Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.185
Filter
Add more filters

Publication year range
1.
Cell ; 169(3): 431-441.e8, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431244

ABSTRACT

The human microbiota greatly affects physiology and disease; however, the contribution of bacteria to the response to chemotherapeutic drugs remains poorly understood. Caenorhabditis elegans and its bacterial diet provide a powerful system to study host-bacteria interactions. Here, we use this system to study how bacteria affect the C. elegans response to chemotherapeutics. We find that different bacterial species can increase the response to one drug yet decrease the effect of another. We perform genetic screens in two bacterial species using three chemotherapeutic drugs: 5-fluorouracil (5-FU), 5-fluoro-2'-deoxyuridine (FUDR), and camptothecin (CPT). We find numerous bacterial nucleotide metabolism genes that affect drug efficacy in C. elegans. Surprisingly, we find that 5-FU and FUDR act through bacterial ribonucleotide metabolism to elicit their cytotoxic effects in C. elegans rather than by thymineless death or DNA damage. Our study provides a blueprint for characterizing the role of bacteria in the host response to chemotherapeutics.


Subject(s)
Antineoplastic Agents/metabolism , Caenorhabditis elegans/microbiology , Comamonas/metabolism , Escherichia coli/metabolism , Gastrointestinal Microbiome , Animals , Antineoplastic Agents/pharmacology , Camptothecin/metabolism , Camptothecin/pharmacology , Colorectal Neoplasms/drug therapy , Comamonas/genetics , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Deoxyuridine/pharmacology , Diet , Escherichia coli/genetics , Fluorouracil/metabolism , Fluorouracil/pharmacology , Humans , Models, Animal , Pyrimidine Nucleosides/metabolism
2.
Nat Methods ; 21(7): 1175-1184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886577

ABSTRACT

In a human cell, thousands of replication forks simultaneously coordinate duplication of the entire genome. The rate at which this process occurs might depend on the epigenetic state of the genome and vary between, or even within, cell types. To accurately measure DNA replication speeds, we developed single-cell 5-ethynyl-2'-deoxyuridine sequencing to detect nascent replicated DNA. We observed that the DNA replication speed is not constant but increases during S phase of the cell cycle. Using genetic and pharmacological perturbations we were able to alter this acceleration of replication and conclude that DNA damage inflicted by the process of transcription limits the speed of replication during early S phase. In late S phase, during which less-transcribed regions replicate, replication accelerates and approaches its maximum speed.


Subject(s)
DNA Replication , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Deoxyuridine/analogs & derivatives , S Phase/genetics , Sequence Analysis, DNA/methods , DNA Damage , DNA/genetics
3.
PLoS Genet ; 20(7): e1011341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954736

ABSTRACT

The drug floxuridine (5-fluorodeoxyuridine, FUdR) is an active metabolite of 5-Fluorouracil (5-FU). It converts to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP), which on incorporation into the genome inhibits DNA replication. Additionally, it inhibits thymidylate synthase, causing dTMP shortage while increasing dUMP availability, which induces uracil incorporation into the genome. However, the mechanisms underlying cellular tolerance to FUdR are yet to be fully elucidated. In this study, we explored the mechanisms underlying cellular resistance to FUdR by screening for FUdR hypersensitive mutants from a collection of DT40 mutants deficient in each genomic maintenance system. We identified REV3, which is involved in translesion DNA synthesis (TLS), to be a critical factor in FUdR tolerance. Replication using a FUdR-damaged template was attenuated in REV3-/- cells, indicating that the TLS function of REV3 is required to maintain replication on the FUdR-damaged template. Notably, FUdR-exposed REV3-/- cells exhibited defective cell cycle arrest in the early S phase, suggesting that REV3 is involved in intra-S checkpoint activation. Furthermore, REV3-/- cells showed defects in Chk1 phosphorylation, which is required for checkpoint activation, but the survival of FUdR-exposed REV3-/- cells was further reduced by the inhibition of Chk1 or ATR. These data indicate that REV3 mediates DNA checkpoint activation at least through Chk1 phosphorylation, but this signal acts in parallel with ATR-Chk1 DNA damage checkpoint pathway. Collectively, we reveal a previously unappreciated role of REV3 in FUdR tolerance.


Subject(s)
DNA Damage , DNA Replication , Floxuridine , Floxuridine/pharmacology , Animals , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , S Phase Cell Cycle Checkpoints/genetics , S Phase Cell Cycle Checkpoints/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Chickens , Humans , DNA Repair/genetics , Phosphorylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Translesion DNA Synthesis , Deoxyuridine/analogs & derivatives
4.
Plant Cell ; 34(10): 3790-3813, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35861422

ABSTRACT

Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , DNA, Chloroplast/metabolism , Deoxyribonucleotides/metabolism , Deoxyuridine/metabolism , Germination , Metabolome , Nucleotides/metabolism , Phosphorylation , Pyrophosphatases/metabolism , Seedlings , Seeds/genetics , Seeds/metabolism , Thymidine/metabolism , Thymidine Kinase/genetics , Thymidine Kinase/metabolism
5.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994676

ABSTRACT

Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.


Subject(s)
DNA Damage , DNA Repair , Deoxyuridine , DNA/chemistry , DNA/genetics , Deoxyuridine/analogs & derivatives , Genome, Human , Humans , Thymidine/analogs & derivatives , Transcription, Genetic , Ultraviolet Rays
6.
J Am Chem Soc ; 146(30): 20742-20749, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037865

ABSTRACT

5-Formyl-2'-deoxycytidine, an intermediate during the erasure of epigenetic marker 5-methyl-2'-deoxycytidine, and 5-formyl-2'-deoxyuridine, an oxidative lesion of thymidine, are naturally occurring DNA modifications. The carbonyl groups of these DNA modifications are the smallest possible photosensitizers and have the potential to generate cyclobutane pyrimidine dimers upon irradiation with UV light. To evidence this damaging potential, ternary DNA architectures were used, in which the photosensitizer and the damage site were located at well-defined positions in the sequences. The quantitative and time-dependent analysis revealed not only the high photodamaging potential of both natural DNA modifications but also the mechanisms for this new pathway to photodamage. 5-Formyl-2'-deoxycytidine is more efficiently generating cyclobutane pyrimidine dimers than 5-formyl-2'-deoxyuridine because the latter is also photochemically converted to 5-carboxy-2'-deoxyuridine. This demonstrates for the first time that epigenetic DNA modifications regulating gene expression interact with sunlight and can induce DNA photodamages.


Subject(s)
DNA Damage , DNA , Epigenesis, Genetic , Ultraviolet Rays , DNA/chemistry , DNA/radiation effects , Epigenesis, Genetic/radiation effects , DNA Damage/radiation effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Pyrimidine Dimers/chemistry , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry
7.
Chem Res Toxicol ; 37(8): 1445-1452, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39041427

ABSTRACT

Tandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in Escherichia coli. Bypass efficiency of both tandem lesions was reduced by 30-40% compared to the isolated lesions. Mutation frequencies (MFs) of isolated 8-OxodGuo and Fapy•dG were low, and no mutants were isolated from replication of a 5-fdU construct. The types of mutations from 8-OxodGuo were targeted G → T transversion, whereas Fapy•dG predominantly gave G → T and G deletion. 5'-8-OxodGuo-5-fdU also gave exclusively G → T mutation, which was 3-fold and 11-fold greater, without and with SOS induction, respectively, compared to that of an isolated 8-OxodGuo. In mutY/mutM cells, the MF of 8-OxodGuo and 5'-8-OxodGuo-5-fdU increased 13-fold and 7-fold, respectively. The MF of 5'-8-OxodGuo-5-fdU increased 2-fold and 3-fold in Pol II- and Pol IV-deficient cells, respectively, suggesting that these polymerases carry out largely error-free bypass. The MF of 5'- Fapy•dG-5-fdU was similar without (13 ± 1%) and with (16 ± 2%) SOS induction. Unlike the complex mutation spectrum reported earlier in human cells for 5'- Fapy•dG-5-fdU, with G → T as the major type of errors, in E. coli, the mutations were predominantly from deletion of 5-fdU. We postulate that removal of adenine-incorporated opposite 8-OxodGuo by Fpg and MutY repair proteins is partially impaired in the tandem 5'-8-OxodGuo-5-fdU, resulting in an increase in the G → T mutations, whereas a slippage mechanism may be operating in the 5'- Fapy•dG-5-fdU mutagenesis. This study showed that not only are these tandem lesions more mutagenic than the isolated lesions but they may also exhibit different types of mutations in different organisms.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Escherichia coli , Escherichia coli/drug effects , Escherichia coli/genetics , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , Deoxyuridine/pharmacology , Mutagens/toxicity , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Mutation , Mutagenesis , DNA Damage
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389674

ABSTRACT

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Subject(s)
Astrocytes/physiology , Connexin 30/metabolism , Glutamic Acid/metabolism , Neurons/physiology , Animals , Cell Differentiation , Connexin 30/genetics , Deoxyuridine/analogs & derivatives , Deoxyuridine/pharmacology , Electrophysiological Phenomena , GABAergic Neurons/enzymology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Interneurons/enzymology , Luminescent Proteins , Mice , Mice, Transgenic , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Recombination, Genetic , Tamoxifen/pharmacology
9.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064961

ABSTRACT

Herein, we report the synthesis of a new hybrid compound based on a 2'-deoxyuridine nucleoside conjugated with a NO photo-donor moiety (dU-t-NO) via CuAAC click chemistry. Hybrid dU-t-NO, as well as two previously reported 2'-deoxyadenosine based hybrids (dAdo-S-NO and dAdo-t-NO), were evaluated for their cytotoxic and cytostatic activities in selected cancer cell lines. dAdo-S-NO and dAdo-t-NO hybrids displayed higher activity with respect to dU-t-NO. All hybrids showed effective release of NO in the micromolar range. The photochemical behavior of the newly reported hybrid, dU-t-NO, was studied in the RKO colon carcinoma cell line, whereas the dAdo-t-NO hybrid was tested in both colon carcinoma RKO and hepatocarcinoma Hep 3B2.1-7 cell lines to evaluate the potential effect of NO released upon irradiation on cell viability. A customized irradiation apparatus for in vitro experiments was also designed.


Subject(s)
Antineoplastic Agents , Nitric Oxide Donors , Nitric Oxide , Nucleosides , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Nitric Oxide/metabolism , Nitric Oxide/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Nucleosides/chemistry , Nucleosides/pharmacology , Cell Survival/drug effects , Click Chemistry , Cell Proliferation/drug effects , Molecular Structure , Deoxyuridine/chemistry , Deoxyuridine/pharmacology , Deoxyuridine/analogs & derivatives
10.
Biochemistry ; 62(17): 2658-2668, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37582341

ABSTRACT

The enzyme 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 (DNPH1) catalyzes the N-ribosidic bond cleavage of 5-hydroxymethyl-2'-deoxyuridine 5'-monophosphate to generate 2-deoxyribose 5-phosphate and 5-hydroxymethyluracil. DNPH1 accepts other 2'-deoxynucleoside 5'-monophosphates as slow-reacting substrates. DNPH1 inhibition is a promising strategy to overcome resistance to and potentiate anticancer poly(ADP-ribose) polymerase inhibitors. We solved the crystal structure of unliganded human DNPH1 and took advantage of the slow reactivity of 2'-deoxyuridine 5'-monophosphate (dUMP) as a substrate to obtain a crystal structure of the DNPH1:dUMP Michaelis complex. In both structures, the carboxylate group of the catalytic Glu residue, proposed to act as a nucleophile in covalent catalysis, forms an apparent low-barrier hydrogen bond with the hydroxyl group of a conserved Tyr residue. The crystal structures are supported by functional data, with liquid chromatography-mass spectrometry analysis showing that DNPH1 incubation with dUMP leads to slow yet complete hydrolysis of the substrate. A direct UV-vis absorbance-based assay allowed characterization of DNPH1 kinetics at low dUMP concentrations. A bell-shaped pH-rate profile indicated that acid-base catalysis is operational and that for maximum kcat/KM, two groups with an average pKa of 6.4 must be deprotonated, while two groups with an average pKa of 8.2 must be protonated. A modestly inverse solvent viscosity effect rules out diffusional processes involved in dUMP binding to and possibly uracil release from the enzyme as rate limiting to kcat/KM. Solvent deuterium isotope effects on kcat/KM and kcat were inverse and unity, respectively. A reaction mechanism for dUMP hydrolysis is proposed.


Subject(s)
Deoxyuridine , Hydrolases , Humans , Hydrolysis , Catalysis , Solvents , Phosphates , Kinetics , Hydrogen-Ion Concentration
11.
Nat Methods ; 17(3): 311-318, 2020 03.
Article in English | MEDLINE | ID: mdl-32015544

ABSTRACT

Tissues and organs are composed of diverse cell types, which poses a major challenge for cell-type-specific profiling of gene expression. Current metabolic labeling methods rely on exogenous pyrimidine analogs that are only incorporated into RNA in cells expressing an exogenous enzyme. This approach assumes that off-target cells cannot incorporate these analogs. We disprove this assumption and identify and characterize the enzymatic pathways responsible for high background incorporation. We demonstrate that mammalian cells can incorporate uracil analogs and characterize the enzymatic pathways responsible for high background incorporation. To overcome these limitations, we developed a new small molecule-enzyme pair consisting of uridine/cytidine kinase 2 and 2'-azidouridine. We demonstrate that 2'-azidouridine is only incorporated in cells expressing uridine/cytidine kinase 2 and characterize selectivity mechanisms using molecular dynamics and X-ray crystallography. Furthermore, this pair can be used to purify and track RNA from specific cellular populations, making it ideal for high-resolution cell-specific RNA labeling. Overall, these results reveal new aspects of mammalian salvage pathways and serve as a new benchmark for designing, characterizing and evaluating methodologies for cell-specific labeling of biomolecules.


Subject(s)
RNA/chemistry , Uracil/chemistry , Animals , Azides/chemistry , Biotinylation , Catalytic Domain , Coculture Techniques , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , HEK293 Cells , HeLa Cells , Humans , Kinetics , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , NIH 3T3 Cells , Nucleoside-Phosphate Kinase/metabolism , Protein Domains , RNA, Small Interfering/genetics , Uridine/chemistry , Uridine Kinase/metabolism
12.
Bioconjug Chem ; 34(6): 977-982, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37290129

ABSTRACT

Near-quantitative DNA bioconjugation and detailed mechanistic investigations of reactions involving 5-(vinyl)-2'-deoxyuridine (VdU) and maleimides are reported. According to accelerated reaction rates in solvents with increasing polarity and trends in product stereochemistry, VdU-maleimide reactions proceed via a formal [4 + 2] stepwise cycloaddition. In contrast, 5-(1,3-butadienyl)-2'-deoxyuridine (BDdU) reacts with maleimides in a concerted [4 + 2] Diels-Alder cycloaddition. VdU-maleimide reactions enable high-yielding bioconjugation of duplex DNA in vitro (>90%) as well as metabolic labeling experiments in cells.


Subject(s)
DNA , Deoxyuridine , Cycloaddition Reaction , Maleimides
13.
Bioorg Med Chem Lett ; 94: 129432, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591319

ABSTRACT

Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Animals , Humans , Antimetabolites , Antiviral Agents/pharmacology , Deoxyuridine , Horses , Immunosuppressive Agents
14.
Inorg Chem ; 62(40): 16412-16425, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37768109

ABSTRACT

The synthesis and base pairing properties of platinum complexes based on uridine and deoxyuridine nucleosides and preliminary studies of their antiproliferative activity are described. Platinum(II) uridine and deoxyuridine complexes were synthesized by C-I oxidative addition to Pt(0)(PPh3)4. First, the synthesis was performed with protected nucleosides to generate complexes 1 and 2, which were deprotected under basic conditions, affording complexes 3 and 4 in good yields. The synthesis with the unprotected nucleosides was also performed and provided complexes 3 and 4 effectively. Base pairing interactions were measured for complex 1, either for self-base pairing or for the Watson-Crick base pair. Complex 1 undergoes self-base pairing in CDCl3, and this aggregation was found not to be dependent on metalation. Contrastingly, for the Watson-Crick base pair with adenine, base pairing was also observed, but metalation was found to affect hydrogen bonding considerably. Complexes 3 and 4 and the corresponding ligand precursors were evaluated for their antiproliferative activity against human glioblastoma cell line U-251. The compounds showed IC50 values of 3.30 (3) and 1.84 (4) µM but are also toxic for nontumorous cell lines.


Subject(s)
Nucleosides , Platinum , Humans , Base Pairing , Uridine , Uracil/pharmacology , Deoxyuridine , Hydrogen Bonding
15.
Nucleic Acids Res ; 49(15): 8947-8960, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34365512

ABSTRACT

Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π-π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.


Subject(s)
G-Quadruplexes , Proto-Oncogene Proteins c-kit/genetics , Deoxyuridine/chemistry , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Promoter Regions, Genetic , Proto-Oncogene Mas , Pyrenes/chemistry , Thermodynamics
16.
PLoS Genet ; 16(10): e1008623, 2020 10.
Article in English | MEDLINE | ID: mdl-33052904

ABSTRACT

Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed.


Subject(s)
DNA Replication Timing/genetics , DNA Replication/drug effects , Plant Roots/genetics , Zea mays/genetics , Cell Nucleus/drug effects , Cell Nucleus/genetics , Centromere/drug effects , Centromere/genetics , DNA Replication/genetics , DNA Replication Timing/drug effects , DNA, Plant/drug effects , DNA, Plant/genetics , Deoxyuridine/analogs & derivatives , Deoxyuridine/pharmacology , Endocytosis/drug effects , Meristem/drug effects , Meristem/genetics , Mitosis/drug effects , Mitosis/genetics , Nucleosomes/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , S Phase/genetics , Zea mays/growth & development
17.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834105

ABSTRACT

Having a spiral grain is considered to be one of the most important wood properties influencing wood quality. Here, transcriptome profiles and metabolome data were analyzed in the straight grain and twist grain of Pinus yunnanensis. A total of 6644 differential expression genes were found between the straight type and the twist type. A total of 126 differentially accumulated metabolites were detected. There were 24 common differential pathways identified from the transcriptome and metabolome, and these pathways were mainly annotated in ABC transporters, arginine and proline metabolism, flavonoid biosynthesis, isoquinoline alkaloid biosynthesis, linoleic acid metabolism, phenylpropanoid, tryptophan metabolism, etc. A weighted gene coexpression network analysis showed that the lightblue4 module was significantly correlated with 2'-deoxyuridine and that transcription factors (basic leucine zipper (bZIP), homeodomain leucine zipper (HD-ZIP), basic helix-loop-helix (bHLH), p-coumarate 3-hydroxylase (C3H), and N-acetylcysteine (NAC)) play important roles in regulating 2'-deoxyuridine, which may be involved in the formation of spiral grains. Meanwhile, the signal transduction of hormones may be related to spiral grain, as previously reported. ARF7 and MKK4_5, as indoleacetic acid (IAA)- and ethylene (ET)-related receptors, may explain the contribution of plant hormones in spiral grain. This study provided useful information on spiral grain in P. yunnanensis by transcriptome and metabolome analyses and could lay the foundation for future molecular breeding.


Subject(s)
Pinus , Transcriptome , Pinus/genetics , Gene Expression Profiling , Metabolomics , Metabolome , Edible Grain/genetics , Deoxyuridine , Gene Expression Regulation, Plant
18.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511233

ABSTRACT

Apurinic/apyrimidinic endonuclease 1 (APE1) is one of the most important enzymes in base excision repair. Studies on this enzyme have been conducted for a long time, but some aspects of its activity remain poorly understood. One such question concerns the mechanism of damaged-nucleotide recognition by the enzyme, and the answer could shed light on substrate specificity control in all enzymes of this class. In the present study, by pulsed electron-electron double resonance (DEER, also known as PELDOR) spectroscopy and pre-steady-state kinetic analysis along with wild-type (WT) APE1 from Danio rerio (zAPE1) or three mutants (carrying substitution N253G, A254G, or E260A), we aimed to elucidate the molecular events in the process of damage recognition. The data revealed that the zAPE1 mutant E260A has much higher activity toward DNA substrates containing 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), or 1,N6-ethenoadenosine (εA). Examination of conformational changes in DNA clearly revealed multistep DNA rearrangements during the formation of the catalytic complex. These structural rearrangements of DNA are directly associated with the capacity of damaged DNA for enzyme-induced bending and unwinding, which are required for eversion of the damaged nucleotide from the DNA duplex and for its placement into the active site of the enzyme. Taken together, the results experimentally prove the factors that control substrate specificity of the AP endonuclease zAPE1.


Subject(s)
Amino Acids , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Amino Acids/genetics , Substrate Specificity , Kinetics , Electron Spin Resonance Spectroscopy , DNA Damage , DNA Repair , DNA/chemistry , Endonucleases/metabolism , Nucleotides , Deoxyuridine
19.
J Am Chem Soc ; 144(23): 10556-10569, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35666775

ABSTRACT

DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.


Subject(s)
Benzofurans , Nucleotides , DNA/chemistry , DNA-Directed DNA Polymerase/metabolism , Deoxyuridine , Nucleotides/chemistry , Oligonucleotides , Thiophenes
20.
Funct Integr Genomics ; 22(5): 797-811, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35896848

ABSTRACT

Although bladder cancer (BLCA) is the 10th most common tumor worldwide, particularly practical markers and prognostic models that might guide therapy are needed. We used a non-negative matrix factorization algorithm to classify PI3K pathway-related genes into molecular subtypes. A weighted gene co-expression network analysis (WGCNA) was generated to identify co-expression modules. Univariate Cox regression, least absolute shrinkage sum selection operator-Cox regression, and multivariate Cox regression were utilized to develop a prognostic score model. Kaplan-Meier analysis and receiver operating characteristics were utilized to measure the model's effectiveness. A nomogram was constructed to improve the predictive ability of the model based on clinical parameters and risk. Decision curve analysis (DCA) was used to evaluate the nomogram. To evaluate the immune microenvironment, an estimate algorithm was used. Drug sensitivity was identified using the R package "pRRophetic." UM-UC-3 cell line was used to measure the effect of CDK6 in Western blotting, proliferation assay, and 5-ethynyl-20-deoxyuridine assay. Based on PI3K pathway-related genes, The Cancer Genome Atlas (TCGA)-BLCA and GSE32894 patients were divided into two subtypes. Twenty-five co-expression modules were established using the WGCNA algorithm. A seven-gene signature (CDK6, EGFR, IGF1, ITGB7, PDGFRA, RPS6, and VWF) demonstrated robustness in TCGA and GSE32894 datasets. Expression levels of CDK6 and risk positively correlated with M2 macrophages and IgG. Cisplatin, gemcitabine, methotrexate, mitomycin C, paclitaxel, and vinblastine are sensitive to different groups based on the expression of CDK6 and risk. Functional experiments suggested that CDK6 promotes the proliferation of UM-UC-3 cells. We constructed a seven-gene prognostic signature as an effective marker to predict the outcomes of BLCA patients and guide individual treatment.


Subject(s)
Urinary Bladder Neoplasms , Cisplatin/metabolism , Deoxyuridine , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Methotrexate , Mitomycin , Paclitaxel , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Tumor Microenvironment , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Vinblastine , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL