Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.356
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 21(10): 568-569, 2020 10.
Article in English | MEDLINE | ID: mdl-32860012

Subject(s)
Elastin , Elastin/genetics
2.
Mol Cell ; 75(1): 66-75.e5, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31175012

ABSTRACT

Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.


Subject(s)
Artificial Cells/metabolism , Cytoplasmic Granules/genetics , Intrinsically Disordered Proteins/genetics , Peptidomimetics/metabolism , RNA, Messenger/genetics , Ribonucleoproteins/genetics , Amino Acid Sequence , Artificial Cells/cytology , Cytoplasmic Granules/chemistry , Cytoplasmic Granules/metabolism , Elastin/chemistry , Elastin/genetics , Elastin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Biological , Peptidomimetics/chemistry , Phase Transition , Plasmids/genetics , Plasmids/metabolism , Protein Biosynthesis , Protein Engineering/methods , RNA/genetics , RNA/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism
3.
Proc Natl Acad Sci U S A ; 121(11): e2304009121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442161

ABSTRACT

Elastin is an extracellular matrix material found in all vertebrates. Its reversible elasticity, robustness, and low stiffness are essential for the function of arteries, lungs, and skin. It is among the most resilient elastic materials known: During a human lifetime, arterial elastin undergoes in excess of 2 × 109 stretching/contracting cycles without replacement, and slow oxidative hardening has been identified as a limiting factor on human lifespan. For over 50 y, the mechanism of entropic recoil has been controversial. Herein, we report a combined NMR and thermomechanical study that establishes the hydrophobic effect as the primary driver of elastin function. Water ordering at the solvent:protein interface was observed as a function of stretch using double quantum 2H NMR, and the most extensive thermodynamic analysis performed to date was obtained by measuring elastin length and volume as a function of force and temperature in normal water, heavy water and with cosolvents. When stretched, elastin's heat capacity increases, water is ordered proportional to the degree of stretching, the internal energy decreases, and heat is released in excess of the work performed. These properties show that recoil in elastin under physiological conditions is primarily driven by the hydrophobic effect rather than by configurational entropy as is the case for rubber. Consistent with this conclusion are decreases in the thermodynamic signatures when cosolvents that alter the hydrophobic effect are introduced. We propose that hydrophobic effect-driven recoil, as opposed to a configurational entropy mechanism where hardening from crystallization can occur, is the origin of elastin's unusual resilience.


Subject(s)
Elastin , Animals , Humans , Arteries/chemistry , Crystallization , Elastin/chemistry , Thermodynamics , Water
4.
Q Rev Biophys ; 57: e3, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38501287

ABSTRACT

Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.


Subject(s)
Elastin , Tropoelastin , Tropoelastin/chemistry , Elastin/chemistry , Elasticity , Protein Structure, Secondary , Peptides , Water/chemistry
5.
Circ Res ; 134(7): 931-949, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547250

ABSTRACT

The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.


Subject(s)
Extracellular Matrix Proteins , Extracellular Matrix , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Collagen/metabolism , Elastin/metabolism , Homeostasis , Receptors, Cell Surface/metabolism
6.
J Immunol ; 213(1): 75-85, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38758115

ABSTRACT

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Subject(s)
Elastin , Neutrophils , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminase Type 4 , Proteolysis , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Neutrophils/immunology , Elastin/metabolism , Female , Male , Protein-Arginine Deiminase Type 4/metabolism , Middle Aged , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Pulmonary Emphysema/immunology , Aged , Protein-Arginine Deiminase Type 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Citrullination , Protein-Arginine Deiminases/metabolism , Leukocyte Elastase/metabolism , Lung/immunology , Lung/pathology
7.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37498175

ABSTRACT

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Subject(s)
Motor Neurons , Muscular Atrophy, Spinal , Humans , Mice , Animals , Motor Neurons/metabolism , Desmin/genetics , Desmin/metabolism , Elastin/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/pathology , Genetic Therapy , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
8.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36351433

ABSTRACT

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Subject(s)
Bone Diseases, Metabolic , Cutis Laxa , Animals , Humans , Mice , Collagen/genetics , Cutis Laxa/genetics , Elastin/metabolism , Extracellular Matrix Proteins/metabolism
9.
Acc Chem Res ; 57(9): 1227-1237, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38624000

ABSTRACT

Vesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules. By utilization of recombinant fusion proteins to make vesicles, specific protein domains can be directly incorporated while also imparting tunability and stability. Protein vesicle assembly relies on the design and use of self-assembling amphiphilic proteins. A specific protein vesicle platform made in purely aqueous conditions of a globular, functional protein fused to a glutamate-rich leucine zipper (ZE) and a thermoresponsive elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) is discussed here. The hydrophobic conformational change of the ELP above its transition temperature drives assembly, and strong ZE/ZR binding enables incorporation of the desired functional protein. Mixing the soluble proteins on ice induces zipper binding, and then warming above the ELP transition temperature (Tt) triggers the transition to and growth of protein-rich coacervates and, finally, reorganization of proteins into vesicles. Vesicle size is tunable based on salt concentration, rate of heating, protein concentration, size of the globular protein, molar ratio of the proteins, and the ELP sequence. Increasing the salt concentration decreases vesicle size by decreasing the Tt, resulting in a shorter coacervation transition stage. Likewise, directly changing the heating rate also changes this time and increasing protein concentration increases coalescence. Increasing globular protein size decreases the size of the vesicle due to steric hindrance. By changing the ELP sequence, which consists of (VPGXG)n, through the guest residue (X) or number of repeats (n), Tt is changed, affecting size. Additionally, the chemical nature of X variation has endowed vesicles with stimuli responsiveness and stability at physiological conditions.Protein vesicles have been used for biocatalysis, biomacromolecular drug delivery, and vaccine applications. Photo-cross-linkable vesicles were used to deliver small molecule cargo to cancer cells in vitro and antigen to immune cells in vivo. pH-responsive vesicles effectively delivered functional protein cargo, including cytochrome C, to the cytosol of cancer cells in vitro, using hydrophobic ion pairing to improve cargo distribution in the vesicles and release. The globular protein used to make the vesicles can be varied to achieve different functions. For example, enzyme vesicles exhibit biocatalysis, and antigen vesicles induce antibody and cellular immune responses after vaccination in mice. Collectively, the development and engineering of the protein vesicle platform has employed amphiphilic self-assembly strategies and rational protein engineering to control physical, chemical, and biological properties for biotechnology and nanomedicine applications.


Subject(s)
Elastin , Elastin/chemistry , Humans , Recombinant Proteins/chemistry , Leucine Zippers
10.
Circ Res ; 132(1): 72-86, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36453283

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS: We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS: We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.


Subject(s)
Myocardial Infarction , Myocardium , Humans , Rats , Animals , Myocardium/metabolism , Elastin/metabolism , Tropoelastin/genetics , Tropoelastin/metabolism , Cicatrix , Stroke Volume , Ventricular Function, Left , Myocytes, Cardiac/metabolism , Collagen/metabolism , Ventricular Remodeling
11.
Arterioscler Thromb Vasc Biol ; 44(7): 1674-1682, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752350

ABSTRACT

BACKGROUND: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS: We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln+/- mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS: We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln+/- mice. CONCLUSIONS: We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln+/- mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.


Subject(s)
Aortic Stenosis, Supravalvular , Catechin , Cell Proliferation , Disease Models, Animal , Elastin , Induced Pluripotent Stem Cells , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Elastin/metabolism , Animals , Humans , Catechin/analogs & derivatives , Catechin/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Aortic Stenosis, Supravalvular/metabolism , Aortic Stenosis, Supravalvular/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Cell Proliferation/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Mice , Cells, Cultured , Mice, Inbred C57BL , Female , Male , Mice, Knockout
12.
Exp Cell Res ; 437(1): 113997, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38508328

ABSTRACT

Bronchopulmonary dysplasia (BPD) is characterized by shortened secondary septa and fewer, larger alveoli. Elastin deposition to the distal tips of the secondary septa is critical for elongation of the secondary septa. Alveolar myofibroblasts, which are thought to migrate to the septal tips during alveolarization, are mainly responsible for elastin production and deposition. Antenatal exposure to inflammation induces abnormal elastin deposition, thereby increasing the risk of developing BPD. Here, we found that lipopolysaccharide (LPS) significantly increased the expression of transforming growth factor-α (TGF-α) in an LPS-induced rat model of BPD and in LPS-treated human pulmonary epithelial cells (BEAS-2B). In addition, in vitro experiments suggested that LPS upregulated TGF-α expression via toll-like receptor 4 (TLR4)/tumor necrosis factor α-converting enzyme (TACE) signaling. Increased TGF-α levels via its receptor epidermal growth factor receptor (EGFR)-induced lysyl oxidase (LOX) overactivation and cell division cycle 42 (Cdc42) activity inhibition of myofibroblasts. Similarly, in vivo LOX overactivation and inhibition of Cdc42 activity were observed in the lungs of LPS-exposed pups. LOX overactivation led to abnormal elastin deposition, and inhibition of Cdc42 activity disturbed the directional migration of myofibroblasts and disrupted elastin localization. Most importantly, the EGFR inhibitor erlotinib partially rescued LOX overactivation and Cdc42 activity inhibition, and improved elastin deposition and alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that TGF-α/EGFR signaling is critically involved in the regulation of elastin deposition and represents a novel therapeutic target.


Subject(s)
Bronchopulmonary Dysplasia , Lipopolysaccharides , Animals , Female , Humans , Infant, Newborn , Pregnancy , Rats , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/metabolism , Elastin , ErbB Receptors/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Transforming Growth Factor alpha
13.
Proc Natl Acad Sci U S A ; 119(37): e2202240119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067308

ABSTRACT

Liquid-liquid phase separation of tropoelastin has long been considered to be an important early step in the complex process of elastin fiber assembly in the body and has inspired the development of elastin-like peptides with a wide range of industrial and biomedical applications. Despite decades of study, the material state of the condensed liquid phase of elastin and its subsequent maturation remain poorly understood. Here, using a model minielastin that mimics the alternating domain structure of full-length tropoelastin, we examine the elastin liquid phase. We combine differential interference contrast (DIC), fluorescence, and scanning electron microscopy with particle-tracking microrheology to resolve the material transition occurring within elastin liquids over time in the absence of exogenous cross-linking. We find that this transition is accompanied by an intermediate stage marked by the coexistence of insoluble solid and dynamic liquid phases giving rise to significant spatial heterogeneities in material properties. We further demonstrate that varying the length of the terminal hydrophobic domains of minielastins can tune the maturation process. This work not only resolves an important step in the hierarchical assembly process of elastogenesis but further contributes mechanistic insight into the diverse repertoire of protein condensate maturation pathways with emerging importance across biology.


Subject(s)
Elastin , Tropoelastin , Elastin/chemistry , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Tropoelastin/metabolism
14.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L812-L820, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38712445

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a condition characterized by chronic airway inflammation and obstruction, primarily caused by tobacco smoking. Although the involvement of immune cells in COPD pathogenesis is well established, the contribution of innate lymphoid cells (ILCs) remains poorly understood. ILCs are a type of innate immune cells that participate in tissue remodeling processes, but their specific role in COPD has not been fully elucidated. During COPD, the breakdown of pulmonary elastin generates elastin peptides that elicit biological activities on immune cells. This study aimed to investigate the presence of ILC in patients with COPD and examine the impact of elastin peptides on their functionality. Our findings revealed an elevated proportion of ILC2 in the peripheral blood of patients with COPD, and a general activation of ILC as indicated by an increase in their cytokine secretion capacity. Notably, our study demonstrated that serum from patients with COPD promotes ILC2 phenotype, likely due to the elevated concentration of IL-5, a cytokine known to favor ILC2 activation. Furthermore, we uncovered that this increase in IL-5 secretion is partially attributed to its secretion by macrophages upon stimulation by elastin peptides, suggesting an indirect role of elastin peptides on ILC in COPD. These findings shed light on the involvement of ILC in COPD and provide insights into the potential interplay between elastin breakdown, immune cells, and disease progression. Further understanding of the mechanisms underlying ILC activation and their interaction with elastin peptides could contribute to the development of novel therapeutic strategies for COPD management.NEW & NOTEWORTHY Elastin-derived peptides, generated following alveolar degradation during emphysema in patients with COPD, are able to influence the response of type 2 innate lymphoid cells. We show that the orientation of innate lymphoid cells in patients with COPD is shifted toward a type 2 profile and that elastin peptides are indirectly participating in that shift through their influence of macrophages, which in turn impact innate lymphoid cells.


Subject(s)
Elastin , Immunity, Innate , Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , Elastin/metabolism , Elastin/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/drug effects , Female , Male , Aged , Middle Aged , Interleukin-5/metabolism , Interleukin-5/immunology , Macrophages/immunology , Macrophages/metabolism , Peptides/pharmacology , Peptides/immunology
15.
Exp Dermatol ; 33(3): e15052, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483134

ABSTRACT

Skin forms the outer barrier of the body. Upon injury, successful wound healing in normal skin restores tissue damage and counteracts the loss of extracellular matrix (ECM) proteins and cells. Collagens and elastin are the most abundant structural proteins of the ECM. In homeostasis, collagen type I is the prevalent form, but it is replaced by type III collagen upon wounding, and only later remodelled. In turn, unsuccessful healing results in scars, which tend to be inflexible and inelastic as compared to normal elastic dermis. Scar inelasticity may be due to the absence of mature elastin fibre formation and cross-linking. In this review, the available information on the process of formation of new collagen and elastic fibres during wound healing is analysed. The distinct roles of elastin and collagen proteins during healing are revisited and future research directions proposed which may help improve clinical management of open wounds and scars.


Subject(s)
Cicatrix , Extracellular Matrix , Humans , Cicatrix/metabolism , Extracellular Matrix/metabolism , Collagen/metabolism , Skin/metabolism , Elastin/metabolism , Extracellular Matrix Proteins/metabolism , Wound Healing
16.
Chemistry ; 30(30): e202400582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38501912

ABSTRACT

The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.


Subject(s)
Biocompatible Materials , Elastin , Peptides , Biocompatible Materials/chemistry , Elastin/chemistry , Elastin/genetics , Peptides/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Temperature , Humans , Insect Proteins
17.
Exp Eye Res ; 240: 109813, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331016

ABSTRACT

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Subject(s)
Exosomes , Glaucoma , Optic Disk , Rats , Animals , Optic Disk/metabolism , Protein-Lysine 6-Oxidase/genetics , Astrocytes/metabolism , Exosomes/metabolism , Gliosis/metabolism , Glaucoma/metabolism , Elastin/genetics , Inflammation/metabolism
18.
Clin Sci (Lond) ; 138(5): 251-268, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38362910

ABSTRACT

Vascular stiffness increases with aging, obesity and hypertension and predicts cardiovascular risk. The levels of histone H3-lysine-27 methylation (H3K27me) and the histone methyltransferase EZH2 both decrease in aging vessels, driving vascular stiffness. The impact of EZH2 inhibitors on vascular stiffness is unknown. We tested the hypothesis that the EZH2 inhibitor GSK126, currently in development for cancer treatment, increases vascular stiffness and explored underlying molecular mechanisms. Young (3 month) and middle-aged (12 month) male mice were treated with GSK126 for 1-2 months and primary human aortic smooth muscle cells (HASMCs) from young male and female donors were treated with GSK126 for 24-48 h. Stiffness was measured in vivo by pulse wave velocity and in vitro by atomic force microscopy (AFM) and vascular structure was quantified histologically. Extracellular matrix proteins were studied by qRT-PCR, immunoblotting, zymography and chromatin immunoprecipitation. GSK126 treatment decreased H3K27 methylation (H3K27me) and increased acetylation (H3K27ac) in mouse vessels and in HASMCs. In GSK126-treated mice, aortic stiffness increased without changes in vascular fibrosis. EZH2 inhibition enhanced elastin fiber degradation and matrix metalloprotease-2 (MMP2) expression. In HASMCs, GSK126 treatment increased synthetic phenotype markers and intrinsic HASMCs stiffness by AFM with altered cytoskeletal structure and increased nuclear actin staining. GSK126 also increased MMP2 protein expression, activity and enrichment of H3K27ac at the MMP2 promoter in HASMCs. GSK126 causes vascular stiffening, inducing MMP2 activity, elastin degradation, and modulation of SMC phenotype and cytoskeletal stiffness. These findings suggest that EZH2 inhibitors used to treat cancer could negatively impact the vasculature by enhancing stiffness and merits examination in human trials.


Subject(s)
Vascular Stiffness , Animals , Female , Male , Mice , Elastin , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Histone Methyltransferases , Matrix Metalloproteinase 2 , Pulse Wave Analysis
19.
FASEB J ; 37(8): e23077, 2023 08.
Article in English | MEDLINE | ID: mdl-37402128

ABSTRACT

Inflammatory processes are activated following ischemic stroke that lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to the drug carrier elastin-like polypeptide (ELP), decreases NF-κB induced inflammatory cytokine production in cultured macrophages, crosses the plasma membrane and accumulates in the cytoplasm of both neurons and microglia in vitro, and accumulates at the infarct site where the blood-brain barrier (BBB) is compromised following middle cerebral artery occlusion (MCAO) in rats. Additionally, SynB1-ELP-p50i treatment reduces infarct volume by 11.86% compared to saline-treated controls 24 h following MCAO. Longitudinally, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP-delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Rats , Animals , NF-kappa B/metabolism , Ischemic Stroke/metabolism , Elastin/metabolism , Brain/metabolism , Peptides/pharmacology , Peptides/metabolism , Stroke/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Microglia/metabolism
20.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573429

ABSTRACT

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Subject(s)
Elastin-Like Polypeptides , Silk , Silk/genetics , Arthropod Proteins , Elastin/genetics , Elastin/chemistry , Elastin/metabolism , Nicotiana/genetics , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL