Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.335
Filter
Add more filters

Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38084407

ABSTRACT

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Subject(s)
Bronchiolitis Obliterans , Diacetyl , Humans , Keratin-5/metabolism , Diacetyl/metabolism , Mechlorethamine/metabolism , Respiratory Mucosa/metabolism , Bronchiolitis Obliterans/chemically induced , Bronchiolitis Obliterans/metabolism , Epithelial Cells/metabolism
2.
EMBO J ; 39(2): e104144, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31886558

ABSTRACT

Recent discoveries show that plant recruitment of fungi and bacteria in a non-mycorrhizal host follows different strategies dependent on phosphate availability. A new study by Morcillo et al (2019) demonstrates that volatile compounds synthesized by rhizobacteria contribute to phosphate starvation response-dependent regulation of bacterial colonization and immune system activation in Arabidopsis thaliana plants.


Subject(s)
Diacetyl , Phosphates , Bacteria , Fungi , Plant Immunity
3.
EMBO J ; 39(2): e102602, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31802519

ABSTRACT

Plants establish mutualistic associations with beneficial microbes while deploying the immune system to defend against pathogenic ones. Little is known about the interplay between mutualism and immunity and the mediator molecules enabling such crosstalk. Here, we show that plants respond differentially to a volatile bacterial compound through integral modulation of the immune system and the phosphate-starvation response (PSR) system, resulting in either mutualism or immunity. We found that exposure of Arabidopsis thaliana to a known plant growth-promoting rhizobacterium can unexpectedly have either beneficial or deleterious effects to plants. The beneficial-to-deleterious transition is dependent on availability of phosphate to the plants and is mediated by diacetyl, a bacterial volatile compound. Under phosphate-sufficient conditions, diacetyl partially suppresses plant production of reactive oxygen species (ROS) and enhances symbiont colonization without compromising disease resistance. Under phosphate-deficient conditions, diacetyl enhances phytohormone-mediated immunity and consequently causes plant hyper-sensitivity to phosphate deficiency. Therefore, diacetyl affects the type of relation between plant hosts and certain rhizobacteria in a way that depends on the plant's phosphate-starvation response system and phytohormone-mediated immunity.


Subject(s)
Arabidopsis/immunology , Diacetyl/pharmacology , Phosphates/metabolism , Plant Diseases/immunology , Plant Immunity/immunology , Plant Roots/immunology , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Bacteria/immunology , Bacteria/metabolism , Plant Diseases/microbiology , Plant Immunity/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Rhizosphere , Symbiosis , Volatile Organic Compounds/pharmacology
4.
Macromol Rapid Commun ; 45(7): e2300648, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228154

ABSTRACT

Conjugated polymers with strong absorption in the second near-infrared (NIR-II) window have multiple applications. However, the development of new type of NIR-II conjugated polymers via facile and green methods remains challenging. Herein, this work reports a mild and convenient transition-metal-free method to synthesize near-infrared absorbing quinoidal conjugated polymers containing para-azaquinodimethane (AQM) moieties. The AQM quinoidal conjugated polymers with unique molecular structures and tunable optoelectronic properties can be synthesized by combining the Knoevenagel polycondensation of aromatic dialdehyde monomers with commercially available 1,4-diacetyl-2,5-piperazinedione and the following alkylation reaction. The resultant polymer PQ-DPP shows remarkable NIR-II absorption with a narrow band gap of about 1.08 eV. PQ-DPP nanoparticles exhibit high photothermal conversion efficiency of up to 48% under 1064 nm laser irradiation (1 W cm-2) endowing this polymer with potential in bio-related applications.


Subject(s)
Nanoparticles , Transition Elements , Polymers/chemistry , Nanoparticles/chemistry , Diacetyl
5.
J Dairy Sci ; 107(8): 5402-5415, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38331185

ABSTRACT

The synergistic fermentation of milk by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus is one of the key factors that determines the quality of yogurt. In this study, the mechanism whereby yogurt flavor compounds are produced by a mixture of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B were investigated by examining the flavor production, growth, and gene transcription of these strains. The results showed that yogurt produced by a 10:1 mixture of the aforementioned strains had the highest abundance of acetoin, whereas yogurt produced by a 1:1 mixture had the highest abundance of diacetyl and acetaldehyde. In addition, the growth of S. thermophilus SIT-20.S was enhanced in the 10:1 mixture. Transcriptomic analysis revealed differentially expressed genes in the flavor-compound-related pathways of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B in yogurts produced by 10:1 and 1:1 mixtures compared with those produced by either strain alone. Mixed fermentations regulated the expression of genes related to glycolysis, resulting in an increase of pyruvate, which is an important precursor for diacetyl and acetoin synthesis. The gene encoding the acetoin reductase (SIT-20S_orf01454) was decreased in S. thermophilus SIT-20.S, which ensured the accumulation of acetoin. In addition, the gene encoding the acetaldehyde dehydrogenase (SIT-20S_orf00949) was upregulated in S. thermophilus SIT-20.S, and the expression of alcohol dehydrogenase (SIT-20S_orf01479; SIT-17B_orf00943) was downregulated in both strains, maintaining the abundance of acetaldehyde. In addition, the gene encoding the NADH oxidase (SIT-17B_orf00860) in L. delbrueckii ssp. bulgaricus SIT-17.B were upregulated, which promoted the accumulation of diacetyl and acetoin. Overall, we characterized the mechanism by which S. thermophilus and L. delbrueckii ssp. bulgaricus synergistically generated yogurt flavor compounds during their production of yogurt and highlighted the importance of appropriate proportions of fermentation starters for improving the flavor of yogurts.


Subject(s)
Fermentation , Yogurt , Animals , Flavoring Agents , Acetoin/metabolism , Lactobacillus delbrueckii/genetics , Lactobacillus delbrueckii/metabolism , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism , Milk/chemistry , Transcriptome , Taste , Diacetyl/metabolism
6.
J Sci Food Agric ; 104(2): 686-697, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37654243

ABSTRACT

BACKGROUND: Ethanol and osmotic stresses are the major limiting factors for brewing strong beer with high-gravity wort. Breeding of yeast strains with high osmotic and ethanol tolerance and studying very-high-gravity (VHG) brewing technology is of great significance for brewing strong beer. RESULTS: This study used an optimized microbial microdroplet culture (MMC) system for adaptive laboratory evolution (ALE) of Saccharomyces cerevisiae YN81 to improve its tolerance to osmotic and ethanol stress. Meanwhile, we investigated the VHG and VHG with added ethanol (VHGAE) brewing processes for the evolved mutants in brewing strong beer. The results showed that three evolved mutants were obtained; among them, the growth performance of YN81mc-8.3 under 300, 340, 380, 420 and 460 g L-1 sucrose stresses was greater than that of the other strains. The ethanol tolerance of YN81mc-8.3 was 12%, which was 20% higher than that of YN81. During strong-beer brewing in a 100 L cylindrical cone-bottom tank, the sugar utilization and ethanol yield of YN81mc-8.3 outperformed those of YN81 in both the VHG and VHGAE brewing processes. Measurement of the diacetyl concentration showed that YN81mc-8.3 had a stronger diacetyl reduction ability; in particular, the real degree of fermentation of beers brewed by YN81mc-8.3 in VHG and VHGAE brewing processes was 75.35% and 66.71%, respectively - higher than those of the two samples brewed by YN81. Meanwhile, the visual, olfactive and gustative properties of the strong beer produced by YN81mc-8.3 were better than those of the other beers. CONCLUSION: In this study, the mutant YN81mc-8.3 and the VHGAE brewing process were optimal and represented a better alternative strong-beer brewing process. © 2023 Society of Chemical Industry.


Subject(s)
Diacetyl , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Plant Breeding , Fermentation , Ethanol , Beer
7.
J Neurosci ; 42(43): 8039-8053, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36104280

ABSTRACT

Proper management of memories by forgetting and retrieval is essential for animals to adapt their behavior to changing environments. To elucidate the mechanisms underlying forgetting, we use olfactory learning to an attractive odorant, diacetyl, in Caenorhabditis elegans hermaphrodites as a model. In this learning paradigm, the TIR-1/JNK-1 pathway in AWC sensory neurons accelerates forgetting of the olfactory memory, which is stored as a sensory memory trace in AWA sensory neurons. Our genetic screening revealed that increased neuronal diacylglycerol in the olfactory neuronal circuit, by mutations in diacylglycerol kinase-1, egl-30 or goa-1, Gq and Go type G-proteins, suppresses the forgetting defect in the behavior of tir-1 mutants, although the calcium imaging analyses of the olfactory neurons revealed that the sensory memory trace to the odorant was maintained. In contrast, the expression of a gain-of-function goa-1 gene exclusively in AWC neurons caused a forgetting defect in behavior, although their sensory memory trace declined. Furthermore, the behavioral analysis of animals applied with diacylglycerol analog and measurement of diacylglycerol content by fluorescent imaging suggested that diacylglycerol content in AWC is important for the proper forgetting. These findings raise a possibility that diacylglycerol signaling plays a crucial role in determining whether to forget or to recall in olfactory learning.SIGNIFICANCE STATEMENT Forgetting and retrieval are important processes for proper management of memories, although the mechanisms underlying these processes remain largely unclear. We found that, in Caenorhabditis elegans, diacylglycerol signaling works in a forgetting mechanism downstream of TIR-1/JNK-1 pathway. Mutations that change diacylglycerol content in the olfactory neurons affect behavioral forgetting, although they did not alter the sensory memory trace. This suggests that diacylglycerol in specific neurons may determine the occurrence of retrieving, rather than modifying, the memory traces. Consistent with this hypothesis, application of diacylglycerol analog to animals suggests that diacylglycerol content until memory acquisition decides whether to retrieve or to forget the memory.


Subject(s)
Caenorhabditis elegans Proteins , Olfactory Receptor Neurons , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Calcium/metabolism , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Diacetyl , Smell/physiology , GTP-Binding Proteins , Sensory Receptor Cells/metabolism , Olfactory Receptor Neurons/physiology
8.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L434-L446, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37642674

ABSTRACT

Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day × 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and nuclear factor-kappa B (NF-κB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1ß, and NF-κB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1ß, and NF-κB within the lung.


Subject(s)
Bronchiolitis Obliterans , Interleukin-17 , Rats , Animals , Diacetyl , Airway Remodeling , NF-kappa B , Tumor Necrosis Factor-alpha , Rats, Sprague-Dawley , Bronchiolitis Obliterans/chemically induced , Lung , Immunoglobulin G
9.
Anal Bioanal Chem ; 415(9): 1733-1740, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36840810

ABSTRACT

ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.


Subject(s)
High-Throughput Screening Assays , Transaminases , Transaminases/chemistry , Transaminases/metabolism , Colorimetry , Diacetyl , Amino Acids , Amines , Ketones
10.
Molecules ; 28(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298859

ABSTRACT

Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-coordination of ligand donor centers arising during template synthesis between the indicated ions of 3d elements, thiocarbohydrazide H2N-HN-C(=S)-NH-NH2 and diacetyl Me-C(=O)-C(=O)-Me, in gelatin-immobilized matrix implants was performed. The key bond lengths and bond angles in these coordination compounds are provided, and it is noted that in all these complexes the MN4 chelate sites, the grouping of N4 atoms bonded to the M atom, and the five-membered and six-membered metal chelate rings are practically coplanar. NBO analysis of these compounds was carried out, on the basis of which it was shown that all these complexes, in full accordance with theoretical expectations, are low-spin complexes. The standard thermodynamic characteristics of the template reactions for the formation of the above complexes are also presented. Good agreement between the data obtained using the above DFT levels is noted.


Subject(s)
Diacetyl , Macrocyclic Compounds , Hydrazines , Chelating Agents , Macrocyclic Compounds/chemistry , Ligands
11.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838889

ABSTRACT

The use of e-cigarettes (ECs) has become increasingly popular worldwide, even though scientific results have not established their safety. Diacetyl (DA) and acetylpropionyl (AP), which can be present in ECs, are linked with lung diseases. Ethyl maltol (EM)-the most commonly used flavoring agent-can be present in toxic concentrations. Until now, there is no methodology for the determination of nicotine, propylene glycol (PG), vegetable glycerin (VG), EM, DA, and acetylpropionyl in e-liquids that can be used as a quality control procedure. Herein, gas chromatography coupled with mass spectrometry (GC-MS) was applied for the development of analytical methodologies for these substances. Two GC-MS methodologies were developed and fully validated, fulfilling the standards for the integration in a routine quality control procedure by manufacturers. As proof of applicability, the methodology was applied for the analysis of several e-liquids. Differences were observed between the labeled and the experimental levels of PG, VG, and nicotine. Three samples contained EM at higher concentrations compared to the other samples, while only one contained DA. These validated methodologies can be used for the quality control analysis of EC liquid samples regarding nicotine, PG, and VG amounts, as well as for the measurement of the EM.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotine , Nicotine/analysis , Gas Chromatography-Mass Spectrometry , Vegetables , Diacetyl , Propylene Glycol/chemistry , Glycerol/chemistry
12.
World J Microbiol Biotechnol ; 39(12): 331, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37798570

ABSTRACT

The present study aimed at characterizing lactic acid bacteria (LAB) strains isolated from traditional sourdoughs collected in different regions of Morocco. Isolated strains were firstly identified using Gram staining and catalase reaction test. Presumptive LAB strains were then checked for various phenotypical properties including growth at 45 °C, resistance to NaCl, enzyme production, acidification capacity, diacetyl and exopolysaccharide (EPS) production, and antifungal activity. Finally, selected LAB strains were identified using 16S rDNA sequencing. Results showed that 32.1% of the isolates were thermophilic (45 °C) and 83.9% were resistant to NaCl (6.5%). Moreover, 51.7 and 37.5% were able to produce diacetyl and EPS, respectively. Regarding enzyme production, 55.3 and 7.1% of the isolates showed lipolytic and proteolytic activities, respectively. Low pH values (3.37-3.76) were obtained after 24 h of incubation of LAB strains in de Man, Rogosa and Sharpe (MRS) broth. Antifungal activity test against Aspergillus flavus, Aspergillus niger and Penicillium spp. showed an inhibition rate up to 50%. Bacterial DNA sequencing showed that LAB isolates belong to seven species, chiefly Levilactobacillus brevis, Lentilactobacillus parabuchneri, Lactiplantibacillus plantarum, Pediococcus pentosaceus, Enterococcus hirae, Bifidobacterium pseudocatenulatum, and Companilactobacillus paralimentarius. These findings, for the first time in Moroccan sourdoughs, indicate that the isolated LAB strains have good multifunctional properties and could be suitable as good starters for sourdough bread production under controlled conditions.


Subject(s)
Lactobacillales , Humans , Antifungal Agents , Diacetyl , Sodium Chloride , Fermentation , Biodiversity , Bread/microbiology , Food Microbiology
13.
Article in Zh | MEDLINE | ID: mdl-37006150

ABSTRACT

Occupational exposure to diacetyl can lead to bronchiolitis obliterans. In this paper, two patients with severe obstructive ventilation disorder who were exposed to diacetyl at a fragrance and flavours factory were analyzed. The clinical manifestations were cough and shortness of breath. One of them showed Mosaic shadows and uneven perfusion in both lungs on CT, while the other was normal. Field investigation found that 4 of the 8 workers in the factory were found to have obstructive ventilation disorder, and 2 had small airway dysfunction. This paper summarizes the diagnostic process of patients in order to improve the understanding of airway dysfunction caused by occupational exposure to diacetyl and promote the development of relevant standards.


Subject(s)
Bronchiolitis Obliterans , Occupational Diseases , Occupational Exposure , Humans , Diacetyl/adverse effects , Occupational Diseases/diagnosis , Occupational Exposure/adverse effects , Lung , Bronchiolitis Obliterans/chemically induced , Bronchiolitis Obliterans/diagnosis
14.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L578-L592, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36068185

ABSTRACT

Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology. In the current work, we combined these two common environmental exposures, DA and IAV, to test whether shorter DA exposures followed by sublethal IAV infection would result in similar airways disease. Adult mice exposed to DA vapors 1 h/day for 5 consecutive days followed by infection with the airway-tropic IAV H3N2 (HKx31) resulted in increased mortality, increased bronchoalveolar lavage (BAL) neutrophil percentage, mixed obstruction and restriction by lung function, and subsequent airway remodeling. Exposure to DA or IAV alone failed to result in significant pathology, whereas mice exposed to DA + IAV showed increased α-smooth muscle actin (αSMA) and epithelial cells coexpressing the basal cell marker keratin 5 (KRT5) with the club cell marker SCGB1A1. To test whether DA exposure impairs epithelial repair after IAV infection, mice were infected first with IAV and then exposed to DA during airway epithelial repair. Mice exposed to IAV + DA developed similar airway remodeling with increased subepithelial αSMA and epithelial cells coexpressing KRT5 and SCGB1A1. Our findings reveal an underappreciated concept that common environmental insults while seemingly harmless by themselves can have catastrophic implications on lung function and long-term respiratory health when combined.


Subject(s)
Bronchiolitis Obliterans , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Humans , Diacetyl/toxicity , Airway Remodeling , Influenza A Virus, H3N2 Subtype , Bronchiolitis Obliterans/pathology , Respiratory Mucosa/pathology , Epithelial Cells/pathology , Lung/pathology , Influenza, Human/pathology
15.
Crit Rev Toxicol ; 52(9): 715-730, 2022 10.
Article in English | MEDLINE | ID: mdl-36803409

ABSTRACT

Alpha-diketones, notably diacetyl, have been used as flavoring agents. When airborne in occupational settings, exposures to diacetyl have been associated with serious respiratory disease. Other α-diketones, such as 2,3-pentanedione, and analogues such as acetoin (a reduced form of diacetyl), require evaluation, particularly, in light of recently available toxicological studies. The current work reviewed mechanistic, metabolic, and toxicology data available for α-diketones. Data were most available for diacetyl and 2,3-pentanedione, and a comparative assessment of their pulmonary effects was performed, and an occupational exposure limit (OEL) was proposed for 2,3-pentanedione. Previous OELs were reviewed and an updated literature search was performed. Respiratory system histopathology data from 3-month toxicology studies were evaluated with benchmark dose (BMD) modelling of sensitive endpoints. This demonstrated comparable responses at concentrations up to 100 ppm, with no consistent overall pattern of greater sensitivity to either diacetyl or 2,3-pentanedione. In contrast, based on draft raw data, no adverse respiratory effects were observed in comparable 3-month toxicology studies that evaluated exposure to acetoin at up to 800 ppm (highest tested concentration), indicating that acetoin does not present the same inhalation hazard as diacetyl or 2,3-pentanedione. To derive an OEL for 2,3-pentanedione, BMD modelling was conducted for the most sensitive endpoint from 90-day inhalation toxicity studies, namely, hyperplasia of nasal respiratory epithelium. On the basis of this modelling, an 8-hour time-weighted average OEL of 0.07 ppm is proposed to be protective against respiratory effects that may be associated with chronic workplace exposure to 2,3-pentanedione.


Subject(s)
Diacetyl , Occupational Exposure , Diacetyl/toxicity , Acetoin , Ketones , Pentanones/toxicity
16.
J Exp Biol ; 225(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36268800

ABSTRACT

We examined whether the force loss induced by 2,3-butanedione monoxime affects isometric and eccentric forces differently. Single skinned muscle fibers were activated at an average sarcomere length of 2.4 µm and then stretched to 3.0 µm. This trial was performed with and without 2,3-butanedione monoxime to calculate the magnitude of force loss attained at several time points: pre-stretch phase at 2.4 µm, eccentric phase, end of eccentric contraction, and post-stretch phase at 3.0 µm. The magnitude of force loss was significantly larger in the pre-stretch phase than at the other time points. Further, the mitigated force loss in the eccentric contraction was more prominent in the long condition than in the short condition. We suggest that the eccentric force is relatively preserved compared with the reference isometric force (pre-stretch) when cross-bridge cycling is inhibited, possibly because of the contribution of the elastic force produced by titin.


Subject(s)
Isometric Contraction , Muscle Fibers, Skeletal , Isometric Contraction/physiology , Muscle Fibers, Skeletal/physiology , Sarcomeres/physiology , Diacetyl , Muscle Contraction/physiology , Muscle, Skeletal/physiology
17.
J Toxicol Environ Health B Crit Rev ; 25(7): 343-371, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36154615

ABSTRACT

Electronic cigarettes (ECs) are purported to be tobacco harm-reduction products whose degree of harm has been highly debated. EC use is considered less hazardous than smoking but is not expected to be harmless. Following the banning of e-liquid flavors in countries such as the US, Finland, Ukraine, and Hungary, there are growing concerns regarding the safety profile of e-liquid flavors used in ECs. While these are employed extensively in the food industry and are generally regarded as safe (GRAS) when ingested, GRAS status after inhalation is unclear. The aim of this review was to assess evidence from 38 reports on the adverse effects of flavored e-liquids on the respiratory system in both in vitro and in vivo studies published between 2006 and 2021. Data collected demonstrated greater detrimental effects in vitro with cinnamon (9 articles), strawberry (5 articles), and menthol (10 articles), flavors than other flavors. The most reported effects among these investigations were perturbations of pro-inflammatory biomarkers and enhanced cytotoxicity. There is sufficient evidence to support the toxicological impacts of diacetyl- and cinnamaldehyde-containing e-liquids following human inhalation; however, safety profiles on other flavors are elusive. The latter may result from inconsistencies between experimental approaches and uncertainties due to the contributions from other e-liquid constituents. Further, the relevance of the concentration ranges to human exposure levels is uncertain. Evidence indicates that an adequately controlled and consistent, systematic toxicological investigation of a broad spectrum of e-liquid flavors may be required at biologically relevant concentrations to better inform public health authorities on the risk assessment following exposure to EC flavor ingredients.


Subject(s)
Electronic Nicotine Delivery Systems , Humans , Flavoring Agents/toxicity , Flavoring Agents/analysis , Menthol , Diacetyl
18.
J Dairy Sci ; 105(4): 2868-2879, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151477

ABSTRACT

Diacetyl and acetoin are key aroma components of fermented milk but are produced in low concentrations by starter cultures. In this study, we expressed NADH oxidase, acetolactate synthase, and inactivated acetolactate decarboxylase in Lacticaseibacillus casei TCS to generate recombinant L. casei strains, and investigated the effects of the genes encoding these enzymes on diacetyl and acetoin production during milk fermentation. In the single-gene recombinant strains tested, diacetyl concentrations were highest in milk fermented by L. casei TCSI-nox (nox gene overexpressed, 3.68 mg/kg), whereas acetoin concentrations were highest in milk fermented by L. casei TCS-ΔalsD (alsD gene deleted, 32.94 mg/kg). Moreover, diacetyl and acetoin concentrations were higher in the inducible strains than in the corresponding constitutive strains (e.g., TCSI-nox vs. TCSC-nox, and TCSI-ΔalsD-nox vs. TCSC-ΔalsD-nox). This phenomenon was also reflected in the protein expression levels and enzyme activities. In the double-gene recombinant strains tested, the highest concentrations of diacetyl and acetoin were produced by L. casei TCSI-ΔalsD-nox (nox overexpressed and alsD deleted, 4.66 mg/kg, 69.62 mg/kg, respectively). The triple-gene recombinant L. casei TCS-ΔalsD-nox-alsS produced the highest concentrations of diacetyl and acetoin, which were 2.38 and 11.19 times, respectively, the concentrations produced by the original strain. These results show that the nox, alsS, and alsD genes make key contributions to the biosynthesis of diacetyl and acetoin by L. casei. The modification of multiple genes had a synergistic effect, leading to greatly increased synthesis of diacetyl and acetoin by L. casei during its fermentation of milk.


Subject(s)
Acetoin , Lacticaseibacillus casei , Animals , Diacetyl , Fermentation , Lacticaseibacillus casei/genetics , Lacticaseibacillus casei/metabolism , Milk/metabolism
19.
BMC Biol ; 19(1): 26, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563272

ABSTRACT

BACKGROUND: Recognition of stress and mobilization of adequate "fight-or-flight" responses is key for survival and health. Previous studies have shown that exposure of Caenorhabditis elegans to pathogens or toxins simultaneously stimulates cellular stress and detoxification responses and aversive behavior. However, whether a coordinated regulation exists between cytoprotective stress responses and behavioral defenses remains unclear. RESULTS: Here, we show that exposure of C. elegans to high concentrations of naturally attractive food-derived odors, benzaldehyde and diacetyl, induces toxicity and food avoidance behavior. Benzaldehyde preconditioning activates systemic cytoprotective stress responses involving DAF-16/FOXO, SKN-1/Nrf2, and Hsp90 in non-neuronal cells, which confer both physiological (increased survival) and behavioral tolerance (reduced food avoidance) to benzaldehyde exposure. Benzaldehyde preconditioning also elicits behavioral cross-tolerance to the structurally similar methyl-salicylate, but not to the structurally unrelated diacetyl. In contrast, diacetyl preconditioning augments diacetyl avoidance, weakens physiological diacetyl tolerance, and does not induce apparent molecular defenses. The inter-tissue connection between cellular and behavioral defenses is mediated by JNK-like stress-activated protein kinases and the neuropeptide Y receptor NPR-1. Reinforcement of the stressful experiences using spaced training forms stable stress-specific memories. Memory retrieval by the olfactory cues leads to avoidance of food contaminated by diacetyl and context-dependent behavioral decision to avoid benzaldehyde only if there is an alternative, food-indicative odor. CONCLUSIONS: Our study reveals a regulatory link between conserved cytoprotective stress responses and behavioral avoidance, which underlies "fight-or-flight" responses and facilitates self-protection in real and anticipated stresses. These findings imply that variations in the efficiency of physiological protection during past episodes of stress might shape current behavioral decisions.


Subject(s)
Benzaldehydes/metabolism , Caenorhabditis elegans/physiology , Diacetyl/metabolism , Signal Transduction , Animals , Avoidance Learning/physiology , Caenorhabditis elegans/genetics , Decision Making/physiology , Food , Odorants/analysis
20.
ScientificWorldJournal ; 2022: 9901018, 2022.
Article in English | MEDLINE | ID: mdl-36193042

ABSTRACT

Food-borne illnesses are a significant concern for consumers, the food industry, and food safety authorities. Natural preservatives are very crucial for enhancing food safety and shelf life. Therefore, this review aimed to assess the literature regarding the potential of natural preservatives to enhance food safety and extend the shelf life of food products. The review paper indicated that natural antimicrobial agents that inhibit bacterial and fungal growth for better quality and shelf life have been of considerable interest in recent years. Natural antimicrobials are mainly extracted and isolated as secondary metabolites of plants, animals, and microorganisms. Plants, especially herbs and spices, are given more attention as a source of natural antimicrobials. Microorganisms used in food fermentation also produce different antimicrobial metabolites, including organic acids, hydrogen peroxide, and diacetyl, in addition to bacteriocins. Products of animal origin, such as tissues and milk, contain different antimicrobial agents. Natural antimicrobials are primarily extracted and purified before utilization for food product development. The extraction condition and purification of natural preservatives may change their structure and affect their functionality. Selecting the best extraction method coupled with minimal processing such as direct mechanical extraction seems to preserve active ingredients. The activity of natural antimicrobials could also be influenced by the source, time of harvesting, and stage of development. The effectiveness of natural antimicrobial compounds in food applications is affected by different factors, including food composition, processing method, and storage conditions. Natural antimicrobials are safe because they can limit microbial resistance and meet consumers' demands for healthier foods.


Subject(s)
Anti-Infective Agents , Bacteriocins , Animals , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Diacetyl , Food Preservation , Food Preservatives/pharmacology , Food Safety , Hydrogen Peroxide
SELECTION OF CITATIONS
SEARCH DETAIL