Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Chem Biol ; 10(6): 1502-10, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25765284

ABSTRACT

A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.


Subject(s)
A Kinase Anchor Proteins/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Type II/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Peptides/chemistry , Protein Kinase Inhibitors/chemistry , Protein Subunits/antagonists & inhibitors , A Kinase Anchor Proteins/chemistry , A Kinase Anchor Proteins/metabolism , Amino Acid Sequence , Binding Sites/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Cyclic AMP-Dependent Protein Kinase Type I/chemistry , Cyclic AMP-Dependent Protein Kinase Type I/metabolism , Cyclic AMP-Dependent Protein Kinase Type II/chemistry , Cyclic AMP-Dependent Protein Kinase Type II/metabolism , Humans , Kinetics , Molecular Sequence Data , Peptides/pharmacology , Phosphorylation , Protein Binding/drug effects , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Protein Subunits/chemistry , Protein Subunits/metabolism
2.
Cell Death Dis ; 4: e516, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23449452

ABSTRACT

We show that cyclic AMP (cAMP) elevating agents protect blasts from patients with acute promyelocytic leukemia (APL) against death induced by first-line anti-leukemic anthracyclines like daunorubicin (DNR). The cAMP effect was reproduced in NB4 APL cells, and shown to depend on activation of the generally cytoplasmic cAMP-kinase type I (PKA-I) rather than the perinuclear PKA-II. The protection of both NB4 cells and APL blasts was associated with (inactivating) phosphorylation of PKA site Ser118 of pro-apoptotic Bad and (activating) phosphorylation of PKA site Ser133 of the AML oncogene CREB. Either event would be expected to protect broadly against cell death, and we found cAMP elevation to protect also against 2-deoxyglucose, rotenone, proteasome inhibitor and a BH3-only mimetic. The in vitro findings were mirrored by the findings in NSG mice with orthotopic NB4 cell leukemia. The mice showed more rapid disease progression when given cAMP-increasing agents (prostaglandin E2 analog and theophylline), both with and without DNR chemotherapy. The all-trans retinoic acid (ATRA)-induced terminal APL cell differentiation is a cornerstone in current APL treatment and is enhanced by cAMP. We show also that ATRA-resistant APL cells, believed to be responsible for treatment failure with current ATRA-based treatment protocols, were protected by cAMP against death. This suggests that the beneficial pro-differentiating and non-beneficial pro-survival APL cell effects of cAMP should be weighed against each other. The results suggest also general awareness toward drugs that can affect bone marrow cAMP levels in leukemia patients.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cyclic AMP/metabolism , Daunorubicin/pharmacology , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Cyclic AMP/agonists , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinase Type I/metabolism , Cyclic AMP-Dependent Protein Kinase Type II/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Type II/genetics , Cyclic AMP-Dependent Protein Kinase Type II/metabolism , Daunorubicin/therapeutic use , Dinoprostone/analogs & derivatives , Dinoprostone/pharmacology , Dinoprostone/therapeutic use , Disease Progression , HL-60 Cells , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , RNA Interference , RNA, Small Interfering/metabolism , Theophylline/pharmacology , Theophylline/therapeutic use , Transplantation, Heterologous , Tretinoin/pharmacology , Tretinoin/therapeutic use , bcl-Associated Death Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL