Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.950
Filter
Add more filters

Publication year range
1.
Mol Cell ; 78(1): 42-56.e6, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32035036

ABSTRACT

The functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on inflammation remain unclear. Here we reveal that DA inhibited TLR2-induced NF-κB activation and inflammation via the DRD5 receptor in macrophages. We found that the DRD5 receptor, via the EFD and IYX(X)I/L motifs in its CT and IC3 loop, respectively, can directly recruit TRAF6 and its negative regulator ARRB2 to form a multi-protein complex also containing downstream signaling proteins, such as TAK1, IKKs, and PP2A, that impairs TRAF6-mediated activation of NF-κB and expression of pro-inflammatory genes. Furthermore, the DA-DRD5-ARRB2-PP2A signaling axis can prevent S. aureus-induced inflammation and protect mice against S. aureus-induced sepsis and meningitis after DA treatment. Collectively, these findings provide the first demonstration of DA-DRD5 signaling acting to control inflammation and a detailed delineation of the underlying mechanism and identify the DRD5-ARRB2-PP2A axis as a potential target for future therapy of inflammation-associated diseases such as meningitis and sepsis.


Subject(s)
Dopamine/physiology , Inflammation/metabolism , Protein Phosphatase 2/metabolism , Receptors, Dopamine D5/metabolism , Signal Transduction , beta-Arrestin 2/metabolism , Amino Acid Motifs , Animals , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytokines/genetics , Cytokines/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Receptors, Dopamine D5/chemistry , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 2/antagonists & inhibitors , beta-Arrestin 2/physiology
2.
Nat Rev Neurosci ; 22(6): 345-358, 2021 06.
Article in English | MEDLINE | ID: mdl-33837376

ABSTRACT

Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.


Subject(s)
Corpus Striatum/physiology , Dopamine/physiology , Animals , Calcium/metabolism , Dopaminergic Neurons/physiology , Glutamic Acid/metabolism , Models, Neurological , Synaptic Transmission/physiology , Time Factors , gamma-Aminobutyric Acid/metabolism
3.
Nat Rev Neurosci ; 22(7): 407-422, 2021 07.
Article in English | MEDLINE | ID: mdl-34050339

ABSTRACT

In the brain, most synapses are formed on minute protrusions known as dendritic spines. Unlike their artificial intelligence counterparts, spines are not merely tuneable memory elements: they also embody algorithms that implement the brain's ability to learn from experience and cope with new challenges. Importantly, they exhibit structural dynamics that depend on activity, excitatory input and inhibitory input (synaptic plasticity or 'extrinsic' dynamics) and dynamics independent of activity ('intrinsic' dynamics), both of which are subject to neuromodulatory influences and reinforcers such as dopamine. Here we succinctly review extrinsic and intrinsic dynamics, compare these with parallels in machine learning where they exist, describe the importance of intrinsic dynamics for memory management and adaptation, and speculate on how disruption of extrinsic and intrinsic dynamics may give rise to mental disorders. Throughout, we also highlight algorithmic features of spine dynamics that may be relevant to future artificial intelligence developments.


Subject(s)
Brain/physiology , Dendritic Spines/physiology , Mental Disorders/physiopathology , Models, Neurological , Neural Networks, Computer , Algorithms , Animals , Artificial Intelligence , Brain/cytology , Dendritic Spines/ultrastructure , Dopamine/physiology , Humans , Machine Learning , Memory, Short-Term/physiology , Mental Processes/physiology , Neuronal Plasticity , Neurotransmitter Agents/physiology , Optogenetics , Receptors, Dopamine/physiology , Reward , Species Specificity , Synapses/physiology
4.
Proc Natl Acad Sci U S A ; 120(22): e2220575120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216521

ABSTRACT

Noninvasive control of neuronal activity in the deep brain can be illuminating for probing brain function and treating dysfunctions. Here, we present a sonogenetic approach for controlling distinct mouse behavior with circuit specificity and subsecond temporal resolution. Targeted neurons in subcortical regions were made to express a mutant large conductance mechanosensitive ion channel (MscL-G22S), enabling ultrasound to trigger activity in MscL-expressing neurons in the dorsal striatum and increase locomotion in freely moving mice. Ultrasound stimulation of MscL-expressing neurons in the ventral tegmental area could activate the mesolimbic pathway to trigger dopamine release in the nucleus accumbens and modulate appetitive conditioning. Moreover, sonogenetic stimulation of the subthalamic nuclei of Parkinson's disease model mice improved their motor coordination and mobile time. Neuronal responses to ultrasound pulse trains were rapid, reversible, and repeatable. We also confirmed that the MscL-G22S mutant is more effective to sensitize neurons to ultrasound compared to the wild-type MscL. Altogether, we lay out a sonogenetic approach which can selectively manipulate targeted cells to activate defined neural pathways, affect specific behaviors, and relieve symptoms of neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Subthalamic Nucleus , Mice , Animals , Brain , Subthalamic Nucleus/physiology , Nucleus Accumbens , Dopamine/physiology , Neural Pathways
5.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38253532

ABSTRACT

Disparities in socioeconomic status (SES) lead to unequal access to financial and social support. These disparities are believed to influence reward sensitivity, which in turn are hypothesized to shape how individuals respond to and pursue rewarding experiences. However, surprisingly little is known about how SES shapes reward sensitivity in adolescence. Here, we investigated how SES influenced adolescent responses to reward, both in behavior and the striatum-a brain region that is highly sensitive to reward. We examined responses to both immediate reward (tracked by phasic dopamine) and average reward rate fluctuations (tracked by tonic dopamine) as these distinct signals independently shape learning and motivation. Adolescents (n = 114; 12-14 years; 58 female) performed a gambling task during functional magnetic resonance imaging. We manipulated trial-by-trial reward and loss outcomes, leading to fluctuations between periods of reward scarcity and abundance. We found that a higher reward rate hastened behavioral responses, and increased guess switching, consistent with the idea that reward abundance increases response vigor and exploration. Moreover, immediate reward reinforced previously rewarding decisions (win-stay, lose-switch) and slowed responses (postreward pausing), particularly when rewards were scarce. Notably, lower-SES adolescents slowed down less after rare rewards than higher-SES adolescents. In the brain, striatal activations covaried with the average reward rate across time and showed greater activations during rewarding blocks. However, these striatal effects were diminished in lower-SES adolescents. These findings show that the striatum tracks reward rate fluctuations, which shape decisions and motivation. Moreover, lower SES appears to attenuate reward-driven behavioral and brain responses.


Subject(s)
Corpus Striatum , Dopamine , Adolescent , Humans , Female , Dopamine/physiology , Corpus Striatum/physiology , Motivation , Learning/physiology , Reward , Magnetic Resonance Imaging
6.
J Neurosci ; 44(40)2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358018

ABSTRACT

Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.


Subject(s)
Neurotransmitter Agents , Sleep , Humans , Animals , Sleep/physiology , Neurotransmitter Agents/physiology , Brain/physiology , Norepinephrine/physiology , Norepinephrine/metabolism , Acetylcholine/metabolism , Acetylcholine/physiology , Dopamine/metabolism , Dopamine/physiology , Wakefulness/physiology
7.
Annu Rev Neurosci ; 40: 373-394, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28441114

ABSTRACT

Dopamine neurons facilitate learning by calculating reward prediction error, or the difference between expected and actual reward. Despite two decades of research, it remains unclear how dopamine neurons make this calculation. Here we review studies that tackle this problem from a diverse set of approaches, from anatomy to electrophysiology to computational modeling and behavior. Several patterns emerge from this synthesis: that dopamine neurons themselves calculate reward prediction error, rather than inherit it passively from upstream regions; that they combine multiple separate and redundant inputs, which are themselves interconnected in a dense recurrent network; and that despite the complexity of inputs, the output from dopamine neurons is remarkably homogeneous and robust. The more we study this simple arithmetic computation, the knottier it appears to be, suggesting a daunting (but stimulating) path ahead for neuroscience more generally.


Subject(s)
Brain/physiology , Dopamine/physiology , Learning/physiology , Nerve Net/physiology , Reward , Animals , Humans , Neural Pathways/physiology
8.
Nat Rev Neurosci ; 21(10): 576-586, 2020 10.
Article in English | MEDLINE | ID: mdl-32873936

ABSTRACT

Reinforcement learning (RL) is a framework of particular importance to psychology, neuroscience and machine learning. Interactions between these fields, as promoted through the common hub of RL, has facilitated paradigm shifts that relate multiple levels of analysis in a singular framework (for example, relating dopamine function to a computationally defined RL signal). Recently, more sophisticated RL algorithms have been proposed to better account for human learning, and in particular its oft-documented reliance on two separable systems: a model-based (MB) system and a model-free (MF) system. However, along with many benefits, this dichotomous lens can distort questions, and may contribute to an unnecessarily narrow perspective on learning and decision-making. Here, we outline some of the consequences that come from overconfidently mapping algorithms, such as MB versus MF RL, with putative cognitive processes. We argue that the field is well positioned to move beyond simplistic dichotomies, and we propose a means of refocusing research questions towards the rich and complex components that comprise learning and decision-making.


Subject(s)
Brain/physiology , Decision Making/physiology , Models, Neurological , Reinforcement, Psychology , Algorithms , Animals , Dopamine/physiology , Humans , Memory/physiology , Reward
9.
PLoS Comput Biol ; 20(5): e1012082, 2024 May.
Article in English | MEDLINE | ID: mdl-38701077

ABSTRACT

Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.


Subject(s)
Dopamine , Receptors, Dopamine D2 , Ultradian Rhythm , Dopamine/metabolism , Dopamine/physiology , Receptors, Dopamine D2/metabolism , Ultradian Rhythm/physiology , Animals , Models, Neurological , Humans , Circadian Rhythm/physiology , Corpus Striatum/physiology , Corpus Striatum/metabolism , Computational Biology
10.
PLoS Comput Biol ; 20(4): e1011516, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626219

ABSTRACT

When facing an unfamiliar environment, animals need to explore to gain new knowledge about which actions provide reward, but also put the newly acquired knowledge to use as quickly as possible. Optimal reinforcement learning strategies should therefore assess the uncertainties of these action-reward associations and utilise them to inform decision making. We propose a novel model whereby direct and indirect striatal pathways act together to estimate both the mean and variance of reward distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our model of the basal ganglia, and we fitted exploration strategies derived from the neural model to data from behavioural experiments. We also compared the performance of directed exploration strategies inspired by our basal ganglia model with other exploration algorithms including classic variants of upper confidence bound (UCB) strategy in simulation. The exploration strategies inspired by the basal ganglia model can achieve overall superior performance in simulation, and we found qualitatively similar results in fitting model to behavioural data compared with the fitting of more idealised normative models with less implementation level detail. Overall, our results suggest that transient dopamine levels in the basal ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives exploration in reinforcement learning.


Subject(s)
Basal Ganglia , Dopamine , Models, Neurological , Reward , Dopamine/metabolism , Dopamine/physiology , Uncertainty , Animals , Basal Ganglia/physiology , Exploratory Behavior/physiology , Reinforcement, Psychology , Dopaminergic Neurons/physiology , Computational Biology , Computer Simulation , Male , Algorithms , Decision Making/physiology , Behavior, Animal/physiology , Rats
11.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862171

ABSTRACT

Across animal species, dopamine-operated memory systems comprise anatomically segregated, functionally diverse subsystems. Although individual subsystems could operate independently to support distinct types of memory, the logical interplay between subsystems is expected to enable more complex memory processing by allowing existing memory to influence future learning. Recent comprehensive ultrastructural analysis of the Drosophila mushroom body revealed intricate networks interconnecting the dopamine subsystems-the mushroom body compartments. Here, we review the functions of some of these connections that are beginning to be understood. Memory consolidation is mediated by two different forms of network: A recurrent feedback loop within a compartment maintains sustained dopamine activity required for consolidation, whereas feed-forward connections across compartments allow short-term memory formation in one compartment to open the gate for long-term memory formation in another compartment. Extinction and reversal of aversive memory rely on a similar feed-forward circuit motif that signals omission of punishment as a reward, which triggers plasticity that counteracts the original aversive memory trace. Finally, indirect feed-forward connections from a long-term memory compartment to short-term memory compartments mediate higher-order conditioning. Collectively, these emerging studies indicate that feedback control and hierarchical connectivity allow the dopamine subsystems to work cooperatively to support diverse and complex forms of learning.


Subject(s)
Dopamine , Mushroom Bodies , Animals , Dopamine/metabolism , Dopamine/physiology , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Drosophila/physiology , Feedback, Physiological/physiology , Memory Consolidation/physiology , Nerve Net/physiology , Nerve Net/metabolism , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Neural Pathways/physiology
12.
J Neurosci ; 43(21): 3922-3932, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37185100

ABSTRACT

The mesolimbic dopamine system is implicated in signaling reward-related information as well as in actions that generate rewarding outcomes. These implications are commonly investigated in either pavlovian or operant reinforcement paradigms, where only the latter requires instrumental action. To parse contributions of reward- and action-related information to dopamine signals, we directly compared the two paradigms: male rats underwent either pavlovian or operant conditioning while dopamine release was measured in the nucleus accumbens, a brain region central for processing this information. Task conditions were identical with the exception of the operant-lever response requirement. Rats in both groups released the same quantity of dopamine at the onset of the reward-predictive cue. However, only the operant-conditioning group showed a subsequent, sustained plateau in dopamine concentration throughout the entire 5 s cue presentation (preceding the required action). This dopamine ramp was unaffected by probabilistic reward delivery, occurred exclusively before operant actions, and was not related to task performance or task acquisition as it persisted throughout the 2 week daily behavioral training. Instead, the ramp flexibly increased in duration with longer cue presentation, seemingly modulating the initial cue-onset-triggered dopamine release, that is, the reward prediction error (RPE) signal, as both signal amplitude and sustainment diminished when reward timing was made more predictable. Thus, our findings suggest that RPE and action components of dopamine release can be differentiated temporally into phasic and ramping/sustained signals, respectively, where the latter depends on the former and presumably reflects the anticipation or incentivization of appetitive action, conceptually akin to motivation.SIGNIFICANCE STATEMENT It is unclear whether the components of dopamine signals that are related to reward-associated information and reward-driven approach behavior can be separated. Most studies investigating the dopamine system use either pavlovian or operant conditioning, which both involve the delivery of reward and necessitate appetitive approach behavior. Thus, used exclusively, neither paradigm can disentangle the contributions of these components to dopamine release. However, by combining both paradigms in the same study, we find that anticipation of a reward-driven operant action induces a modulation of reward-prediction-associated dopamine release, producing so-called dopamine ramps. Therefore, our findings provide new insight into dopamine ramps and suggest that dopamine signals integrate reward and appetitive action in a temporally distinguishable, yet dependent, manner.


Subject(s)
Dopamine , Nucleus Accumbens , Rats , Male , Animals , Dopamine/physiology , Nucleus Accumbens/physiology , Rats, Sprague-Dawley , Reinforcement, Psychology , Reward , Conditioning, Operant/physiology , Motivation , Cues
13.
J Neurosci ; 43(41): 6909-6919, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37648451

ABSTRACT

Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), show promise in treating a range of psychiatric and neurologic conditions. However, optimization of such applications requires a better understanding of how tDCS alters cognition and behavior. Existing evidence implicates dopamine in tDCS alterations of brain activity and plasticity; however, there is as yet no causal evidence for a role of dopamine in tDCS effects on cognition and behavior. Here, in a preregistered, double-blinded study, we examined how pharmacologically manipulating dopamine altered the effect of tDCS on the speed-accuracy trade-off, which taps ubiquitous strategic operations. Cathodal tDCS was delivered over the left prefrontal cortex and the superior medial frontal cortex before participants (N = 62, 24 males, 38 females) completed a dot-motion task, making judgments on the direction of a field of moving dots under instructions to emphasize speed, accuracy, or both. We leveraged computational modeling to uncover how our interventions altered latent decisional processes driving the speed-accuracy trade-off. We show that dopamine in combination with tDCS (but not tDCS alone nor dopamine alone) not only impaired decision accuracy but also impaired discriminability, which suggests that these manipulations altered the encoding or representation of discriminative evidence. This is, to the best of our knowledge, the first direct evidence implicating dopamine in the way tDCS affects cognition and behavior.SIGNIFICANCE STATEMENT tDCS can improve cognitive and behavioral impairments in clinical conditions; however, a better understanding of its mechanisms is required to optimize future clinical applications. Here, using a pharmacological approach to manipulate brain dopamine levels in healthy adults, we demonstrate a role for dopamine in the effects of tDCS in the speed-accuracy trade-off, a strategic cognitive process ubiquitous in many contexts. In doing so, we provide direct evidence implicating dopamine in the way tDCS affects cognition and behavior.


Subject(s)
Dopamine , Transcranial Direct Current Stimulation , Adult , Male , Female , Humans , Dopamine/physiology , Transcranial Direct Current Stimulation/methods , Cognition/physiology , Brain , Prefrontal Cortex/physiology
14.
J Neurosci ; 43(3): 373-385, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36517243

ABSTRACT

Cannabinoids modulate dopamine (DA) transmission and DA-related behavior, which has been thought to be mediated initially by activation of cannabinoid CB1 receptors (CB1Rs) on GABA neurons. However, there is no behavioral evidence supporting it. In contrast, here we report that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabinoid action in male and female mice. RNAscope in situ hybridization (ISH) assays demonstrated CB1 mRNA in tyrosine hydroxylase (TH)-positive DA neurons in the ventral tegmental area (VTA) and glutamate decarboxylase 1 (GAD1)-positive GABA neurons. The CB1R-expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA. Triple-staining assays indicated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2 (VgluT2, a glutamate neuronal marker) in the medial VTA close to the midline of the brain. Optogenetic activation of this population of DA neurons was rewarding as assessed by optical intracranial self-stimulation. Δ9-tetrahydrocannabinol (Δ9-THC) or ACEA (a selective CB1R agonist) dose-dependently inhibited optical intracranial self-stimulation in DAT-Cre control mice, but not in conditional knockout mice with the CB1R gene absent in DA neurons. In addition, deletion of CB1Rs from DA neurons attenuated Δ9-THC-induced reduction in DA release in the NAc, locomotion, and anxiety. Together, these findings indicate that CB1Rs are expressed in a subset of DA neurons that corelease DA and glutamate, and functionally underlie cannabinoid modulation of DA release and DA-related behavior.SIGNIFICANCE STATEMENT Cannabinoids produce a series of psychoactive effects, such as aversion, anxiety, and locomotor inhibition in rodents. However, the cellular and receptor mechanisms underlying these actions are not fully understood. Here we report that CB1 receptors are expressed not only in GABA neurons but also in a subset of dopamine neurons, which are located mainly in the medial VTA close to the midline of the midbrain and corelease dopamine and glutamate. Optogenetic activation of these dopamine neurons is rewarding, which is dose-dependently inhibited by cannabinoids. Selective deletion of CB1 receptor from dopamine neurons blocked cannabinoid-induced aversion, hypoactivity, and anxiolytic effects. These findings demonstrate that dopaminergic CB1 receptors play an important role in mediating cannabinoid action.


Subject(s)
Anti-Anxiety Agents , Cannabinoids , Female , Mice , Male , Animals , Cannabinoids/pharmacology , Dopaminergic Neurons/physiology , Anti-Anxiety Agents/pharmacology , Dronabinol/pharmacology , Dopamine/physiology , Receptors, Cannabinoid , Ventral Tegmental Area/physiology , Receptors, Dopamine , Mice, Knockout , Glutamic Acid/pharmacology , RNA, Messenger , Receptor, Cannabinoid, CB1/genetics
15.
Front Neuroendocrinol ; 71: 101085, 2023 10.
Article in English | MEDLINE | ID: mdl-37543184

ABSTRACT

Substance use disorder (SUD) is a chronic condition characterized by pathological drug-taking and seeking behaviors. Remarkably different between males and females, suggesting that drug addiction is a sexually differentiated disorder. The neurobiological bases of sex differences in SUD include sex-specific reward system activation, influenced by interactions between gonadal hormone level changes, dopaminergic reward circuits, and epigenetic modifications of key reward system genes. This systematic review, adhering to PICOS and PRISMA-P 2015 guidelines, highlights the sex-dependent roles of estrogens, progesterone, and testosterone in SUD. In particular, estradiol elevates and progesterone reduces dopaminergic activity in SUD females, whilst testosterone and progesterone augment SUD behavior in males. Finally, SUD is associated with a sex-specific increase in the rate of opioid and monoaminergic gene methylation. The study reveals the need for detailed research on gonadal hormone levels, dopaminergic or reward system activity, and epigenetic landscapes in both sexes for efficient SUD therapy development.


Subject(s)
Progesterone , Substance-Related Disorders , Female , Humans , Male , Dopamine/physiology , Epigenesis, Genetic , Gonadal Steroid Hormones , Meta-Analysis as Topic , Sex Characteristics , Substance-Related Disorders/genetics , Systematic Reviews as Topic , Testosterone
16.
Eur J Neurosci ; 59(6): 1260-1277, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38039083

ABSTRACT

Phasic dopamine activity is believed to both encode reward-prediction errors (RPEs) and to cause the adaptations that these errors engender. If so, a rat working for optogenetic stimulation of dopamine neurons will repeatedly update its policy and/or action values, thus iteratively increasing its work rate. Here, we challenge this view by demonstrating stable, non-maximal work rates in the face of repeated optogenetic stimulation of midbrain dopamine neurons. Furthermore, we show that rats learn to discriminate between world states distinguished only by their history of dopamine activation. Comparison of these results to reinforcement learning simulations suggests that the induced dopamine transients acted more as rewards than RPEs. However, pursuit of dopaminergic stimulation drifted upwards over a time scale of days and weeks, despite its stability within trials. To reconcile the results with prior findings, we consider multiple roles for dopamine signalling.


Subject(s)
Dopamine , Learning , Rats , Animals , Dopamine/physiology , Learning/physiology , Reinforcement, Psychology , Reward , Mesencephalon , Dopaminergic Neurons/physiology
17.
Eur J Neurosci ; 59(6): 1099-1140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37848184

ABSTRACT

Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.


Subject(s)
Dopamine , Extinction, Psychological , Dopamine/physiology , Extinction, Psychological/physiology , Conditioning, Classical/physiology , Fear/physiology , Prefrontal Cortex/physiology , Avoidance Learning
18.
Neurobiol Learn Mem ; 212: 107930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692391

ABSTRACT

Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.


Subject(s)
Magnetic Resonance Imaging , Neural Pathways , Nucleus Accumbens , Ventral Tegmental Area , Humans , Male , Female , Young Adult , Adult , Ventral Tegmental Area/physiology , Ventral Tegmental Area/diagnostic imaging , Neural Pathways/physiology , Nucleus Accumbens/physiology , Nucleus Accumbens/diagnostic imaging , Dopamine/metabolism , Dopamine/physiology , Feedback, Psychological/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Motor Skills/physiology , Practice, Psychological
19.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735637

ABSTRACT

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Subject(s)
Corpus Striatum , Extinction, Psychological , Fear , Receptors, Dopamine D1 , Animals , Fear/physiology , Fear/drug effects , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , Rats , Corpus Striatum/drug effects , Corpus Striatum/physiology , Corpus Striatum/metabolism , Receptors, Dopamine D1/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Dopamine Agonists/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Substantia Nigra/drug effects , Substantia Nigra/physiology , Rats, Long-Evans , Dopamine/metabolism , Dopamine/physiology
20.
Cell ; 139(2): 416-27, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19837040

ABSTRACT

Behavioral expression of food-associated memory in fruit flies is constrained by satiety and promoted by hunger, suggesting an influence of motivational state. Here, we identify a neural mechanism that integrates the internal state of hunger and appetitive memory. We show that stimulation of neurons that express neuropeptide F (dNPF), an ortholog of mammalian NPY, mimics food deprivation and promotes memory performance in satiated flies. Robust appetitive memory performance requires the dNPF receptor in six dopaminergic neurons that innervate a distinct region of the mushroom bodies. Blocking these dopaminergic neurons releases memory performance in satiated flies, whereas stimulation suppresses memory performance in hungry flies. Therefore, dNPF and dopamine provide a motivational switch in the mushroom body that controls the output of appetitive memory.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Neuropeptides/physiology , Receptors, Neuropeptide/physiology , Animals , Appetitive Behavior , Behavior, Animal , Conditioning, Classical , Dopamine/physiology , Memory , Motivation , Mushroom Bodies/physiology
SELECTION OF CITATIONS
SEARCH DETAIL