Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Cell Physiol ; 326(5): C1482-C1493, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38525537

ABSTRACT

Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-ß (TGF-ß) and interleukin-1ß (IL-1ß), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-ß on collagen type I synthesis without affecting that of IL-1ß on the expression of matrix metalloproteinase-1. This effect of SP on TGF-ß-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-ß-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-ß on collagen type I synthesis without affecting that of interleukin-1ß on the expression of matrix metalloproteinase-1.


Subject(s)
Fibroblasts , Interleukin-1beta , Substance P , Transforming Growth Factor beta , p38 Mitogen-Activated Protein Kinases , Humans , Substance P/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Transforming Growth Factor beta/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Cells, Cultured , Interleukin-1beta/metabolism , Collagen Type I/metabolism , Collagen Type I/biosynthesis , Receptors, Neurokinin-1/metabolism , Cornea/metabolism , Cornea/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Collagen/metabolism , Collagen/biosynthesis , Signal Transduction/drug effects , Corneal Stroma/metabolism , Corneal Stroma/drug effects , Corneal Keratocytes/metabolism , Corneal Keratocytes/drug effects
2.
Exp Eye Res ; 246: 110013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39069001

ABSTRACT

Tea tree oil (TTO) is used in ophthalmology to maintain healthy eyelid skin and to combat parasitic eyelid infections. Keratocytes belong to the structure of the corneal stoma and enable to maintain corneal homeostasis. TTO that reaches the surface of the eye in too high concentration may disturb the functions of these cells. The aim of the study was to test what concentration of TTO is safe for corneal keratocytes in vitro without causing a toxic effect. A normal human keratocytes (HK) cell line was used in the study. Morphology was visualized by light and fluorescence microscopy, cytometric analysis of the cell cycle and cytometric and spectrophotometric viability evaluation were performed. The level of nitric oxide was tested by Griess spectrophotometric method. TTO concentrations exceeding 0.01% significantly reduced cell viability. The IC50 values were on average 0.057%. Increasing TTO concentrations stimulated HK cells to release NOx. The observed values did not exceed 1 µM. The lowest TTO concentration increased the number of HK cells in the G1 phase of the cell cycle. Increasing TTO concentrations (≥0.1%) increased the number of cells in late apoptosis. TTO at concentrations ranging from 0.1% to 0.5% significantly changed cell morphology. Fluorescence analyzes confirmed that TTO at concentrations ≥0.1% induced apoptotic cell death. TTO exerts strong effect on ocular keratocytes depending on applied concentration. Concentrations exceeding 0.1% have a toxic effect on keratocytes, which die mainly by apoptosis. The ocular surface should be protected from excessive exposure to TTO, which may damage corneal stroma cells.


Subject(s)
Apoptosis , Cell Proliferation , Cell Survival , Corneal Keratocytes , Tea Tree Oil , Humans , Tea Tree Oil/pharmacology , Tea Tree Oil/toxicity , Corneal Keratocytes/drug effects , Corneal Keratocytes/cytology , Cell Survival/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Cycle/drug effects , Nitric Oxide/metabolism , Microscopy, Fluorescence , Cells, Cultured , Cell Line , Flow Cytometry
3.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1847-1855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38133799

ABSTRACT

BACKGROUND: Corneal tissues indirectly obtain nutritional needs and oxygen to maintain their homeostasis, and therefore, benzalkonium chloride (BAC) containing ocular instillations for medical therapy may, in turn, induce toxic effects more than expected in corneal tissues, especially the inside stroma layer. METHODS: To evaluate the effects of very low concentrations (10-8%, 10-6%, or 10-4%) of BAC on human corneal stroma, we used two-dimensional (2D) cultures of human corneal stromal fibroblast (HCSF) cells and carried out the following analyses: (1) cell viability measurements, (2) Seahorse cellular bio-metabolism analysis, and (3) the expression of ECM molecules and endoplasmic reticulum (ER) stress-related molecules. RESULTS: In the absence and presence of 10-8%, 10-6%, or 10-4% concentrations of BAC, cell viability deteriorated and this deterioration was dose-dependent. The results showed that maximal mitochondrial respiration was decreased, the mRNA expression of most of ECM proteins was decreased, and ER stress-related molecules were substantially and dose-dependently down-regulated in HCSFs by the BAC treatment. CONCLUSIONS: The findings reported herein indicate that the presence of BAC, even at such low concentrations, is capable of causing the deterioration of cellular metabolic functions and negatively affecting the response to ER stress in HCSF cells resulting in a substantially decreased cellular viability.


Subject(s)
Benzalkonium Compounds , Cell Survival , Corneal Stroma , Preservatives, Pharmaceutical , Humans , Benzalkonium Compounds/toxicity , Corneal Stroma/drug effects , Corneal Stroma/metabolism , Cell Survival/drug effects , Cells, Cultured , Preservatives, Pharmaceutical/toxicity , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Corneal Keratocytes/drug effects , Corneal Keratocytes/metabolism , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000162

ABSTRACT

Cell-based therapies using corneal stromal stem cells (CSSC), corneal keratocytes, or a combination of both suppress corneal scarring. The number of quiescent keratocytes in the cornea is small; it is difficult to expand them in vitro in quantities suitable for transplantation. This study examined the therapeutic effect of corneal fibroblasts reversed into keratocytes (rCF) in a mouse model of mechanical corneal injury. The therapeutic effect of rCF was studied in vivo (slit lamp, optical coherence tomography) and ex vivo (transmission electron microscopy and immunofluorescence staining). Injection of rCF into the injured cornea was accompanied by recovery of corneal thickness, improvement of corneal transparency, reduction of type III collagen in the stroma, absence of myofibroblasts, and the improvement in the structural organization of collagen fibers. TEM results showed that 2 months after intrastromal injection of cells, there was a decrease in the fibril density and an increase in the fibril diameter and the average distance between collagen fibrils. The fibrils were well ordered and maintained the short-range order and the number of nearest-neighbor fibrils, although the averaged distance between them increased. Our results demonstrated that the cell therapy of rCF from ReLEx SMILe lenticules promotes the recovery of transparent corneal stroma after injury.


Subject(s)
Corneal Injuries , Fibroblasts , Animals , Mice , Corneal Injuries/therapy , Corneal Injuries/pathology , Fibroblasts/metabolism , Cornea , Corneal Keratocytes , Disease Models, Animal , Cell- and Tissue-Based Therapy/methods , Corneal Stroma , Tomography, Optical Coherence
5.
Exp Eye Res ; 235: 109641, 2023 10.
Article in English | MEDLINE | ID: mdl-37696465

ABSTRACT

Corneal activated keratocytes (CAKs) -representing the injured phenotype of corneal stromal cells- are associated with several corneal diseases. Inflammatory cytokines are the key drivers of CAK formation subsequently leading to fibrogenesis. This study aimed to investigate the effect of adlay seed extract on the expression of genes involved in inflammation (IL-6, IL-1b, LIF) and fibrogenesis (TGF-ß) in CAK cells. CAKs (106 cells/10 cm2) were exposed to methanolic (MeOH) and residual (Res) extract of adlay seed (1 mg/ml, 24 h). The control group received the vehicle solution without extract at the same time and condition. Then, RNA extraction, cDNA synthesis, and real-time PCR were performed to quantify the relative expression of IL-6, IL-1b, LIF, and TGF-ß in the treated vs. control cells. This study showed that the MeOH extract of adlay seed could significantly downregulate the expression of IL-6 and IL-1b in the CAKs, while the Res extract led to a significant decrease in TGF-ß gene expression. We showed that CAK treatment with adlay seed extract could decrease the expression of genes related to inflammation and fibrogenesis. However, the genes to be targeted depended on the method of extraction. This proof-of-concept study could provide groundwork for the treatment of corneal stromal diseases and ocular regenerative medicine in the future.


Subject(s)
Corneal Diseases , Interleukin-6 , Humans , Interleukin-6/genetics , Corneal Keratocytes , Inflammation , Cornea , Methanol , Plant Extracts/pharmacology
6.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240176

ABSTRACT

Fibroblasts isolated and expanded from ReLEx SMILE lenticules can be a source of human keratocytes. Since corneal keratocytes are quiescent cells, it is difficult to expand them in vitro in suitable numbers for clinical and experimental use. In the present study, this problem was solved by isolating and growing corneal fibroblasts (CFs) with a high proliferative potential and their reversion to keratocytes in a selective serum-free medium. Fibroblasts reversed into keratocytes (rCFs) had a dendritic morphology and ultrastructural signs of activation of protein synthesis and metabolism. The cultivation of CFs in a medium with 10% FCS and their reversion into keratocytes was not accompanied by the induction of myofibroblasts. After reversion, the cells spontaneously formed spheroids and expressed keratocan and lumican markers, but not mesenchymal ones. The rCFs had low proliferative and migratory activity, and their conditioned medium contained a low level of VEGF. CF reversion was not accompanied by a change with the levels of IGF-1, TNF-alpha, SDF-1a, and sICAM-1. In the present study, it has been demonstrated that fibroblasts from ReLEx SMILE lenticules reverse into keratocytes in serum-free KGM, maintaining the morphology and functional properties of primary keratocytes. These keratocytes have a potential for tissue engineering and cell therapy of various corneal pathologies.


Subject(s)
Corneal Keratocytes , Tissue Engineering , Humans , Corneal Keratocytes/metabolism , Cells, Cultured , Corneal Stroma/metabolism , Cell- and Tissue-Based Therapy , Fibroblasts/metabolism
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108693

ABSTRACT

The purpose of our study was to analyze abnormal neural regeneration activity in the cornea through means of confocal microscopy in rheumatoid arthritis patients with concomitant dry eye disease. We examined 40 rheumatoid arthritis patients with variable severity and 44 volunteer age- and gender-matched healthy control subjects. We found that all examined parameters were significantly lower (p < 0.05) in rheumatoid arthritis patients as opposed to the control samples: namely, the number of fibers, the total length of the nerves, the number of branch points on the main fibers and the total nerve-fiber area. We examined further variables, such as age, sex and the duration of rheumatoid arthritis. Interestingly, we could not find a correlation between the above variables and abnormal neural structural changes in the cornea. We interpreted these findings via implementing our hypotheses. Correspondingly, one neuroimmunological link between dry eye and rheumatoid arthritis could be through the chronic Piezo2 channelopathy-induced K2P-TASK1 signaling axis. This could accelerate neuroimmune-induced sensitization on the spinal level in this autoimmune disease, with Langerhans-cell activation in the cornea and theorized downregulated Piezo1 channels in these cells. Even more importantly, suggested principal primary-damage-associated corneal keratocyte activation could be accompanied by upregulation of Piezo1. Both activation processes on the periphery would skew the plasticity of the Th17/Treg ratio, resulting in Th17/Treg imbalance in dry eye, secondary to rheumatoid arthritis. Hence, chronic somatosensory-terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could result in a mixed picture of disrupted functional regeneration but upregulated morphological regeneration activity of these somatosensory axons in the cornea, providing the demonstrated abnormal neural corneal morphology.


Subject(s)
Arthritis, Rheumatoid , Channelopathies , Dry Eye Syndromes , Humans , Channelopathies/complications , Dry Eye Syndromes/complications , Arthritis, Rheumatoid/complications , Cornea/innervation , Corneal Keratocytes , Microscopy, Confocal/methods , Ion Channels
8.
Exp Eye Res ; 220: 109112, 2022 07.
Article in English | MEDLINE | ID: mdl-35595094

ABSTRACT

During corneal wound healing, keratocytes present within the corneal stroma become activated into a repair phenotype upon the release of growth factors, such as transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB). The process of injury and repair can lead to changes in the mechanical properties of the tissue, and previous work has shown that the TGF-ß1-mediated myofibroblast differentiation of corneal keratocytes depends on substratum stiffness. It is still unclear, however, if changes in stiffness can modulate keratocyte behavior in response to other growth factors, such as PDGF-BB. Here, we used a polyacrylamide (PA) gel system to determine whether changes in stiffness influence the proliferation and motility of primary corneal keratocytes treated with PDGF-BB. In the presence of PDGF-BB, cells on stiffer substrata exhibited a more elongated morphology and had higher rates of proliferation than cells in a more compliant microenvironment. Using a freeze-injury to assay cell motility, however, we did not observe any stiffness-dependent differences in the migration of keratocytes treated with PDGF-BB. Taken together, these data highlight the importance of biophysical cues during corneal wound healing and suggest that keratocytes respond differently to changes in ECM stiffness in the presence of different growth factors.


Subject(s)
Corneal Keratocytes , Transforming Growth Factor beta1 , Becaplermin/pharmacology , Cell Movement , Cell Proliferation , Cells, Cultured , Platelet-Derived Growth Factor
9.
Exp Eye Res ; 214: 108850, 2022 01.
Article in English | MEDLINE | ID: mdl-34861212

ABSTRACT

Transglutaminase 2 (TG2) is the most abundant crosslinking enzyme in murine and human cornea, while retinoids are well-known inducers of TG2 expression. This study aims to determine if the retinoic acid supplementation can increase corneal stiffness by crosslinking through upregulating the corneal TG2 expression. The right eyes of C57BL/6 mice were treated with 2 × 10-2M retinol palmitate (VApal) eyedrops or control eyedrops and hold for 30 min, once a day for 28 consecutive days. The WB and qPCR results showed increased expression of TG2 in murine cornea with the prolongation of VApal eyedrop application. After 28 days of VApal eyedrop treatment, the increased TG2 were found catalytically active and distributed in corneal epithelium and stroma as detected by 5-(biotinamido) pentylamine (5-BP) incorporation method and immunofluorescence staining. The transmission electron microscope image revealed that VApal treated cornea manifested with increased collagen density in anterior and middle layer of stroma. The higher elastic module was found among VApal treated cornea by nano-indentation test. In cultured corneal epithelial cells and keratocytes, all-trans retinoid acid (ATRA) treatment increased the content of TG2 in cell lysis and in culture medium. These results indicate that retinoic acid induce the reinforcement of the cornea by TG2 mediated crosslinking via increasing the TG2 expression in corneal epithelium and keratocyte. As TG2 was found to be less in the cornea of keratoconus patients in several RNA-sequencing studies, retinoic acid could serve as a non-invasive prevention method for keratoconus progression.


Subject(s)
Antineoplastic Agents/administration & dosage , Cornea/drug effects , Gene Expression Regulation, Enzymologic/physiology , Protein Glutamine gamma Glutamyltransferase 2/genetics , Tretinoin/administration & dosage , Administration, Ophthalmic , Animals , Blotting, Western , Cells, Cultured , Cornea/enzymology , Cornea/physiopathology , Corneal Keratocytes/drug effects , Corneal Keratocytes/enzymology , Cross-Linking Reagents , Electrophoresis, Polyacrylamide Gel , Epithelium, Corneal/drug effects , Epithelium, Corneal/enzymology , Female , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Ophthalmic Solutions , Up-Regulation
10.
Exp Eye Res ; 216: 108946, 2022 03.
Article in English | MEDLINE | ID: mdl-35038457

ABSTRACT

Chemokines and adhesion molecules are major inflammatory mediators of chronic and recurrent vernal keratoconjunctivitis (VKC). Sulforaphane (SFN) is a natural plant extract that is known to have anti-inflammatory and antioxidant properties. SFN is demonstrated to be effective against a variety of human diseases. The current investigation examines the effects and the molecular mechanisms of SFN on cytokine-induced human corneal fibroblasts (HCFs) expression of adhesion molecules and chemokines. HCFs were exposed to both interleukin (IL)-4 and tumor necrosis factor (TNF)-α in the absence or presence of SFN treatment. The levels of thymus- and activation-regulated chemokine (TARC) and eotaxin-1 in culture supernatants were evaluated using enzyme-linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction analysis (RT-PCR) enabled quantification of mRNA levels of vascular cell adhesion molecule (VCAM)-1, eotaxin-1, and TARC along with cytokine receptors. An immunoblotting assay was used to evaluate the activities of VCAM-1, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription factor (STAT)6 pathways, along with the expression of the cytokine receptors including IL-4 receptor (R)α, IL-13Rα1, TNFRI, as well as TNFRII. SFN inhibited TARC and eotaxin-1 release in HCFs stimulated by TNF-α and IL-4 in a manner dependent on dose and time. SFN suppressed transcriptions of TARC, eotaxin-1, and VCAM-1. Furthermore, the mRNA and protein expression levels of IL-4Rα, TNFRI, and TNFRII were also attenuated by SFN exposure, however, those of IL-13Rα1 remained unaffected. In addition, SFN downregulated the expression of VCAM-1 and the phosphorylation of MAPKs, IκBα, and STAT6. These results suggest that SFN inhibited cytokine-stimulated TARC, eotaxin-1 secretion as well as VCAM-1 expression in HCFs, with these effects likely occurring as a result of cytokine receptor inhibition and attenuation of MAPK, NF-κB, and STAT6 signaling. SFN may therefore have therapeutic potential in VKC treatment.


Subject(s)
Chemokines/genetics , Corneal Keratocytes/drug effects , Cytokines/antagonists & inhibitors , Isothiocyanates/pharmacology , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , STAT1 Transcription Factor/metabolism , Sulfoxides/pharmacology , Vascular Cell Adhesion Molecule-1/genetics , Anticarcinogenic Agents/pharmacology , Cell Survival , Cells, Cultured , Chemokine CCL11/genetics , Chemokine CCL17/genetics , Corneal Keratocytes/metabolism , Cytokines/pharmacology , Enzyme-Linked Immunosorbent Assay , Gene Expression , Gene Expression Regulation/physiology , Humans , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction
11.
Exp Eye Res ; 214: 108862, 2022 01.
Article in English | MEDLINE | ID: mdl-34826417

ABSTRACT

Macular corneal dystrophy (MCD) is a rare form of hereditary corneal dystrophy caused by CHST6 mutations. Owing to the genetic heterogeneity and population differences among patients with MCD, the genetic cause of MCD has not been fully elucidated, and the pathogenesis underlying the genetic mutation is still unclear. In this study, Chinese families and sporadic patients were included as subjects, and clinical and genetic analyses were performed to detect novel CHST6 mutations. In addition, the underlying pathogenic mechanisms of MCD were investigated by in vitro cell experiments. Two consanguineously married families and 10 sporadic patients with MCD were enrolled. Direct sequencing of the CHST6 gene was performed in all the patients to identify novel mutations. Wild-type and mutant overexpression cell lines were constructed to study the effects of the mutation in vitro. The expressions of endoplasmic reticulum (ER) stress markers and apoptotic factors, cell senescence, and migration levels tests were performed in different overexpression cell lines. As a result, four novel mutations (R155Afs*66, S84Cfs*17, E71G, and E71Q) and 10 previously reported mutations in the CHST6 gene were identified. Among the reported mutations, the most frequent mutations detected in the patients were L21Rfs*88 (4/14) and L21H (4/14). All the novel mutations were absent in the 50 healthy controls and were predicted to alter highly conserved amino acids across the different species and considered to be "disease causing" by function prediction. The results of the in vitro cell experiment further demonstrated that the novel homozygous frameshift mutations (S84Cfs*17 and R155Afs*66) of CHST6 detected in the consanguineously married families could lead to truncated proteins with defect functions, higher ER stress and apoptotic levels, decreased cell migration, and excessive cell senescence in corneal stromal cells, thereby affecting the normal functions of corneal stromal cells. These changes might play important roles in corneal opacity, which is characteristic of corneas with MCD. Our study extended the existing spectrum of disease-causing mutations and further elucidated the underlying pathogenic mechanisms of MCD.


Subject(s)
Apoptosis/genetics , Cellular Senescence/genetics , Corneal Dystrophies, Hereditary/genetics , Frameshift Mutation/genetics , Sulfotransferases/genetics , Adult , Asian People/genetics , China/epidemiology , Consanguinity , Corneal Dystrophies, Hereditary/diagnostic imaging , Corneal Keratocytes/metabolism , DNA Mutational Analysis , Endoplasmic Reticulum Stress/genetics , Female , Humans , Male , Pedigree , Polymerase Chain Reaction , Slit Lamp Microscopy , Tomography, Optical Coherence , Carbohydrate Sulfotransferases
12.
BMC Ophthalmol ; 22(1): 33, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062902

ABSTRACT

PURPOSE: To investigate the protective effects of thymosin ß4 (Tß4) on ethanol injured human corneal keratocytes (HCKs). METHODS: HCKs and BALB/c mice were chosen as the study subject. Ethanol was used to treat the cells and corneal stroma of mice to build the ethanol injured model in vitro and vivo respectively. CCK-8 was used to evaluate the cell metabolic activity. DCFH-DA was used to detect the intracellular reactive oxygen species level. TUNEL was chose to detect the cell apoptosis rate. The cell proliferation and migration were investigated by using wound healing insert. Wound healing of corneal surface and stroma was observed by using fluorescein sodium eyedrop and HE stain. RT-qPCR, ELISA, and immunostaining were performed to detect gene and protein expression in keratocytes or corneal stroma tissue of mice. RESULTS: Ethanol induced oxidative stress injury and cell apoptosis on HCKs, and Tß4 can alleviate it by up-regulating the expression of Bcl-2, catalase, and CuZnSOD, and inhibiting the expression of Caspase-3. Tß4 promotes the proliferation of HCKs and the process of corneal wound healing. It may relevant to the up-regulated expression of Ki67. CONCLUSIONS: Our study established an ethanol-injured corneal stroma model in both vitro and vivo. The present study confirmed that Tß4 play a protective effect on the reconstruction process of ethanol-injured corneal stroma.


Subject(s)
Ethanol , Thymosin , Animals , Corneal Keratocytes , Corneal Stroma , Ethanol/toxicity , Mice
13.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499651

ABSTRACT

Corneal transparency, necessary for vision and depending on the high organization of stromal extracellular matrix, is maintained by keratocytes. Severe or continuous corneal injuries determine exaggerated healing responses resulting in the formation of irreversible fibrotic scars and vision impairment. Soluble guanylate cyclase (sGC) stimulation demonstrated antifibrotic effects in both experimental fibrosis and human lung and skin fibroblasts. Here, we assessed whether sGC stimulation with BAY 41-2272 could attenuate transforming growth factor ß1 (TGFß1)-induced myofibroblast differentiation of human corneal keratocytes. Cells were challenged with TGFß1, with/without BAY 41-2272 preincubation, and subsequently assessed for viability, proliferation, migration, chemoinvasion, as well for the expression of myofibroblast/fibroblast activation markers and contractile abilities. Treatment with BAY 41-2272 did not affect keratocyte viability, while preincubation of cells with the sGC stimulator was able to inhibit TGFß1-induced proliferation, wound healing capacity, and invasiveness. BAY 41-2272 was also able to attenuate TGFß1-induced myofibroblast-like profibrotic phenotype of keratocytes, as demonstrated by the significant decrease in ACTA2, COL1A1, COL1A2, FN1 and PDPN gene expression, as well as in α-smooth muscle actin, α-1 chain of type I collagen, podoplanin, vimentin and N-cadherin protein expression. Finally, BAY 41-2272 significantly counteracted the TGFß1-induced myofibroblast-like ability of keratocytes to contract collagen gels, reduced phosphorylated Smad3 protein levels, and attenuated gene expression of proinflammatory cytokines. Collectively, our data show for the first time that BAY 41-2272 is effective in counteracting keratocyte-to-myofibroblast transition, thus providing the rationale for the development of sGC stimulators as novel promising modulators of corneal scarring and fibrosis.


Subject(s)
Corneal Injuries , Corneal Keratocytes , Humans , Corneal Keratocytes/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Soluble Guanylyl Cyclase/metabolism , Cells, Cultured , Myofibroblasts/metabolism , Cell Differentiation , Actins/metabolism , Fibroblasts/metabolism , Corneal Injuries/metabolism , Fibrosis
14.
J Cell Mol Med ; 25(20): 9647-9659, 2021 10.
Article in English | MEDLINE | ID: mdl-34486211

ABSTRACT

The isolation and propagation of primary human corneal stromal keratocytes (CSK) are crucial for cellular research and corneal tissue engineering. However, this delicate cell type easily transforms into stromal fibroblasts (SF) and scar inducing myofibroblasts (Myo-SF). Current protocols mainly rely on xenogeneic fetal bovine serum (FBS). Human platelet lysate (hPL) could be a viable, potentially autologous, alternative. We found high cell survival with both supplements in CSK and SF. Cell numbers and Ki67+ ratios increased with higher fractions of hPL and FBS in CSK and SF. We detected a loss in CSK marker expression (Col8A2, ALDH3A1 and LUM) with increasing fractions of FBS and hPL in CSK and SF. The expression of the Myo-SF marker SMA increased with higher amounts of FBS but decreased with incremental hPL substitution in both cell types, implying an antifibrotic effect of hPL. Immunohistochemistry confirmed the RT-PCR findings. bFGF and HGF were only found in hPL and could be responsible for suppressing the Myo-SF conversion. Considering all findings, we propose 0.5% hPL as a suitable substitution in CSK culture, as this xeno-free component efficiently preserved CSK characteristics, with non-inferiority in terms of cell viability, cell number and proliferation in comparison to the established 0.5% FBS protocol.


Subject(s)
Blood Platelets/metabolism , Cell Culture Techniques , Corneal Keratocytes/cytology , Corneal Stroma/cytology , Culture Media , Fibroblasts/cytology , Serum Albumin, Bovine , Aged , Animals , Biomarkers , Cattle , Cell Survival , Corneal Keratocytes/metabolism , Corneal Stroma/metabolism , Female , Fibroblasts/metabolism , Humans , Immunohistochemistry , Male , Middle Aged
15.
Lab Invest ; 101(6): 680-689, 2021 06.
Article in English | MEDLINE | ID: mdl-33637945

ABSTRACT

Corneal stromal wound healing is a well-balanced process promoted by overlapping phases including keratocyte proliferation, inflammatory-related events, and tissue remodeling. L-carnitine as a natural antioxidant has shown potential to reduce stromal fibrosis, yet the underlying pathway is still unknown. Since transient receptor potential vanilloid 1 (TRPV1) is a potential drug target for improving the outcome of inflammatory/fibrogenic wound healing, we investigated if L-carnitine can mediate inhibition of the fibrotic response through suppression of TRPV1 activation in human corneal keratocytes (HCK). We determined TRPV1-induced intracellular calcium transients using fluorescence calcium imaging, channel currents by planar patch-clamping, and cell migration by scratch assay for wound healing. The potential L-carnitine effect on TRPV1-induced myofibroblast transdifferentiation was evaluated by immunocytochemical detection of alpha smooth muscle actin. RT-PCR analysis confirmed TRPV1 mRNA expression in HCK. L-carnitine (1 mmol/l) inhibited either capsaicin (CAP) (10 µmol/l), hypertonic stress (450 mOsmol/l), or thermal increase (>43 °C) induced Ca2+ transients and corresponding increases in TRPV1-induced inward and outward whole-cell currents. This was accompanied by suppression of injury-induced increases in myofibroblast transdifferentiation and cell migration. In conclusion, L-carnitine contributes to inhibit stromal scarring through suppressing an injury-induced intrinsic TRPV1 activity that is linked with induction of myofibroblast transdifferentiation in HCK cells.


Subject(s)
Carnitine/therapeutic use , Cell Transdifferentiation/drug effects , Corneal Keratocytes/drug effects , Corneal Stroma/drug effects , TRPV Cation Channels/metabolism , Carnitine/pharmacology , Cells, Cultured , Corneal Stroma/cytology , Drug Evaluation, Preclinical , Humans , Myofibroblasts , TRPV Cation Channels/drug effects
16.
Exp Eye Res ; 202: 108362, 2021 01.
Article in English | MEDLINE | ID: mdl-33220237

ABSTRACT

The transformation of quiescent keratocytes to activated fibroblasts and myofibroblasts (KFM transformation) largely depends on transforming growth factor beta (TGFß) signaling. Initiation of the TGFß signaling cascade results from binding of TGFß to the labile type I TGFß receptor (TGFßRI), which is stabilized by the 90 kDa heat shock protein (Hsp90). Since myofibroblast persistence within the corneal stroma can result in stromal haze and corneal fibrosis in patients undergoing keratorefractive therapy, modulation of TGFß signaling through Hsp90 inhibition would represent a novel approach to prevent myofibroblast persistence. In vitro, rabbit corneal fibroblasts (RCFs) or stratified immortalized human corneal epithelial cells (hTCEpi) were treated with a Hsp90 inhibitor (17AAG) in the presence/absence of TGFß1. RCFs were cultured either on tissue culture plastic, anisotropically patterned substrates, and hydrogels of varying stiffness. Cellular responses to both cytoactive and variable substrates were assessed by morphologic changes to the cells, and alterations in expression patterns of key keratocyte and myofibroblast proteins using PCR, Western blotting and immunocytochemistry. Transepithelial electrical resistance (TEER) measurements were performed to establish epithelial barrier integrity. In vivo, the corneas of New Zealand White rabbits were wounded by phototherapeutic keratectomy (PTK) and treated with 17AAG (3× or 6× daily) either immediately or 7 days after wounding for 28 days. Rabbits underwent clinical ophthalmic examinations, SPOTS scoring and advanced imaging on days 0, 1, 3, 7, 10, 14, 21 and 28. On day 28, rabbits were euthanized and histopathology/immunohistochemistry was performed. In vitro data demonstrated that 17AAG inhibited KFM transformation with the de-differentiation of spindle shaped myofibroblasts to dendritic keratocyte-like cells accompanied by significant upregulation of corneal crystallins and suppression of myofibroblast markers regardless of TGFß1 treatment. RCFs cultured on soft hydrogels or patterned substrates exhibited elevated expression of α-smooth muscle actin (αSMA) in the presence of 17AAG. Treatment of hTCEpi cells disrupted zonula occludens 1 (ZO-1) adherens junction formation. In vivo, there were no differences detected in nearly all clinical parameters assessed between treatment groups. However, rabbits treated with 17AAG developed greater stromal haze formation compared with controls, irrespective of frequency of administration. Lastly, there was increased αSMA positive myofibroblasts in the stroma of 17AAG treated animals when compared with controls. Hsp90 inhibition promoted reversion of the myofibroblast to keratocyte phenotype, although this only occurred on rigid substrates. By contrast, in vivo Hsp90 inhibition was detrimental to corneal wound healing likely due to impairment in corneal epithelial closure and barrier function restoration. Collectively, our data demonstrated a strong interplay in vitro between biophysical cues and soluble signaling molecules in determining corneal stromal cell phenotype.


Subject(s)
Benzoquinones/pharmacology , Corneal Injuries/drug therapy , Corneal Keratocytes/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Animals , Blotting, Western , Cell Differentiation , Cells, Cultured , Corneal Injuries/metabolism , Corneal Injuries/pathology , Corneal Keratocytes/metabolism , Corneal Keratocytes/pathology , Disease Models, Animal , HSP90 Heat-Shock Proteins/metabolism , Immunohistochemistry , Rabbits
17.
Exp Eye Res ; 202: 108303, 2021 01.
Article in English | MEDLINE | ID: mdl-33068626

ABSTRACT

The unwounded, normal corneal stroma is a relatively simple, avascular tissue populated with quiescent keratocytes, along with corneal nerves and a few resident dendritic and monocyte/macrophage cells. In the past, the resting keratocytes were thought of as a homogenous cellular population, but recent work has shown local variations in vimentin and nestin expression, and responsiveness to transforming growth factor (TGF)-ß1. Studies have also supported there being "stromal stem cells" in localized areas. After corneal wounding, depending on the site and severity of injury, profound changes in stromal cellularity occur. Anterior or posterior injuries to the epithelium or endothelium, respectively, trigger apoptosis of adjacent keratocytes. Many contiguous keratocytes transition to keratocan-negative corneal fibroblasts that are proliferative and produce limited amounts of disorganized extracellular matrix components. Simultaneously, large numbers of bone marrow-derived cells, including monocytes, neutrophils, fibrocytes and lymphocytes, invade the stroma from the limbal blood vessels. Ongoing adequate levels of TGFß1, TGFß2 and platelet-derived growth factor (PDGF) from epithelium, tears, endothelium and aqueous humor that penetrate defective or absent epithelial barrier function (EBF) and epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) drive corneal fibroblasts and fibrocytes to differentiate into alpha-smooth muscle actin (SMA)-positive myofibroblasts. If the EBF, EBM and/or DBM are repaired or replaced in a timely manner, typically measured in weeks, then corneal fibroblast and fibrocyte progeny, deprived of requisite levels of TGFß1 and TGFß2, undergo apoptosis or revert to their precursor cell-types. If the EBF, EBM and/or DBM are not repaired or replaced, stromal levels of TGFß1 and TGFß2 remain elevated, and mature myofibroblasts are generated from corneal fibroblasts and fibrocyte precursors that produce prodigious amounts of disordered extracellular matrix materials associated with scarring fibrosis. This fibrotic stromal matrix persists, at least until the EBF, EBM and/or DBM are regenerated or replaced, and keratocytes remove and reorganize the affected stromal matrix.


Subject(s)
Bone Marrow Cells/pathology , Corneal Injuries/pathology , Corneal Keratocytes/pathology , Corneal Stroma/pathology , Basement Membrane/injuries , Biomarkers/metabolism , Bone Marrow Cells/metabolism , Corneal Keratocytes/metabolism , Corneal Stroma/metabolism , Humans
18.
Exp Eye Res ; 205: 108451, 2021 04.
Article in English | MEDLINE | ID: mdl-33539864

ABSTRACT

The present study was conducted to evaluate safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-derived Mesenchymal Stem Cells (WJSC) in an experimental animal model. Human corneal lenticules were decellularized with a rate of about 97% with an acceptable lack of cytotoxicity and relatively intact ultrastructure of the lenticules. 12 rabbits underwent unilateral stromal pocketing with implantation of decellularized lenticules. Implantation was performed for 6 rabbits along with graft recellularization with WJSCs. Rabbits were euthanized after 1 month (n = 6) and 3 months (n = 6) to evaluate progression of graft bio-integration. No clinical rejection sign was detected during the study. Histopathological analysis showed that, grafts were integrated well with the least distortion of surrounding collagen bundles. After 3 months, labeled WJCS was detected representing viability of stem cells in the host. Increased expression of keratocyte-specific markers showed the potential of recruiting WJSCs as keratocyte progenitor cells to reinforce corneal ultrastructure.


Subject(s)
Corneal Keratocytes/cytology , Corneal Stroma/surgery , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Wharton Jelly/cytology , Adult , Animals , Biomarkers/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Corneal Keratocytes/metabolism , Female , Flow Cytometry , Humans , Male , Microscopy, Electron, Scanning , Models, Animal , Rabbits , Real-Time Polymerase Chain Reaction , Tissue Engineering , Tissue Scaffolds , Umbilical Cord/cytology , Young Adult
19.
Exp Eye Res ; 203: 108400, 2021 02.
Article in English | MEDLINE | ID: mdl-33347868

ABSTRACT

Current research on healthy corneal stromal cells will typically use primary cells as they are the most representative of in vivo behaviour. Primary cells are normally isolated from the limbus of discarded donor peripheral corneal tissue left over from transplantation (due to its relative abundance). Therefore, the central part of the cornea is less used in research as this tissue is usually used for transplantation. In some cases, although rare, the whole cornea, can become available for research. It is important to keep in mind that these corneas often have longer storage time, but the use of the central tissue for research is even more interesting, as knowing what cells are being transplanted into recipients would be highly relevant. To this end, stromal cells were extracted from both the limbus and central button of healthy corneas donated for research. This allowed for important comparison between central and limbal cells in culture. Of interest here was the extraction method of stromal cells from the donor tissue. The two most common methods of extraction are enzyme digestion and explant migration. However, no work has been done to understand how each method relatively affects the extracted cells. The extraction method and location from which stromal cells are harvested seems to have a significant effect on the cell adherence, survival, and gene expression of the stromal cells in culture. Enzyme digested cells showed that limbal and central cells had different gene expressions prior to culture, with gene such as ALDH3A1 being much more expressed in limbal cells. Enzyme digesting the limbal ring seems to yield the hardiest populations of stromal cells, a desirable trait in the culture of primary cells.


Subject(s)
Cell Separation/methods , Corneal Keratocytes/physiology , Corneal Stroma/cytology , Limbus Corneae/cytology , Cell Culture Techniques , Cell Survival/physiology , Culture Media, Serum-Free , Cytoskeletal Proteins/genetics , Gene Expression Regulation/physiology , Humans , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Tissue Donors
20.
Exp Eye Res ; 207: 108581, 2021 06.
Article in English | MEDLINE | ID: mdl-33865843

ABSTRACT

Fungal keratitis (FK) pathology is driven by both fungal growth and inflammation within the corneal stroma. Standard in vitro infection models ̶ involving co-culture of the pathogen and the corneal cells in tissue culture medium ̶ are sufficient to probe host responses to the fungus; however, they lack the physiological structure and nutrient composition of the stroma to accurately study fungal invasiveness and metabolic processes. We therefore sought to develop a culture model of FK that would allow for both host and fungal cell biology to be evaluated in parallel. Towards this end, we employed a previously described system in which primary human cornea fibroblasts (HCFs) are cultured on transwell membranes, whereupon they secrete a three-dimensional (3D) collagen matrix that resembles the human stroma. We demonstrated that two common mold agents of FK, Fusarium petroliphilum and Aspergillus fumigatus, penetrated into these constructs and caused a disruption of the collagen matrix that is characteristic of infection. HCF morphology appeared altered in the presence of fungus and electron microscopy revealed a clear internalization of fungal spores into these cells. Consistent with this apparent phagocyte-like activity of the HCFs, mRNA and protein levels for several pro-inflammatory cytokines/chemokines (including TNFα, IL-1ß, IL-6, and IL-8) were significantly upregulated compared to uninfected samples. We similarly found an upregulation of several HCF metalloproteases (MMPs), which are enzymes that breakdown collagen during wound healing and may further activate pro-inflammatory signaling molecules. Finally, several fungal collagenase genes were upregulated during growth in the constructs relative to growth in tissue culture media alone, suggesting a fungal metabolic shift towards protein catabolism. Taken together, our results indicate that this 3D-stromal model provides a physiologically relevant system to study host and fungal cell pathobiology during FK.


Subject(s)
Aspergillosis/microbiology , Corneal Keratocytes/microbiology , Corneal Ulcer/microbiology , Eye Infections, Fungal/microbiology , Fusariosis/microbiology , Host-Pathogen Interactions/physiology , Animals , Aspergillosis/metabolism , Aspergillosis/pathology , Aspergillus fumigatus/physiology , Cell Culture Techniques , Corneal Keratocytes/metabolism , Corneal Stroma/metabolism , Corneal Stroma/microbiology , Corneal Stroma/ultrastructure , Corneal Ulcer/metabolism , Corneal Ulcer/pathology , Cytokines/metabolism , Disease Models, Animal , Eye Infections, Fungal/metabolism , Eye Infections, Fungal/pathology , Fusariosis/metabolism , Fusariosis/pathology , Fusarium/physiology , Humans , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL