induced by CEES were much more pronounced compared to SM. In summary, our findings document immediate effects of B. dubia after exposure to alkylating substances. These fast responses cannot be interpreted as a consequence of DNA alkylation. Therefore, the dogma that DNA alkylation is the exclusive cause for SM toxicity has to be questioned.


Subject(s)
Arthropod Antennae/drug effects , Cockroaches/drug effects , Cockroaches/physiology , Mustard Gas/analogs & derivatives , Mustard Gas/toxicity , Alkylating Agents/toxicity , Animals , Arthropod Antennae/physiology , Behavior, Animal/drug effects , Chemical Warfare Agents/toxicity , Dose-Response Relationship, Drug , Electrophysiology/methods , Extremities , Flight, Animal/drug effects , Ganglia, Invertebrate/drug effects , Ganglia, Invertebrate/metabolism , Mustard Gas/administration & dosage
11.
Pestic Biochem Physiol ; 148: 175-181, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29891370

ABSTRACT

Rhinella icterica is a poisonous toad whose toxic secretion has never been studied against entomotoxic potential. Sublethal doses of Rhinella icterica toxic secretion (RITS) were assayed in Nauphoeta cinerea cockroaches, in order to understand the physiological and behavioral parameters, over the insect central and peripheral nervous system. RITS (10 µg/g) injections, induced behavioral impairment as evidenced by a significant decrease (38 ±â€¯14%) in the distance traveled (p < .05), followed by an increase (90 ±â€¯6%) of immobile episodes (p < .001, n = 28, respectively). In cockroaches semi-isolated heart preparations, RITS (16 µg/200 µl) induced a significant irreversible dose-dependent negative chronotropism, reaching ~40% decrease in heart rate in 20 min incubation. In in vivo cockroach neuromuscular preparations, RITS (20, 50 and 100 µg/g of animal weight) induced a time-dependent inhibition of twitch tension that was complete for 20 µg/g, in 120 min recordings. RITS (10 µg/g) also induced a significant increase in the insect leg grooming activity (128 ±â€¯10%, n = 29, p < .01), but not in the antennae counterparts. The RITS increase in leg grooming activity was prevented in 90% by the pretreatment of cockroaches with phentolamine (0.1 µg/g). The electrophysiological recordings of spontaneous neural compound action potentials showed that RITS (20 µg/g) induced a significant increase in the number of events, as well as in the rise time and duration of the potentials. In conclusion, RITS showed to be entomotoxic, being the neuromuscular failure and cardiotoxic activity considered the main deleterious effects. The disturbance of the cockroaches' behavior together with the electrophysiological alterations, may unveil the presence of some toxic components present in the poison with inherent biotechnological potentials.


Subject(s)
Bufonidae/physiology , Cockroaches/drug effects , Octopamine/pharmacology , Skin/metabolism , Toxins, Biological/toxicity , Action Potentials/drug effects , Animals , Behavior, Animal/drug effects , Cockroaches/metabolism , Dose-Response Relationship, Drug , Grooming/drug effects , Heart Rate/drug effects , In Vitro Techniques , Neuromuscular Junction/drug effects , Octopamine/metabolism , Phentolamine/pharmacology , Toxins, Biological/metabolism
12.
Ecotoxicol Environ Saf ; 145: 436-441, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28778042

ABSTRACT

The drywood termite Cryptotermes brevis (Walker, 1853) (Kalotermitidae) is one of the most important wood structural pest in the world. Substances from the secondary metabolism of plants (e.g., essential oils) have been considered an environmentally safer form of control for urban pests, such as termites. In the present study, we analyzed the lethal and sub-lethal effects of essential oil of Lippia sidoides and its major components on C. brevis pseudergates in two routes of exposure (contact and fumigation). The essential oil of L. sidoides and thymol were more toxic to C. brevis pseudergates when applied by contact (LD50 = 9.33 and 8.20µgmg-1, respectively) and by fumigation (LC50 = 9.10 and 23.6µLL-1, respectively). In general, treatments changed the individual and collective behaviors of C. brevis pseudergates, as well as the displacement and walking speed. The essential oil of L. sidoides and its major components showed a high potential to control C. brevis pseudergates, due to the bioactivity in the two routes of exposure and the sub-lethal effects on the behavior and walking, important activities for the cohesion of C. brevis colonies.


Subject(s)
Cockroaches/drug effects , Isoptera/drug effects , Lippia/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Wood/drug effects , Animals , Lethal Dose 50 , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Toxicity Tests, Acute
13.
J Pept Sci ; 22(9): 600-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27477941

ABSTRACT

A FGLamide allatostatin neuropeptide mimic (H17) is a potential insect growth regulator which inhibits the production of juvenile hormone by the corpora allata. To find more evidence to reveal the structure-activity relationships of the Phe(3) residue in the C-terminal conserved pentapeptide and search for novel analogs with high activity, a series of Phe(3) residue-modified analogs were designed and synthesized using H17 as the lead compound. Bioassay using juvenile hormone (JH) production by corpora allata of the cockroach Diploptera punctata indicated that analogs 4, 11, and 13 showed strong ability to inhibit JH production in vitro, with IC50 of 38.5, 22.5, and 26 nM, respectively. As well, the activity of analog 2 (IC50 : 89.5 nM) proved roughly equivalent to that of H17. Based on the primary structure-activity relationships of Phe(3) residue, we suggest that for analogs containing six-membered aromatic rings, removing the methylene group of Phe(3) or an o-halogen or p-halogen-substituted benzene ring could increase the ability to inhibit biosynthesis of JH. This study will be useful for the design of new allatostatin analogs for insect management. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Corpora Allata/drug effects , Hormone Antagonists/chemical synthesis , Insect Proteins/antagonists & inhibitors , Juvenile Hormones/antagonists & inhibitors , Neuropeptides/chemical synthesis , Peptidomimetics/chemical synthesis , Amino Acid Sequence , Animals , Cockroaches/drug effects , Cockroaches/genetics , Cockroaches/metabolism , Corpora Allata/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation , Hormone Antagonists/pharmacology , Insect Proteins/biosynthesis , Insect Proteins/genetics , Juvenile Hormones/biosynthesis , Juvenile Hormones/genetics , Male , Neuropeptides/pharmacology , Peptidomimetics/pharmacology , Phenylalanine/chemistry , Phenylalanine/metabolism , Structure-Activity Relationship
14.
Pestic Biochem Physiol ; 130: 22-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27155480

ABSTRACT

The present study aimed to increase our understanding about the mode of toxic action of organophosphate pesticides in insects by evaluating the biochemical and neurobehavioral characteristics in Nauphoeta cinerea exposed to chlorpyrifos (CPF)-contaminated diet. The insects were exposed for 35 consecutive days to CPF at 0.078, 0.15625, 0.3125 and 0.625µg/g feed. Locomotor behavior was assessed for a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. In comparison to control, CPF-exposed cockroaches showed significant decreases in the total distance traveled, body rotation, turn angle and meandering, along with significant increase in the number of falls, time and episodes of immobility. The marked decrease in the exploratory profiles of CPF-exposed cockroaches was confirmed by track plots, whereas occupancy plot analyses showed a progressive dispersion at 0.15625µg/g feed group. Moreover, the heads of CPF-exposed cockroaches showed marked decrease in acetylcholinesterase activity and antioxidant status with concomitant significant elevation in dichlorofluorescein oxidation and lipid peroxidation levels in CPF-treated cockroaches. Gas Chromatography-Mass Spectrometry analyses revealed bioaccumulation of CPF in cockroaches exposed to concentrations above 0.078µg/g feed. The findings from this investigation showed N. cinerea as a value model organism for the risk assessment of environmental organophosphate contamination in insects.


Subject(s)
Chlorpyrifos/pharmacology , Cockroaches/drug effects , Insecticides/pharmacology , Acetylcholinesterase/drug effects , Animals , Cockroaches/metabolism , Locomotion/drug effects , Oxidative Stress/drug effects
15.
Ecotoxicology ; 24(6): 1221-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25980487

ABSTRACT

Fipronil is one of the most effective insecticides to control the invasive ant Linepithema humile, but its effectiveness has been assessed without considering the genetic differences among L. humile supercolonies. We hypothesized that the susceptibility of the ant to fipronil might differ among supercolonies. If so, dosage and concentration of fipronil may need to be adjusted for effective eradication of each supercolony. The relative sensitivities of four L. humile supercolonies established in Hyogo (Japan) to fipronil baits were examined based on their acute toxicity (48-h LC(50)). Toxicities of fipronil to seven ground arthropods, including four native ant species, one native isopoda, and two cockroaches were also determined and compared to that of L. humile supercolonies using species sensitivity distributions. Marked differences in susceptibility of fipronil were apparent among the supercolonies (P < 0.008), with the 'Japanese main supercolony' (271 µg L(-1)) being five to ten times more sensitive to fipronil than other colonies (1183-2782 µg L(-1)). Toxicities to non-target species (330-2327 µg L(-1)) were in the same range as that of L. humile, and SSDs between the two species groups were not significantly different (t = -1.389, P = 0.180), suggesting that fipronil's insecticidal activity is practically the same for L. humile as for non-target arthropods. Therefore, if the invasive ant is to be controlled using fipronil, this would also affect the local arthropod biodiversity. Only the 'Japanese main supercolony' can be controlled with appropriate bait dosages of fipronil that would have little impact on the other species.


Subject(s)
Ants/drug effects , Cockroaches/drug effects , Insecticides/pharmacology , Isopoda/drug effects , Pyrazoles/pharmacology , Animals , Ants/genetics , Insecticides/toxicity , Introduced Species , Japan , Pyrazoles/toxicity
16.
J Toxicol Environ Health A ; 77(1-3): 115-24, 2014.
Article in English | MEDLINE | ID: mdl-24555652

ABSTRACT

The adverse effects of the alga Prasiola crispa extract (PcE) were investigated in a fruit fly (Drosophila melanogaster) and cockroach (Nauphoeta cinerea) model. In flies, toxicity was assessed as mortality and biochemical alterations including acetylcholinesterase (AChE) activity and oxidative stress markers. The cardiotoxic action of PcE was also examined in a model of semi-isolated cockroach heart. The administration of PcE (2 mg/ml) to flies for 24 h resulted in a marked increase in mortality rate (7.6-fold rise compared to control). AChE activity, glutathione (GSH) levels, and hydroperoxide formation remained unchanged. Fly glutathione S-transferase (GST) and catalase (CAT) activity were significantly altered after PcE treatment. Fraction III (ethyl acetate) of PcE was significantly more toxic to flies compared to fractions I (methanol) and II (ethanol). A significant decrease was noted in cockroach semi-isolated heart function. The addition of 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), an oxidizing agent, concomitant with the extract significantly blocked this effect, suggesting that reduced compounds may be involved in the cardiotoxic action produced by PcE. Our results show for the first time the adverse effects of PcE in two insect models, Drosophila melanogaster and Nauphoetacinerea. The insecticidal properties of PcE may be related to changes in important antioxidant/detoxifying systems, as well as to changes in insect cardiac function.


Subject(s)
Chlorophyta/toxicity , Cockroaches/drug effects , Drosophila melanogaster/drug effects , Insecticides/toxicity , Plant Extracts/toxicity , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Cockroaches/metabolism , Dose-Response Relationship, Drug , Drosophila melanogaster/metabolism , Glutathione/metabolism , Heart/drug effects , Heart/physiopathology , Hydrogen Peroxide/metabolism , Male , Oxidative Stress/drug effects
17.
Biol Res ; 47: 17, 2014 May 16.
Article in English | MEDLINE | ID: mdl-25027663

ABSTRACT

BACKGROUND: Black widow spider (L. tredecimguttatus) has toxic components not only in the venomous glands, but also in other parts of the body and its eggs. It is biologically important to investigate the molecular basis of the egg toxicity. RESULTS: In the present work, an aqueous extract was prepared from the eggs of the spider and characterized using multiple physiological and biochemical strategies. Gel electrophoresis and mass spectrometry demonstrated that the eggs are rich in high-molecular-mass proteins and the peptides below 5 kDa. The lyophilized extract of the eggs had a protein content of 34.22% and was shown to have a strong toxicity towards mammals and insects. When applied at a concentration of 0.25 mg/mL, the extract could completely block the neuromuscular transmission in mouse isolated phrenic nerve-hemidiaphragm preparations within 12.0 ± 1.5 min. Using whole-cell patch-clamp technique, the egg extract was demonstrated to be able to inhibit the voltage-activated Na+, K+ and Ca2+ currents in rat DRG neurons. In addition, the extract displayed activities of multiple hydrolases. Finally, the molecular basis of the egg toxicity was discussed. CONCLUSIONS: The eggs of black widow spiders are rich in proteinous compounds particularly the high-molecular-mass proteins with different types of biological activity The neurotoxic and other active compounds in the eggs are believed to play important roles in the eggs' toxic actions.


Subject(s)
Arthropod Proteins/toxicity , Black Widow Spider/chemistry , Ovum/chemistry , Tissue Extracts/chemistry , Animal Shells/chemistry , Animal Shells/physiology , Animals , Arthropod Proteins/isolation & purification , Calcium Channels/drug effects , Cockroaches/drug effects , Ganglia, Spinal/drug effects , Mice , Ovum/physiology , Phrenic Nerve/drug effects , Potassium Channels, Voltage-Gated/drug effects , Rats , Tissue Extracts/toxicity , Voltage-Gated Sodium Channels/drug effects
18.
Ecotoxicol Environ Saf ; 109: 56-62, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25164203

ABSTRACT

Organophosphate (OP) insecticides have been used indiscriminately, based on their high dissipation rates and low residual levels in the environment. Despite the toxicity of OPs to beneficial insects is principally devoted to the acetylcholinesterase (AChE) inhibition, the physiological mechanisms underlying this activity remain poorly understood. Here we showed the pharmacological pathways that might be involved in severe alterations in the insect locomotion and grooming behaviors following sublethal administration of the OP Trichlorfon (Tn) (0.25, 0.5 and 1 µM) in Phoetalia pallida. Tn inhibited the acetylcholinesterase activity (46±6, 38±3 and 24±6 nmol NADPH/min/mg protein, n=3, p<0.05), respectively. Tn (1 µM) also increased the walking maintenance of animals (46±5 s; n=27; p<0.05). Tn caused a high increase in the time spent for this behavior (344±18 s/30 min, 388±18 s/30 min and 228±12 s/30 min, n=29-30, p<0.05, respectively). The previous treatment of the animals with different cholinergic modulators showed that pirenzepine>atropine>oxotremorine>d-tubocurarine>tropicamide>methoctramine induced a decrease on Tn (0.5 µM)-induced grooming increase, respectively in order of potency. Metoclopramide (0.4 µM), a DA-D2 selective inhibitor decreased the Tn-induced grooming activity (158±12 s/30 min; n=29; p<0.05). Nevertheless, the effect of the selective DA-D1 receptor blocker SCH 23390 (1.85 µM) on the Tn (0.5 µM)-induced grooming increase was significative and more intense than that of metoclopramide (54±6 s/30 min; n=30; p<0.05). Taken together the results suggest that a cross-talking between cholinergic M1/M3 and dopaminergic D1 receptors at the insect nervous system may play a role in the OP-mediated behavioral alterations.


Subject(s)
Cockroaches/drug effects , Insecticides/toxicity , Synaptic Transmission/drug effects , Trichlorfon/toxicity , Acetylcholinesterase/metabolism , Animals , Brain/enzymology , Cockroaches/metabolism , Grooming/drug effects , Male , Motor Activity/drug effects
19.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713071

ABSTRACT

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Subject(s)
Insect Proteins , Insecticides , Neuropeptides , Peptidomimetics , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Neuropeptides/chemistry , Neuropeptides/pharmacology , Neuropeptides/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemical synthesis , Drug Design , Juvenile Hormones/chemistry , Juvenile Hormones/pharmacology , Juvenile Hormones/metabolism , Cockroaches/drug effects , Cockroaches/chemistry
20.
Microbiol Res ; 287: 127863, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106785

ABSTRACT

High-throughput sequencing studies have shown that diet or antimicrobial treatments impact animal gut microbiota equilibrium. However, properties related to the gut microbial ecosystem stability, such as resilience, resistance, or functional redundancy, must be better understood. To shed light on these ecological processes, we combined advanced statistical methods with 16 S rRNA gene sequencing, functional prediction, and fitness analyses in the gut microbiota of the cockroach Blattella germanica subject to three periodic pulses of the antibiotic (AB) kanamycin (n=512). We first confirmed that AB did not significantly affect cockroaches' biological fitness, and gut microbiota changes were not caused by insect physiology alterations. The sex variable was examined for the first time in this species, and no statistical differences in the gut microbiota diversity or composition were found. The comparison of the gut microbiota dynamics in control and treated populations revealed that (1) AB treatment decreases diversity and completely disrupts the co-occurrence networks between bacteria, significantly altering the gut community structure. (2) Although AB also affected the genetic composition, functional redundancy would explain a smaller effect on the functional potential than on the taxonomic composition. (3) As predicted by Taylor's law, AB generally affected the most abundant taxa to a lesser extent than the less abundant taxa. (4) Taxa follow different trends in response to ABs, highlighting "resistant taxa," which could be critical for community restoration. (5) The gut microbiota recovered faster after the three AB pulses, suggesting that gut microbiota adapts to repeated treatments.


Subject(s)
Anti-Bacterial Agents , Bacteria , Blattellidae , Gastrointestinal Microbiome , Kanamycin , RNA, Ribosomal, 16S , Animals , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Blattellidae/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Kanamycin/pharmacology , Male , Female , Biodiversity , Cockroaches/microbiology , Cockroaches/drug effects , Phylogeny , Adaptation, Physiological , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL