ABSTRACT
We evaluated spatial-temporal risk for Lyme disease in northwestern North Carolina, USA, by using individual-level canine Borrelia burgdorferi seroprevalence data collected during 2017-2021 at routine veterinary screenings for tickborne diseases. Seroprevalence in dogs increased from 2.2% (47/2,130) in 2017 to 11.2% (339/3,033) in 2021. The percentage of incident seropositivity increased from 2.1% (45/2,130) in 2017 to 7.6% (231/3,033) in 2021. Exploratory geographic analyses found canine seroprevalence shifted from clustered (2017, Moran's I = 0.30) to dispersed (2021, Moran's I = -0.20). Elevation, slope, aspect, and forest land cover density were associated with canine seroprevalence within various household buffer regions in 2017. Slope was associated with seroprevalence at the household level in 2021. Results support the use of individual-level canine seroprevalence data for monitoring human risk for Lyme disease. Establishing sentinel veterinary clinics within Lyme disease-emergent communities might promote prevention and control efforts and provide opportunities for educational and behavioral interventions.
Subject(s)
Antibodies, Bacterial , Borrelia burgdorferi , Dog Diseases , Lyme Disease , Seroepidemiologic Studies , Animals , Dogs , Lyme Disease/epidemiology , Lyme Disease/veterinary , Borrelia burgdorferi/immunology , Dog Diseases/epidemiology , Dog Diseases/microbiology , North Carolina/epidemiology , Antibodies, Bacterial/blood , FemaleABSTRACT
BACKGROUND: Staphylococcus pseudintermedius is a common opportunistic pathogen of companion dogs and an occasional human pathogen. Treatment is hampered by antimicrobial resistance including methicillin resistance encoded by mecA within the mobile genetic element SCCmec. OBJECTIVES: SCCmec elements are diverse, especially in non-Staphyloccocus aureus staphylococci, and novel variants are likely to be present in S. pseudintermedius. The aim was to characterize the SCCmec elements found in four canine clinical isolates of S. pseudintermedius. MATERIAL AND METHODS: Isolates were whole-genome sequenced and SCCmec elements were assembled, annotated and compared to known SCCmec types. RESULTS AND DISCUSSION: Two novel SSCmec are present in these isolates. SCCmec7017-61515 is characterized by a novel combination of a Class A mec gene complex and a type 5 ccr previously only described in composite SCCmec elements. The other three isolates share a novel composite SCCmec with features of SCCmec types IV and VI. CONCLUSIONS: S. pseudintermedius is a reservoir of novel SSCmec elements that has implications for understanding antimicrobial resistant in veterinary and human medicine.
Subject(s)
Chromosomes, Bacterial , Dog Diseases , Methicillin Resistance , Staphylococcal Infections , Staphylococcus , Whole Genome Sequencing , Methicillin Resistance/genetics , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/classification , Staphylococcus/isolation & purification , Animals , Dogs , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Dog Diseases/microbiology , Chromosomes, Bacterial/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Genome, Bacterial , Genetic Variation , Interspersed Repetitive Sequences/geneticsABSTRACT
BACKGROUND: MRSA is a major contributor to AMR-related deaths. The WHO's global action plan emphasizes a One Health approach, acknowledging the connection between humans and their companion animals. It is agreed on that comprehensive AMR surveillance is needed. OBJECTIVES: This study provides a large-scale overview of MRSA occurrence in cats and dogs in Germany, serving as a foundation for continuous surveillance. METHODS: The study analysed all results of canine and feline bacterial diagnostic samples from a large laboratory, encompassing samples received from veterinary practices between January 2019 and December 2021. MRSA prevalence between host species, sample types and geographical distribution were compared. Additionally, data were contrasted with human MRSA surveillance data from Germany. RESULTS: Samples originated from 3491 German veterinary practices, representing 33.1% of practices and clinics nationally. Bacterial examination results from 175â171 samples were analysed, identifying S. aureus in 5526 of these samples (3.2% isolation rate). S. aureus in clinical samples was more prevalent in cats (5.6%) than dogs (2.0%). Methicillin resistance was found in 17.8% of S. aureus samples and was higher in dogs (20.4%, 95%CI 18.9-22.0) than cats (15.6%, 95%CI 14.3-17.0). The highest MRSA prevalence was found in canine wound samples (32%), compared to skin/soft tissue, respiratory tract and other (<23% respectively). CONCLUSION: The study reveals a 17.8% MRSA prevalence, which is higher than the human outpatient MRSA prevalence (5.4%). Restriction and regulation of veterinary antibiotic use should be validated with AMR surveillance. Our study shows that this is feasible in companion animals with significant coverage.
Subject(s)
Cat Diseases , Dog Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Cats , Dogs , Animals , Germany/epidemiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cat Diseases/epidemiology , Cat Diseases/microbiology , Prevalence , Dog Diseases/epidemiology , Dog Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Corynebacterium (C.) sp. 22KM0430 related to C. oculi and isolated from a dog exhibited resistance to tetracycline, and its WGS analysis revealed a putative resistance gene on a 35 562-bp plasmid also harbouring the MLSB resistance gene erm(X). OBJECTIVES: To characterize the novel tetracycline resistance gene tet(65) and demonstrate its functionality by expression in C. glutamicum and Escherichia coli and plasmid curing of the host strain. METHODS: tet(65) was cloned with and without its repressor tetR(65) and expressed in C. glutamicum DSM20300 and E. coli DH5α. Plasmid was cured by non-selective passages. Minimal inhibitory concentrations (MICs) of tetracyclines were determined according to CLSI guidelines. Association of tet(65) with efflux was shown by the addition of reserpine to MIC assays. Phylogenetic position and transmembrane structure of Tet(65) were analysed using MEGA11 and DeepTMHMM. RESULTS: Tet(65) shows 73% amino acid identity with the closest related Tet(Z), contains 12 transmembrane domains and is structurally related to the Major Facilitator Superfamily. The tetracycline MICs decreased in the plasmid-cured strain and increased when tet(65) was expressed in C. glutamicum and in E. coli. The MICs of tetracycline decreased in the presence of reserpine indicating that tet(65) functions as an efflux pump. A GenBank search also identified tet(65) in C. diphtheriae and Brevibacterium (B.) casei and B. luteolum. CONCLUSIONS: A novel tetracycline efflux gene tet(65) was identified in a C. oculi related species and was also present in the human pathogen C. diphtheriae and in Brevibacterium species indicating broader potential for dissemination.
Subject(s)
Anti-Bacterial Agents , Corynebacterium , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Tetracycline Resistance , Plasmids/genetics , Tetracycline Resistance/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Corynebacterium/genetics , Corynebacterium/drug effects , Animals , Drug Resistance, Multiple, Bacterial/genetics , Phylogeny , Dogs , Tetracycline/pharmacology , Cloning, Molecular , Corynebacterium Infections/microbiology , Dog Diseases/microbiologyABSTRACT
OBJECTIVES: To characterize the mobile genetic elements and genetic localization of ileS2 in high-level mupirocin-resistant (Hi-MupR) methicillin-resistant Staphylococcus pseudintermedius (MRSP) and MRSA isolates recovered from canine and feline clinical samples. METHODS: The identification of bacterial species and presence of mecA and ileS2 genes in MRSP and MRSA isolates were performed using MALDI-TOF MS and PCR, respectively. Antimicrobial resistance (AMR) phenotypes were determined by broth microdilution assays. The genome characteristics, ileS2-containing elements and staphylococcal cassette chromosome mec (SCCmec) were illustrated using complete circular genomes obtained from hybrid assembly of Illumina short-reads and Oxford Nanopore Technologies long-reads. These were analysed through phylogenetic and bioinformatics approaches. RESULTS: A total of 18 MRSP clinical isolates and four MRSA clinical isolates exhibited the Hi-MupR phenotype and carried multiple AMR genes, including mecA and ileS2 genes. MRSP ST182-SCCmec V (nâ=â6) and ST282-ΨSCCmec57395-t10 (nâ=â4) contained the ileS2 transposable unit associated with IS257 on the chromosome. Three MRSA ST398-SCCmec V-t034/t4652 isolates carried â¼42 kb pSK41-like ileS2 plasmids, whereas similar ileS2 plasmids lacking tra genes were found in MRSP ST282-ΨSCCmec57395-t72/t21 isolates. Furthermore, a new group of ileS2 plasmids, carried by MRSP ST45-ΨSCCmec57395, ST433-ΨSCCmecKW21-t05 and ST2165-SCCmec IV-t06, and by one MRSA ST398-SCCmec V-t034 strain, shared the plasmid backbone with the cfr/fexA-carrying plasmid pM084526_1 in MRSA ST398. CONCLUSIONS: This study provides the first evidence of ileS2 integration into the S. pseudintermedius chromosome, which is a rare occurrence in staphylococcal species, and plasmids played a pivotal role in dissemination of ileS2 in both staphylococcal species.
Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Chromosomes, Bacterial , Mupirocin , Staphylococcus , Animals , Cats/microbiology , Dogs/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cat Diseases/microbiology , Chromosomes, Bacterial/genetics , Dog Diseases/microbiology , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Interspersed Repetitive Sequences/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Mupirocin/pharmacology , Phylogeny , Plasmids/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purificationABSTRACT
Infections caused by antimicrobial-resistant Escherichia coli are the leading cause of death attributed to antimicrobial resistance (AMR) worldwide, and the known AMR mechanisms involve a range of functional proteins. Here, we employed a pan-genome wide association study (GWAS) approach on over 1,000 E. coli isolates from sick dogs collected across the US and Canada and identified a strong statistical association (empirical P < 0.01) of AMR, involving a range of antibiotics to a group 1 capsular (CPS) gene cluster. This cluster included genes under relaxed selection pressure, had several loci missing, and had pseudogenes for other key loci. Furthermore, this cluster is widespread in E. coli and Klebsiella clinical isolates across multiple host species. Earlier studies demonstrated that the octameric CPS polysaccharide export protein Wza can transmit macrolide antibiotics into the E. coli periplasm. We suggest that the CPS in question, and its highly divergent Wza, functions as an antibiotic trap, preventing antimicrobial penetration. We also highlight the high diversity of lineages circulating in dogs across all regions studied, the overlap with human lineages, and regional prevalence of resistance to multiple antimicrobial classes. IMPORTANCE: Much of the human genomic epidemiology data available for E. coli mechanism discovery studies has been heavily biased toward shiga-toxin producing strains from humans and livestock. E. coli occupies many niches and produces a wide variety of other significant pathotypes, including some implicated in chronic disease. We hypothesized that since dogs tend to share similar strains with their owners and are treated with similar antibiotics, their pathogenic isolates will harbor unexplored AMR mechanisms of importance to humans as well as animals. By comparing over 1,000 genomes with in vitro antimicrobial susceptibility data from sick dogs across the US and Canada, we identified a strong multidrug resistance association with an operon that appears to have once conferred a type 1 capsule production system.
Subject(s)
Anti-Bacterial Agents , Dog Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Dogs , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Dog Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Canada , Genome-Wide Association Study , Genome, Bacterial , United States , Bacterial Capsules/genetics , Multigene Family , Evolution, Molecular , Genomics , Escherichia coli Proteins/geneticsABSTRACT
BACKGROUND: Several diagnostic environments in Uganda lack real-time, robust and high-throughput technologies for comprehensive typing of microbes, which is a setback to infectious disease surveillance. This study combined various wet laboratory diagnostics to understand the epidemiology of pathogenic staphylococci isolated from animals in Uganda and the implications for global health security priorities. METHODS: A retrospective study was conducted employing records and pathogenic staphylococci (from animals) archived at the Central Diagnostic Laboratory (CDL), Makerere University, Uganda, between January 2012 and December 2019. The bacteria were speciated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tested for virulence factors [beta lactamases, lecithinase, deoxyribonuclease (DNase), haemolysins] and resistance to ten antimicrobials of clinical and veterinary relevance. Tetracycline and methicillin resistance genes were also tested. RESULTS: The prevalent diseases were mastitis in cattle and skin infections in dogs. Of the 111 staphylococci tested by MALDI-TOF MS, 79 (71.2%) were Staphylococcus aureus, 27 (24.3%) were Staphylococcus pseudintermedius and 5 (4.5%) were Staphylococcus schleiferi. All these strains expressed haemolysins. The prevalence of strains with lecithinase, penicillinase, cephalosporinase and DNase was 35.9% (14/39), 89.7% (35/39), 0.0% (0/39) and 87.2% (34/39), respectively. Staphylococci were primarily resistant to early penicillins (over 80%), tetracycline (57.7%), and chloramphenicol (46.2%). Minimal resistance was noted with cloxacillin (0.0%), ciprofloxacin (9.6%), and cefoxitin (3.8%). The prevalence of multidrug resistance (MDR) was 78.8% for general staphylococci, 82.2% for S. aureus, 73.1% for S. pseudintermedius, and 60.0% for S. schleiferi. Multidrug resistant staphylococci were significantly more prevalent in the cattle isolates than in the dog isolates (P < 0.05). The prevalence of methicillin-resistant staphylococci (MRS) tested by resistance to cefoxitin and mecA carriage was 3.8%. These four strains were all isolated from dog skin infections. The tetK gene was the most predominant (35.4%), followed by tetM (25.0%). CONCLUSION: In resource-constrained settings, the approach of integrated diagnostics promises sustainable disease surveillance and the addressing of current capacity gaps. The emergence of MRS (zoonotic bacteria) in companion animals creates a likelihood of reduced treatment options for related human infections, a threat to global health.
Subject(s)
Staphylococcal Infections , Staphylococcus , Animals , Uganda/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/epidemiology , Cattle , Retrospective Studies , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Staphylococcus/classification , Dogs , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Female , Dog Diseases/microbiology , Dog Diseases/epidemiology , Dog Diseases/diagnosis , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/diagnosis , Microbial Sensitivity TestsABSTRACT
Otitis externa is an inflammatory disease of the external ear canal of complex and multifactorial etiology associated with recurrent bacterial infection. This study aimed to assess the antimicrobial and antibiofilm activity of promethazine against bacterial isolates from dogs with otitis externa, as well as the effect of this compound on the dynamics of biofilm formation over 120 h. Planktonic bacterial susceptibility to promethazine was evaluated to determine the minimum inhibitory concentrations (MIC). The minimum biofilm eradication concentration (MBEC) was also determined by broth microdilution. To evaluate the effect on biofilm growth, promethazine was tested at three concentrations MIC, MIC/2 and MIC/8, with daily readings at 48, 72, 96 and 120 h. The MICs of promethazine ranged from 48.83 to 781.25 µg mL-1. Promethazine significantly (P < 0.05) reduced mature biofilm biomass, with MBECs ranging from 48.8 to 6250 µg mL-1 and reduced (P < 0.01) biofilm formation for up to the 120-h, at concentrations corresponding to the MIC obtained against each isolate. Promethazine was effective against microorganisms associated with canine otitis externa. The data suggest that promethazine presents antimicrobial and antibiofilm activity and is a potential alternative to treat and prevent recurrent bacterial otitis in dogs. These results emphasize the importance of drug repurposing in veterinary otology as an alternative to reduce antimicrobial resistance.
Subject(s)
Anti-Bacterial Agents , Biofilms , Dog Diseases , Microbial Sensitivity Tests , Otitis Externa , Promethazine , Animals , Dogs , Biofilms/drug effects , Promethazine/pharmacology , Dog Diseases/microbiology , Dog Diseases/drug therapy , Anti-Bacterial Agents/pharmacology , Otitis Externa/microbiology , Otitis Externa/veterinary , Otitis Externa/drug therapy , Bacteria/drug effects , Bacteria/classification , Bacteria/isolation & purificationABSTRACT
OBJECTIVE: Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS: In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS: Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION: The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.
Subject(s)
Dog Diseases , Echinococcosis , Echinococcus , Feces , Gastrointestinal Microbiome , Animals , Dogs , Echinococcosis/veterinary , Dog Diseases/parasitology , Dog Diseases/microbiology , Dog Diseases/virology , China , Feces/parasitology , Feces/microbiology , Feces/virology , Echinococcus/genetics , Echinococcus/isolation & purification , Genome, Viral , Viruses/classification , Viruses/isolation & purification , Viruses/geneticsABSTRACT
A strain belonging to the genus Psychrobacter, named PraFG1T, was isolated from the peritoneal effusion of a stray dog during necropsy procedures. The strain was characterized by the phylogenetic analyses based on the nucleotide sequences of 16S and 23S rRNA genes and of gyrB, which placed the strain in the genus Psychrobacter. The nucleotide sequence of the chromosome confirmed the placement, showing an average nucleotide identity of 72.1, 77.7, and 77.5â% with the closest related species, namely Psychrobacter sanguinis, Psychrobacter piechaudii, and Psychrobacter phenylpyruvicus, respectively, thus indicating a novel species. The polyphasic characterization by biochemical and fatty acid profiling as well as MALDI-TOF supported those findings. The strain was halotolerant, capable of growing within a temperature range between 4 and 37â°C, it was positive for catalase and oxidase, indole producing, nitrate reducing, and not able to use 5-keto-d-gluconic acid as a carbon source. Taken together, the data suggest that strain PraFG1T could be considered as representing a novel species, with the name Psychrobacter raelei sp. nov. (type strain PraFG1T=CIP 111873T=LMG 32233T).
Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Peritonitis , Phylogeny , Psychrobacter , RNA, Ribosomal, 16S , RNA, Ribosomal, 23S , Sequence Analysis, DNA , Animals , Psychrobacter/genetics , Psychrobacter/isolation & purification , Psychrobacter/classification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Peritonitis/microbiology , Dogs , RNA, Ribosomal, 23S/genetics , Dog Diseases/microbiology , Gram-Positive Bacterial Infections/microbiologyABSTRACT
Coccidioidomycosis is a potentially fatal fungal disease of humans and animals that follows inhalation of Coccidioides spp. arthroconidia in the environment. The disease in dogs resembles that in people, and because dogs may be at increased risk of exposure due to their proximity to the ground and digging behavior, they are valuable models for the disease in humans. Dogs have been sentinels for identification of new regions of endemicity in Washington and Texas. Canine serosurveillance has also been used to predict variables associated with environmental presence of Coccidioides spp. Expansion of the endemic region of coccidioidomycosis with climate change-along with predicted population increases and increased development in the southwest United States-may result in 45.4 million additional people at risk of infection by 2090. Here we provide an overview of the value of dogs as sentinels for the disease and encourage the routine reporting of coccidioidomycosis cases in dogs to public health agencies. We also highlight the value of dogs as naturally occurring models for studying novel treatment options and preventatives, such as a novel live avirulent coccidioidomycosis vaccine.
Subject(s)
Coccidioidomycosis , Dog Diseases , Animals , Dogs , Coccidioides , Coccidioidomycosis/epidemiology , Coccidioidomycosis/veterinary , Coccidioidomycosis/microbiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Models, Animal , Southwestern United StatesABSTRACT
Despite previous reports on the emergence of Malassezia pachydermatis strains with decreased susceptibility to azoles, there is limited information on the actual prevalence and genetic diversity of azole-resistant isolates of this yeast species. We assessed the prevalence of azole resistance in M. pachydermatis isolates from cases of dog otitis or skin disease attended in a veterinary teaching hospital during a 2-year period and analyzed the ERG11 (encoding a lanosterol 14-α demethylase, the primary target of azoles) and whole genome sequence diversity of a group of isolates that displayed reduced azole susceptibility. Susceptibility testing of 89 M. pachydermatis isolates from 54 clinical episodes (1-6 isolates/episode) revealed low minimum inhibitory concentrations (MICs) to most azoles and other antifungals, but 11 isolates from six different episodes (i.e., 12.4% of isolates and 11.1% of episodes) had decreased susceptibility to multiple azoles (fluconazole, itraconazole, ketoconazole, posaconazole, ravuconazole, and/or voriconazole). ERG11 sequencing of these 11 azole-resistant isolates identified eight DNA sequence profiles, most of which contained amino acid substitutions also found in some azole-susceptible isolates. Analysis of whole genome sequencing (WGS) results revealed that the azole-resistant isolates from the same episode of otitis, or even different episodes affecting the same animal, were more genetically related to each other than to isolates from other dogs. In conclusion, our results confirmed the remarkable ERG11 sequence variability in M. pachydermatis isolates of animal origin observed in previous studies and demonstrated the value of WGS for disentangling the epidemiology of this yeast species.
We analyzed the prevalence and diversity of azole-resistant Malassezia pachydermatis isolates in a veterinary hospital. A low prevalence of multi-azole resistance (c.10% of isolates and cases) was found. Whole genome and ERG11 sequencing of resistant isolates revealed remarkable genetic diversity.
Subject(s)
Antifungal Agents , Azoles , Dog Diseases , Drug Resistance, Fungal , Genetic Variation , Malassezia , Microbial Sensitivity Tests , Dogs , Animals , Malassezia/genetics , Malassezia/drug effects , Malassezia/isolation & purification , Malassezia/classification , Azoles/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Antifungal Agents/pharmacology , Prevalence , Otitis/microbiology , Otitis/epidemiology , Otitis/veterinary , Dermatitis/microbiology , Dermatitis/veterinary , Dermatitis/epidemiology , Dermatomycoses/microbiology , Dermatomycoses/veterinary , Dermatomycoses/epidemiology , Whole Genome Sequencing , Sterol 14-Demethylase/geneticsABSTRACT
Cryptosporidium spp., Giardia intestinalis and microsporidia are unicellular opportunistic pathogens that can cause gastrointestinal infections in both animals and humans. Since companion animals may serve as a source of infection, the aim of the present screening study was to analyse the prevalence of these intestinal protists in fecal samples collected from dogs living in 10 animal shelters in central Europe (101 dogs from Poland and 86 from the Czech Republic), combined with molecular subtyping of the detected organisms in order to assess their genetic diversity. Genus-specific polymerase chain reactions were performed to detect DNA of the tested species and to conduct molecular subtyping in collected samples, followed by statistical evaluation of the data obtained (using χ2 or Fisher's tests). The observed prevalence was 15.5, 10.2, 1 and 1% for G. intestinalis, Enterocytozoon bieneusi, Cryptosporidium spp. and Encephalitozoon cuniculi, respectively. Molecular evaluation has revealed the predominance of dog-specific genotypes (Cryptosporidium canis XXe1 subtype; G. intestinalis assemblages C and D; E. cuniculi genotype II; E. bieneusi genotypes D and PtEbIX), suggesting that shelter dogs do not pose a high risk of human transmission. Interestingly, the percentage distribution of the detected pathogens differed between both countries and individual shelters, suggesting that the risk of infection may be associated with conditions typical of a given location.
Subject(s)
Cryptosporidiosis , Cryptosporidium , Dog Diseases , Enterocytozoon , Feces , Giardiasis , Microsporidiosis , Animals , Dogs , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Poland/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Feces/parasitology , Feces/microbiology , Czech Republic/epidemiology , Giardiasis/veterinary , Giardiasis/epidemiology , Giardiasis/parasitology , Prevalence , Giardia/genetics , Giardia/isolation & purification , Giardia/classification , Genotype , Giardia lamblia/genetics , Giardia lamblia/isolation & purification , Giardia lamblia/classification , Host SpecificityABSTRACT
AIMS: Pyometra and cystitis caused by Escherichia coli are common diseases identified in canine or feline females. The origin of pyometra infection remains uncertain, and effective prevention strategies for this disease are still unknown. This study aimed to provide a phenotypic characterization, including antimicrobial resistance and virulence profiles, of endometrial pathogenic (EnPEC) and uropathogenic (UPEC) E. coli strains isolated simultaneously from the same animal. METHODS AND RESULTS: Sixteen E. coli strains, from eight different animals, were analyzed in this study. The antimicrobial susceptibility profile of EnPEC and UPEC strains was determined using the disc diffusion method, which showed a similar susceptibility profile among strains (EnPEC and UPEC) from the same animal. The virulence profile of the strains was assessed through biofilm formation, as well as serum resistance abilities. EnPEC and UPEC strains from the same animal exhibited slight variations in their virulence and antimicrobial resistance capabilities. Overall, most of the strain pairs showed a high similarity in their ability to establish biofilms and survive in serum complement activity. CONCLUSIONS: Overall, strains of E. coli isolated from both pyometra and cystitis in the same animal, despite presenting distinct clinical diseases, exhibit a wide phenotypic similarity, suggesting a common origin for the strains.
Subject(s)
Biofilms , Cat Diseases , Cystitis , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Phenotype , Pyometra , Animals , Cystitis/microbiology , Cystitis/veterinary , Pyometra/microbiology , Pyometra/veterinary , Female , Cats , Dogs , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Cat Diseases/microbiology , Biofilms/growth & development , Virulence , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Uropathogenic Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/pathogenicity , Drug Resistance, BacterialABSTRACT
BACKGROUND: Periodontitis is the most common oral disease in dogs, and its progression and severity are influenced by risk factors, such as age and body size. Recent studies have assessed the canine oral microbiota in relation to different stages of periodontitis and niches within the oral cavity. However, knowledge of the bacterial composition at different ages and body sizes, especially in puppies, is limited. This study aimed to characterize the oral microbiota in the healthy gingiva of small breed puppies using next-generation sequencing. Additionally, we assessed the impact of dental care practices and the presence of retained deciduous teeth on the oral microbiota. RESULTS: In this study, plaque samples were collected from the gingival margin of 20 small breed puppies (age, 6.9 ± 0.6 months). The plaque samples were subjected to next-generation sequencing targeting the V3-V4 region of the 16 S rRNA. The microbiota of the plaque samples was composed mostly of gram-negative bacteria, primarily Proteobacteria (54.12%), Bacteroidetes (28.79%), and Fusobacteria (5.11%). Moraxella sp. COT-017, Capnocytophaga cynodegmi COT-254, and Bergeyella zoohelcum COT-186 were abundant in the oral cavity of the puppies. In contrast, Neisseria animaloris were not detected. The high abundance of Pasteurellaceae suggests that this genus is characteristic of the oral microbiota in puppies. Dental care practices and the presence of retained deciduous teeth showed no effects on the oral microbiota. CONCLUSIONS: In this study, many bacterial species previously reported to be detected in the normal oral cavity of adult dogs were also detected in 6-8-month-old small breed dogs. On the other hand, some bacterial species were not detected at all, while others were detected in high abundance. These data indicate that the oral microbiota of 6-8-month-old small breed dogs is in the process of maturating in to the adult microbiota and may also have characteristics of the small dog oral microbiota.
Subject(s)
Dog Diseases , Microbiota , Periodontitis , Dogs , Animals , RNA, Ribosomal, 16S/genetics , Gingiva/microbiology , Periodontitis/veterinary , Microbiota/genetics , Bacteria/genetics , Dog Diseases/microbiologyABSTRACT
BACKGROUND: A multimodal approach for diagnostic tests under anesthesia is required to diagnose nasal cavity pathology (NP) reliably in dogs. Blood test results may provide clues to the suspected NP. METHODS: This prospective blinded study assessed 72 dogs with chronic nasal discharge due to NPs, and 10 healthy dogs as the control group (CG). NPs were diagnosed using whole-body computed tomography (CT), upper airway endoscopy, examination of nasal mucosal swabs by bacterial and fungal culture, and histopathological examination of nasal mucosa biopsies. The exclusion criteria were the presence of any additional diseases or corticosteroid pre-treatment. In consideration of these exclusion criteria, 55 dogs entered the study. Dogs were classified into benign (benign tumors, idiopathic rhinitis (IR), and others) and malignant (carcinomas and sarcomas) NP groups. Blood count and blood chemistry tests were performed. The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and albumin-to-globulin ratio (AGR) were calculated and compared. RESULTS: 25 dogs with malignant NP (13 and 12 with carcinomas and sarcomas, respectively) and 30 dogs with benign NP (seven with benign tumors,13 with IR, and 10 others) were included. In general, in dogs with NP there were only slight abnormalities in complete blood count. However, PLR was significantly higher in dogs with malignant NP (carcinoma and sarcoma) than in those with benign NP and in the CG. Compared with the CG, the NLR was significantly increased in all dogs with NP, and the AGR was mild but significantly lower, except in dogs with sarcomas and benign tumors. CONCLUSIONS: In dogs with nasal disease alone, there are usually no marked abnormalities in blood count. However, while mildly increased NLR and decreased AGR can be observed in almost all NPs, an increased PLR may indicate a malignant NP and can be used as an additional screening tool in dogs with nasal discharge due to nasal cavity pathology.
Subject(s)
Carcinoma , Dog Diseases , Globulins , Rhinitis , Sarcoma , Dogs , Animals , Neutrophils/pathology , Nasal Cavity/pathology , Prospective Studies , Rhinitis/diagnosis , Rhinitis/microbiology , Rhinitis/veterinary , Lymphocytes , Nasal Mucosa , Sarcoma/diagnosis , Sarcoma/veterinary , Albumins , Carcinoma/veterinary , Retrospective Studies , Dog Diseases/diagnostic imaging , Dog Diseases/microbiologyABSTRACT
BACKGROUND: Tibial plateau leveling osteotomy (TPLO) belongs to the most frequently used surgical method for the treatment of cranial cruciate ligament rupture in dogs. Surgical site infection (SSI) is one of the possible postoperative complications. The aim of this study was to evaluate the diagnostic value of intraoperative bacterial culture as a tool for the detection of intraoperative bacterial contamination progressing to infection development in canine TPLO. Electronic patient records from dogs who underwent TPLO between January 2018 to December 2020 were retrospectively reviewed. Intraoperative bacterial culture results, used antimicrobial drugs and presence of SSI were recorded. RESULTS: Ninety-eight dogs were included in the study. SSI rate was 10.2%. All dogs who developed SSI (n = 10) had negative intraoperative bacterial cultures. None of the dogs with positive intraoperative bacterial culture (n = 6) developed SSI. The most cultured bacteria causing SSI was Staphylococcus pseudintermedius (n = 4). CONCLUSIONS: Intraoperative bacterial culture in dogs undergoing TPLO is not suitable as a predictor of surgical site infection.
Subject(s)
Dog Diseases , Osteotomy , Surgical Wound Infection , Tibia , Animals , Dogs , Female , Male , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/veterinary , Dog Diseases/microbiology , Dog Diseases/surgery , Osteotomy/veterinary , Retrospective Studies , Staphylococcus/isolation & purification , Surgical Wound Infection/veterinary , Surgical Wound Infection/microbiology , Tibia/surgery , Tibia/microbiologyABSTRACT
BACKGROUND: Growing antibiotic resistance has made treating otitis externa (OE) increasingly challenging. On the other hand, local antimicrobial treatments, especially those that combine essential oils (EOs) with nanoparticles, tend to be preferred over systemic ones. It was investigated whether Ajwain (Trachyspermum ammi) EO, combined with chitosan nanoparticles modified by cholesterol, could inhibit the growth of bacterial pathogens isolated from OE cases in dogs. In total, 57 dogs with clinical signs of OE were examined and bacteriologically tested. Hydrogels of Chitosan were synthesized by self-assembly and investigated. EO was extracted (Clevenger machine), and its ingredients were checked (GC-MS analysis) and encapsulated in chitosan-cholesterol nanoparticles. Disc-diffusion and broth Micro-dilution (MIC and MBC) examined its antimicrobial and therapeutic properties. RESULTS: Staphylococcus pseudintermedius (49.3%) was the most common bacteria isolated from OE cases, followed by Pseudomonas aeruginosa (14.7%), Escherichia coli (13.3%), Streptococcus canis (9.3%), Corynebacterium auriscanis (6.7%), Klebsiella pneumoniae (2.7%), Proteus mirabilis (2.7%), and Bacillus cereus (1.3%). The investigation into the antimicrobial properties of Ajwain EO encapsulated in chitosan nanoparticles revealed that it exhibited a more pronounced antimicrobial effect against the pathogens responsible for OE. CONCLUSIONS: Using chitosan nanoparticles encapsulated with EO presents an effective treatment approach for dogs with OE that conventional antimicrobial treatments have not cured. This approach not only enhances antibacterial effects but also reduces the required dosage of antimicrobials, potentially preventing the emergence of antimicrobial resistance.
Subject(s)
Ammi , Anti-Infective Agents , Chitosan , Dog Diseases , Oils, Volatile , Otitis Externa , Dogs , Animals , Oils, Volatile/pharmacology , Chitosan/pharmacology , Otitis Externa/drug therapy , Otitis Externa/veterinary , Otitis Externa/microbiology , Microbial Sensitivity Tests/veterinary , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Bacteria , Escherichia coli , Cholesterol , Dog Diseases/drug therapy , Dog Diseases/microbiologyABSTRACT
Rickettsia occurs worldwide and rickettsiosis is recognized as an emerging infection in several parts of the world. Ticks are reservoir hosts for pathogenic Rickettsia species in humans and domestic animals. Most pathogenic Rickettsia species belong to the spotted Fever Group (SFG). This study aimed to identify and diagnose tick fauna and investigate the prevalence of Rickettsia spp. in ticks collected from domestic animals and dogs in the rural regions of Kerman Province, Southeast Iran. In this study, tick species (fauna) were identified and 2100 ticks (350 pooled samples) from two genera and species including Rhipicephalus linnaei (1128) and Hyalomma deteritum (972) were tested to detect Rickettsia genus using Real-time PCR. The presence of the Rickettsia genus was observed in 24.9% (95%CI 20.28-29.52) of the pooled samples. Sequencing and phylogenetic analyses revealed the presence of Rickettsia aeschlimannii (48.98%), Rickettsia conorii israelensis (28.57%), Rickettsia sibirica (20.41%), and Rickettsia helvetica (2.04%) in the positive samples. The results showed a significant association between county variables and the following variables: tick spp. (p < 0.001), Rickettsia genus infection in ticks (p < 0.001) and Rickettsia spp. (p < 0.001). In addition, there was a significant association between tick species and host animals (dogs and domestic animals) (p < 0.001), Rickettsia spp infection in ticks (p < 0.001), and Rickettsia spp. (p < 0.001). This study indicates a high prevalence of Rickettsia spp. (SFG) in ticks of domestic animals and dogs in rural areas of Kerman Province. The health system should be informed of the possibility of rickettsiosis and the circulating species of Rickettsia in these areas.
Subject(s)
Rickettsia , Animals , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Iran/epidemiology , Dogs , Dog Diseases/microbiology , Dog Diseases/epidemiology , Phylogeny , Ixodidae/microbiology , Cattle , Sheep , Horses , Cats , Female , Goats , Male , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Animals, Domestic , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Sheep, DomesticABSTRACT
BACKGROUND: Pseudomonas aeruginosa is an important opportunistic pathogen in dogs and cats and is resistant to several antimicrobial drugs; however, data on the clonal distribution of P. aeruginosa in veterinary hospital are limited. This study aimed to investigate the clonal dissemination and antimicrobial resistance of clinical P. aeruginosa in a veterinary teaching hospital in Thailand within a 1-year period. Minimum inhibitory concentration determination and whole genome sequencing were used for antimicrobial susceptibility analysis and genetic determination, respectively. RESULTS: Forty-nine P. aeruginosa were isolated mostly from the skin, urinary tract, and ear canal of 39 dogs and 10 cats. These isolates belonged to 39 sequence types (STs) that included 9 strains of high-risk clones of ST235 (n = 2), ST244 (n = 2), ST274 (n = 2), ST277 (n = 1), ST308 (n = 1), and ST357 (n = 1). Overall antimicrobial resistance rate was low (< 25%), and no colistin-resistant strains were found. Two carbapenem-resistant strains belonging to ST235 and ST3405 were identified. CONCLUSIONS: Clinical P. aeruginosa in dogs and cats represent STs diversity. High-risk clones and carbapenem-resistant strains are a public health concern. Nevertheless, this study was limited by a small number of isolates. Continuous monitoring is needed, particularly in large-scale settings with high numbers of P. aeruginosa, to restrict bacterial transfer from companion animal to humans in a veterinary hospital.