Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Nucleic Acids Res ; 47(11): 5950-5962, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31106331

ABSTRACT

Carboxysomes, protein-coated organelles in cyanobacteria, are important in global carbon fixation. However, these organelles are present at low copy in each cell and hence must be segregated to ensure transmission from one generation to the next. Recent studies revealed that a DNA partition-like ParA-ParB system mediates carboxysome maintenance, called McdA-McdB. Here, we describe the first McdA and McdB homolog structures. McdA is similar to partition ParA Walker-box proteins, but lacks the P-loop signature lysine involved in ATP binding. Strikingly, a McdA-ATP structure shows that a lysine distant from the P-loop and conserved in McdA homologs, enables ATP-dependent nucleotide sandwich dimer formation. Similar to partition ParA proteins this ATP-bound form binds nonspecific-DNA. McdB, which we show directly binds McdA, harbors a unique fold and appears to form higher-order oligomers like partition ParB proteins. Thus, our data reveal a new signature motif that enables McdA dimer formation and indicates that, similar to DNA segregation, carboxysome maintenance systems employ Walker-box proteins as DNA-binding motors while McdB proteins form higher order oligomers, which could function as adaptors to link carboxysomes and provide for stable transport by the McdA proteins.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Cyanothece/metabolism , Organelles/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Bacterial Proteins/chemistry , Carbon Cycle , Crystallography, X-Ray , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Dimerization , Escherichia coli , Glutaral/chemistry , Protein Binding , Protein Folding
2.
Appl Environ Microbiol ; 85(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30709817

ABSTRACT

Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability.IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.


Subject(s)
Cyanothece/genetics , Cyanothece/metabolism , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Glycogen/genetics , Glycogen/metabolism , Nitrogen Fixation , Carbohydrate Metabolism/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanothece/cytology , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Genes, Bacterial/genetics , Metabolic Networks and Pathways/genetics , Nitrogen/metabolism , Oxygen/metabolism , Photosynthesis
3.
Photosynth Res ; 139(1-3): 461-473, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30357676

ABSTRACT

Cyanobacteria, as well as green algae and higher plants, have highly conserved photosynthetic machinery. Cyanothece sp. ATCC 51142 is a unicellular, aerobic, diazotrophic cyanobacterium that fixes N2 in the dark. In Cyanothece, the psbA gene family is composed of five members, encoding different isoforms of the D1 protein. A new D1 protein has been postulated in the literature, which blocks PSII during the night and allows the fixation of nitrogen. We present data showing changes in PSII function in cells grown in cycles alternating between 12 h of light and dark, respectively, at Cyanothece sp. ATCC 51142. Cyanothece sp. ATCC 51142 uses intrinsic mechanisms to protect its nitrogenase activity in a two-stage process. In Stage I, immediately after the onset of darkness, the cells lose photosynthetic activity in a reversible process, probably by dissociation of water oxidation complex from photosystem II via a mechanism that does not require de novo protein synthesis. In Stage II, a more severe disruption of photosystem II function occurs is in part protein synthesis dependent and it could be a functional signature of the presence of sentinel D1 in a limited number of reaction centers still active or not yet inactivated by the mechanism described in Stage I. This process of inhibition uses light as a triggering signal for both the inhibition of photosynthetic activity and recovery when light returns. The intrinsic mechanism of photosynthetic inactivation during darkness with the interplay of the two mechanisms requires further studies.


Subject(s)
Cyanothece/metabolism , Light , Photosystem II Protein Complex/metabolism , Cyanothece/radiation effects , Photoperiod , Photosystem II Protein Complex/radiation effects
4.
Biochemistry ; 57(41): 5996-6002, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30208270

ABSTRACT

The five-membered nitrogen plus heteroatom rings known as azolines or in their oxidized form as azoles are very common in natural products and drugs. The oxidation of thiazoline to thiazole in the cyanobactin class of natural products is one of the several important transformations that are known to alter the biological properties of the compound. The ordering of the various chemical reactions that occur during cyanobactin biosynthesis is not fully understood. The structure of the flavin-dependent enzyme responsible for the oxidation of multiple thiazolines reveals it contains an additional domain that in other enzymes recognizes linear peptides. We characterize the activity of the enzyme on two substrates: one with a peptide leader and one without. Kinetics and biophysics reveal that the leader on the substrate is not recognized by the enzyme. The enzyme is faster on either substrate than the macrocyclase or protease in vitro. The enzyme has a preferred order of oxidation of multiple thiazolines in the same linear peptide.


Subject(s)
Bacterial Proteins/chemistry , Cyanothece/chemistry , Peptides, Cyclic/chemistry , Protein Sorting Signals , Bacterial Proteins/biosynthesis , Cyanothece/metabolism , Oxidation-Reduction , Peptides, Cyclic/biosynthesis , Protein Structure, Secondary
5.
J Proteome Res ; 17(11): 3628-3643, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30216071

ABSTRACT

The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light-dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein-protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpressions. Many sequential glycolytic and TCA cycle enzymes were identified as putative complexes. We also identified many membrane complexes that contain cytoplasmic domains. Subunits of NDH-1 complex eluted in a fraction with an approximate mass of ∼669 kDa, and subunits composition revealed coexistence of distinct forms of NDH-1 complex subunits responsible for respiration, electron flow, and CO2 uptake. The complex form of the phycocyanin beta subunit was nonphosphorylated, and the monomer form was phosphorylated at Ser20, suggesting phosphorylation-dependent deoligomerization of the phycocyanin beta subunit. This study provides an analytical platform for future studies to reveal how these complexes assemble and disassemble as a function of diurnal and circadian rhythms.


Subject(s)
Bacterial Proteins/chemistry , Cyanothece/chemistry , Multiprotein Complexes/chemistry , Phycocyanin/metabolism , Protein Processing, Post-Translational , Proteome/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Chromatography, Gel , Citric Acid Cycle/physiology , Computational Biology , Cyanothece/metabolism , Glycolysis/physiology , Mass Spectrometry , Multiprotein Complexes/metabolism , Nitrogen/metabolism , Nitrogen Fixation/physiology , Oxygen/metabolism , Phosphorylation , Photosynthesis/physiology , Phycocyanin/chemistry , Protein Interaction Mapping , Protein Subunits/chemistry , Protein Subunits/metabolism , Proteome/isolation & purification , Proteome/metabolism , Proteomics/methods
6.
Mol Cell Proteomics ; 15(11): 3501-3512, 2016 11.
Article in English | MEDLINE | ID: mdl-27609420

ABSTRACT

Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software.


Subject(s)
Cyanothece/metabolism , Peptides/analysis , Proteomics/methods , Algorithms , Bacterial Proteins/metabolism , Cluster Analysis , Cyanothece/classification , Databases, Protein , Genome, Bacterial , Sequence Analysis, Protein , Software , Tandem Mass Spectrometry/methods
7.
Microbiology (Reading) ; 163(5): 731-744, 2017 05.
Article in English | MEDLINE | ID: mdl-28516845

ABSTRACT

Cyanobacteria are ubiquitous photoautotrophs that assimilate atmospheric CO2 as their main source of carbon. Several cyanobacteria are known to be facultative heterotrophs that are able to grow on diverse carbon sources. For selected strains, assimilation of organic acids and mixotrophic growth on acetate has been reported for decades. However, evidence for the existence of a functional glyoxylate shunt in cyanobacteria has long been contradictory and unclear. Genes coding for isocitrate lyase (ICL) and malate synthase were recently identified in two strains of the genus Cyanothece, and the existence of the complete glyoxylate shunt was verified in a strain of Chlorogloeopsis fritschii. Here, we report that the gene PCC7424_4054 of the strain Cyanothece sp. PCC 7424 encodes an enzymatically active protein that catalyses the reaction of ICL, an enzyme that is specific for the glyoxylate shunt. We demonstrate that ICL activity is induced under alternating day/night cycles and acetate-supplemented cultures exhibit enhanced growth. In contrast, growth under constant light did not result in any detectable ICL activity or enhanced growth of acetate-supplemented cultures. Furthermore, our results indicate that, despite the presence of a glyoxylate shunt, acetate does not support continued heterotrophic growth and cell proliferation. The functional validation of the ICL is supplemented with a bioinformatics analysis of enzymes that co-occur with the glyoxylate shunt. We hypothesize that the glyoxylate shunt in Cyanothece sp. PCC 7424, and possibly other nitrogen-fixing cyanobacteria, is an adaptation to a specific ecological niche and supports assimilation of nitrogen or organic compounds during the night phase.


Subject(s)
Acetates/metabolism , Cyanothece/enzymology , Cyanothece/growth & development , Glyoxylates/metabolism , Heterotrophic Processes/genetics , Isocitrate Lyase/genetics , Cell Proliferation/physiology , Cyanothece/genetics , Cyanothece/metabolism , Malate Synthase/genetics , Photoperiod
8.
J Biol Chem ; 290(6): 3764-74, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25525275

ABSTRACT

Photosystem II, a large membrane-bound enzyme complex in cyanobacteria and chloroplasts, mediates light-induced oxidation of water to molecular oxygen. The D1 protein of PSII, encoded by the psbA gene, provides multiple ligands for cofactors crucial to this enzymatic reaction. Cyanobacteria contain multiple psbA genes that respond to various physiological cues and environmental factors. Certain unicellular cyanobacterial cells, such as Cyanothece sp. ATCC 51142, are capable of nitrogen fixation, a highly oxygen-sensitive process, by separating oxygen evolution from nitrogen fixation using a day-night cycle. We have shown that c-psbA4, one of the five psbA orthologs in this cyanobacterium, is exclusively expressed during nighttime. Remarkably, the corresponding D1 isoform has replacements of a number of amino acids that are essential ligands for the catalytic Mn4CaO5 metal center for water oxidation by PSII. At least 30 cyanobacterial strains, most of which are known to have nitrogen fixing abilities, have similar psbA orthologs. We expressed the c-psbA4 gene from Cyanothece 51142 in a 4E-3 mutant strain of the model non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803, which lacks any psbA gene. The resultant strain could not grow photoautotrophically. Moreover, these Synechocystis 6803 cells were incapable of PSII-mediated oxygen evolution. Based on our findings, we have named this physiologically relevant, unusual D1 isoform sentinel D1. Sentinel D1 represents a new class of D1 protein that, when incorporated in a PSII complex, ensures that PSII cannot mediate water oxidation, thus allowing oxygen-sensitive processes such as nitrogen fixation to occur in cyanobacterial cells.


Subject(s)
Cyanothece/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Amino Acid Sequence , Cyanothece/chemistry , Cyanothece/genetics , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Nitrogen Fixation , Photoperiod , Photosystem II Protein Complex/chemistry , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Synechocystis/genetics , Synechocystis/metabolism
9.
Mol Microbiol ; 96(5): 1053-68, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25732258

ABSTRACT

It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 µM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on) = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 µM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.


Subject(s)
Chlorides/metabolism , Cyanothece/enzymology , Cyanothece/genetics , Cyanothece/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Biocatalysis , Cyanides/metabolism , Escherichia coli/genetics , Heme , Kinetics , Models, Molecular , Oxidoreductases/isolation & purification , Oxygen/metabolism , Phylogeny , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
10.
Microbiology (Reading) ; 162(3): 526-536, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26781249

ABSTRACT

Most cyanobacteria use a single type of cyanophycin synthetase, CphA1, to synthesize the nitrogen-rich polymer cyanophycin. The genomes of many N2-fixing cyanobacteria contain an additional gene that encodes a second type of cyanophycin synthetase, CphA2. The potential function of this enzyme has been debated due to its reduced size and the lack of one of the two ATP-binding sites that are present in CphA1. Here, we analysed CphA2 from Anabaena variabilis ATCC 29413 and Cyanothece sp. PCC 7425. We found that CphA2 polymerized the dipeptide ß-aspartyl-arginine to form cyanophycin. Thus, CphA2 represents a novel type of cyanophycin synthetase. A cphA2 disruption mutant of A. variabilis was generated. Growth of this mutant was impaired under high-light conditions and nitrogen deprivation, suggesting that CphA2 plays an important role in nitrogen metabolism under N2-fixing conditions. Electron micrographs revealed that the mutant had fewer cyanophycin granules, but no alteration in the distribution of granules in its cells was observed. Localization of CphA2 by immunogold electron microscopy demonstrated that the enzyme is attached to cyanophycin granules. Expression of CphA1 and CphA2 was examined in Anabaena WT and cphA mutant cells. Whilst the CphA1 level increased upon nitrogen deprivation, the CphA2 level remained nearly constant.


Subject(s)
Anabaena variabilis/enzymology , Anabaena variabilis/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Cyanothece/enzymology , Cyanothece/metabolism , Peptide Synthases/metabolism , Anabaena variabilis/genetics , Anabaena variabilis/growth & development , Bacterial Proteins/genetics , Dipeptides/metabolism , Gene Knockout Techniques , Light , Nitrogen/metabolism , Peptide Synthases/genetics
11.
Appl Environ Microbiol ; 82(24): 7227-7235, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27742679

ABSTRACT

Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel. Cyanothece sp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2 production, a highly perplexing phenomenon because H2 evolving enzymes are O2 sensitive. We employed a system-level in vivo chemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCE: Here, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex in Cyanothece sp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture the in situ dynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.


Subject(s)
Bacterial Proteins/metabolism , Cyanothece/enzymology , Hydrogen/metabolism , Nitrogenase/metabolism , Oxidative Stress , Bacterial Proteins/genetics , Cyanothece/genetics , Cyanothece/metabolism , Cyanothece/radiation effects , Light , Nitrogenase/genetics , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis/radiation effects
12.
Appl Microbiol Biotechnol ; 100(17): 7765-75, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27188779

ABSTRACT

Bioremediation of heavy metals using microorganisms can be advantageous compared to conventional physicochemical methods due to the use of renewable resources and efficiencies of removal particularly cations at low concentrations. In this context, cyanobacteria/cyanobacterial extracellular polymeric substances (EPS) emerge as a valid alternative due to the anionic nature and particular composition of these polymers. In this work, various culture fractions of the unicellular cyanobacterium Cyanothece sp. CCY 0110 were employed in bioremoval assays using three of the most common heavy metal pollutants in water bodies-copper, cadmium, and lead-separately or in combined systems. Our study showed that the released polysaccharides (RPS) were the most efficient fraction, removing the metal(s) by biosorption. Therefore, this polymer was subsequently used to evaluate the interactions between the metals/RPS binding sites using SEM-EDX, ICP-OES, and FTIR. Acid and basic pretreatments applied to the polymer further improve the process efficiency, and the exposure to an alkaline solution seems to alter the RPS conformation. The differences observed in the specific metal bioremoval seem to be mainly due to the RPS organic functional groups available, mainly carboxyl and hydroxyl, than to an ion exchange mechanism. Considering that Cyanothece is a highly efficient RPS-producer and that RPS can be easily separated from the culture, immobilized or confined, this polymer can be advantageous for the establishment/improvement of heavy metal removal systems.


Subject(s)
Biodegradation, Environmental , Cadmium/metabolism , Copper/metabolism , Cyanothece/metabolism , Lead/metabolism , Metals, Heavy/metabolism , Polysaccharides, Bacterial/metabolism , Binding Sites , Water Pollutants, Chemical/metabolism
13.
Proc Natl Acad Sci U S A ; 110(32): 13210-5, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878254

ABSTRACT

The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.


Subject(s)
Circadian Rhythm/physiology , Cyanothece/metabolism , Nitrogen Fixation/physiology , Photosynthesis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bioreactors/microbiology , Carbon Dioxide/metabolism , Circadian Rhythm/genetics , Cyanothece/genetics , Cyanothece/growth & development , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Developmental , Glycogen/metabolism , Hydrogen-Ion Concentration , Nitrogen Fixation/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxygen/metabolism , Photosynthesis/genetics , Reverse Transcriptase Polymerase Chain Reaction
14.
J Proteome Res ; 13(7): 3262-76, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24846609

ABSTRACT

Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ∼28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage.


Subject(s)
Bacterial Proteins/metabolism , Cyanothece/metabolism , Proteome/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chromatography, Ion Exchange , Cyanothece/genetics , Gene Expression , Nitrogen Fixation , Photosynthesis , Phylogeny , Proteome/genetics , Proteome/isolation & purification , Tandem Mass Spectrometry
15.
BMC Genomics ; 15: 1185, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25547186

ABSTRACT

BACKGROUND: Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. RESULTS: By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light-dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. CONCLUSIONS: This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements.


Subject(s)
Circadian Rhythm/genetics , Cyanothece/genetics , Cyanothece/metabolism , Darkness , Gene Expression Profiling , Proteomics , Biofuels/microbiology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cyanothece/physiology , Cyanothece/radiation effects , Nitrogen Fixation/genetics , Nitrogen Fixation/radiation effects , Photosynthesis/genetics , Photosynthesis/radiation effects , Protein Biosynthesis/radiation effects , RNA, Antisense/genetics , Transcription, Genetic/radiation effects
16.
Nat Commun ; 15(1): 3712, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697963

ABSTRACT

The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA, an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints.


Subject(s)
Bacterial Proteins , Circadian Clocks , Cyanothece , Nitrogen Fixation , Oxygen , Oxygen/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Circadian Clocks/genetics , Circadian Clocks/physiology , Cyanothece/metabolism , Cyanothece/genetics , Nitrogenase/metabolism , Nitrogenase/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Bacterial , Cyanobacteria/metabolism , Cyanobacteria/genetics
17.
BMC Bioinformatics ; 14 Suppl 2: S14, 2013.
Article in English | MEDLINE | ID: mdl-23368635

ABSTRACT

BACKGROUND: The over consumption of fossil fuels has led to growing concerns over climate change and global warming. Increasing research activities have been carried out towards alternative viable biofuel sources. Of several different biofuel platforms, cyanobacteria possess great potential, for their ability to accumulate biomass tens of times faster than traditional oilseed crops. The cyanobacterium Cyanothece sp. ATCC 51142 has recently attracted lots of research interest as a model organism for such research. Cyanothece can perform efficiently both photosynthesis and nitrogen fixation within the same cell, and has been recently shown to produce biohydrogen--a byproduct of nitrogen fixation--at very high rates of several folds higher than previously described hydrogen-producing photosynthetic microbes. Since the key enzyme for nitrogen fixation is very sensitive to oxygen produced by photosynthesis, Cyanothece employs a sophisticated temporal separation scheme, where nitrogen fixation occurs at night and photosynthesis at day. At the core of this temporal separation scheme is a robust clocking mechanism, which so far has not been thoroughly studied. Understanding how this circadian clock interacts with and harmonizes global transcription of key cellular processes is one of the keys to realize the inherent potential of this organism. RESULTS: In this paper, we employ several state of the art bioinformatics techniques for studying the core circadian clock in Cyanothece sp. ATCC 51142, and its interactions with other key cellular processes. We employ comparative genomics techniques to map the circadian clock genes and genetic interactions from another cyanobacterial species, namely Synechococcus elongatus PCC 7942, of which the circadian clock has been much more thoroughly investigated. Using time series gene expression data for Cyanothece, we employ gene regulatory network reconstruction techniques to learn this network de novo, and compare the reconstructed network against the interactions currently reported in the literature. Next, we build a computational model of the interactions between the core clock and other cellular processes, and show how this model can predict the behaviour of the system under changing environmental conditions. The constructed models significantly advance our understanding of the Cyanothece circadian clock functional mechanisms.


Subject(s)
Circadian Clocks , Computational Biology/methods , Cyanothece/genetics , Gene Regulatory Networks , Models, Biological , Biofuels , Biomass , Chromosome Mapping , Cyanothece/metabolism , Nitrogen Fixation/genetics , Oligonucleotide Array Sequence Analysis , Photosynthesis/genetics , Synechococcus/genetics , Synechococcus/metabolism
18.
J Biol Chem ; 287(4): 2777-86, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22128188

ABSTRACT

Current biotechnological interest in nitrogen-fixing cyanobacteria stems from their robust respiration and capacity to produce hydrogen. Here we quantify both dark- and light-induced H(2) effluxes by Cyanothece sp. Miami BG 043511 and establish their respective origins. Dark, anoxic H(2) production occurs via hydrogenase utilizing reductant from glycolytic catabolism of carbohydrates (autofermentation). Photo-H(2) is shown to occur via nitrogenase and requires illumination of PSI, whereas production of O(2) by co-illumination of PSII is inhibitory to nitrogenase above a threshold pO(2). Carbohydrate also serves as the major source of reductant for the PSI pathway mediated via nonphotochemical reduction of the plastoquinone pool by NADH dehydrogenases type-1 and type-2 (NDH-1 and NDH-2). Redirection of this reductant flux exclusively through the proton-coupled NDH-1 by inhibition of NDH-2 with flavone increases the photo-H(2) production rate by 2-fold (at the expense of the dark-H(2) rate), due to production of additional ATP (via the proton gradient). Comparison of photobiological hydrogen rates, yields, and energy conversion efficiencies reveals opportunities for improvement.


Subject(s)
Bacterial Proteins/metabolism , Cyanothece/metabolism , Hydrogen/metabolism , Hydrogenase/metabolism , Nitrogenase/metabolism , Bacterial Proteins/genetics , Cyanothece/genetics , Hydrogenase/genetics , Nitrogenase/genetics , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism
19.
Photosynth Res ; 118(1-2): 191-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23954952

ABSTRACT

Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.


Subject(s)
Cyanothece/metabolism , Metabolic Flux Analysis , Carbon/metabolism , Nitrogen Fixation , Photosynthesis
20.
Photosynth Res ; 118(1-2): 25-36, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24142038

ABSTRACT

The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H2 production when grown under 12 h light-12 h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culture synchronicity, and intracellular storage content. Reduction in NaNO3 and K2HPO4 concentrations from 17.6 and 0.23 to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria.


Subject(s)
Carbohydrate Metabolism , Cyanothece/metabolism , Culture Media , Culture Techniques , Cyanothece/growth & development , Cyanothece/ultrastructure , Nitrates/administration & dosage , Phosphates/administration & dosage , Potassium Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL