Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.990
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(9): 1593-1606, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39112630

ABSTRACT

The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.


Subject(s)
Aging , Epithelial Cells , Forkhead Transcription Factors , Regeneration , Thymus Gland , Thymus Gland/immunology , Animals , Epithelial Cells/immunology , Regeneration/immunology , Mice , Aging/immunology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Epithelial-Mesenchymal Transition/immunology , Mice, Inbred C57BL , Male , Thymocytes/immunology , Thymocytes/metabolism , Female , Single-Cell Analysis
2.
Nat Rev Mol Cell Biol ; 25(9): 720-739, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38684869

ABSTRACT

Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.


Subject(s)
Epithelial-Mesenchymal Transition , Fibrosis , Humans , Animals , Wound Healing/physiology , Regeneration/physiology , Epithelial Cells/pathology , Epithelial Cells/metabolism
3.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358469

ABSTRACT

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Proteogenomics , Acetylation , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Ubiquitination
4.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765444

ABSTRACT

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Subject(s)
Biological Evolution , Brain/cytology , Cell Shape/physiology , Animals , Brain/metabolism , Cell Differentiation , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression , Gorilla gorilla , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurogenesis , Neurons/cytology , Neurons/metabolism , Organoids/cytology , Organoids/metabolism , Pan troglodytes , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
5.
Cell ; 183(4): 860-874, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33186528

ABSTRACT

Persistent cancer cells are the discrete and usually undetected cells that survive cancer drug treatment and constitute a major cause of treatment failure. These cells are characterized by their slow proliferation, highly flexible energy consumption, adaptation to their microenvironment, and phenotypic plasticity. Mechanisms that underlie their persistence offer highly coveted and sought-after therapeutic targets, and include diverse epigenetic, transcriptional, and translational regulatory processes, as well as complex cell-cell interactions. Although the successful clinical targeting of persistent cancer cells remains to be realized, immense progress has been made in understanding their persistence, yielding promising preclinical results.


Subject(s)
Neoplasms/pathology , Animals , Cell Survival , Energy Metabolism , Epithelial-Mesenchymal Transition , Humans , Mitochondria/metabolism , Neoplasms/therapy , Tumor Microenvironment
6.
Cell ; 183(2): 395-410.e19, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33007268

ABSTRACT

Collective metastasis is defined as the cohesive migration and metastasis of multicellular tumor cell clusters. Disrupting various cell adhesion genes markedly reduces cluster formation and colonization efficiency, yet the downstream signals transmitted by clustering remain largely unknown. Here, we use mouse and human breast cancer models to identify a collective signal generated by tumor cell clusters supporting metastatic colonization. We show that tumor cell clusters produce the growth factor epigen and concentrate it within nanolumina-intercellular compartments sealed by cell-cell junctions and lined with microvilli-like protrusions. Epigen knockdown profoundly reduces metastatic outgrowth and switches clusters from a proliferative to a collective migratory state. Tumor cell clusters from basal-like 2, but not mesenchymal-like, triple-negative breast cancer cell lines have increased epigen expression, sealed nanolumina, and impaired outgrowth upon nanolumenal junction disruption. We propose that nanolumenal signaling could offer a therapeutic target for aggressive metastatic breast cancers.


Subject(s)
Breast Neoplasms/physiopathology , Intercellular Junctions/pathology , Neoplasm Metastasis/physiopathology , Animals , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Epigen/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Mice , Neoplastic Cells, Circulating/pathology , Signal Transduction/physiology , Triple Negative Breast Neoplasms/pathology
7.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059776

ABSTRACT

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Proteome/genetics , Transcriptome , Acetylation , Animals , Antigens, Neoplasm/genetics , Carcinoma/immunology , Carcinoma/pathology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Female , Genomic Instability , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microsatellite Repeats , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
8.
Cell ; 180(6): 1198-1211.e19, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32200801

ABSTRACT

It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.


Subject(s)
Cell Culture Techniques/methods , Endothelial Protein C Receptor/metabolism , Islets of Langerhans/cytology , Animals , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Epithelial-Mesenchymal Transition/physiology , Female , Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Islets of Langerhans/growth & development , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Nude , Organoids/growth & development , Organoids/metabolism , Pancreas/cytology , Pancreas/metabolism , Protein C/metabolism , Stem Cells/cytology
9.
Cell ; 178(1): 160-175.e27, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31155233

ABSTRACT

Single-cell technologies have described heterogeneity across tissues, but the spatial distribution and forces that drive single-cell phenotypes have not been well defined. Combining single-cell RNA and protein analytics in studying the role of stromal cancer-associated fibroblasts (CAFs) in modulating heterogeneity in pancreatic cancer (pancreatic ductal adenocarcinoma [PDAC]) model systems, we have identified significant single-cell population shifts toward invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO) phenotypes linked with mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling. Using high-content digital imaging of RNA in situ hybridization in 195 PDAC tumors, we quantified these EMT and PRO subpopulations in 319,626 individual cancer cells that can be classified within the context of distinct tumor gland "units." Tumor gland typing provided an additional layer of intratumoral heterogeneity that was associated with differences in stromal abundance and clinical outcomes. This demonstrates the impact of the stroma in shaping tumor architecture by altering inherent patterns of tumor glands in human PDAC.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Animals , Cell Proliferation , Coculture Techniques , Epithelial-Mesenchymal Transition , Female , HEK293 Cells , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mitogen-Activated Protein Kinases/metabolism , RNA-Seq , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , Transfection
10.
Nat Immunol ; 22(5): 595-606, 2021 05.
Article in English | MEDLINE | ID: mdl-33903766

ABSTRACT

Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1-CSF1R-C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker.


Subject(s)
Biomarkers, Tumor/metabolism , Heme Oxygenase-1/metabolism , Lung Neoplasms/immunology , Melanoma/immunology , Skin Neoplasms/immunology , Tumor-Associated Macrophages/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/blood , Cell Line, Tumor/transplantation , Chemotherapy, Adjuvant/methods , Disease Models, Animal , Epithelial-Mesenchymal Transition/immunology , Female , Heme/metabolism , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/blood , Heme Oxygenase-1/genetics , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Male , Melanoma/mortality , Melanoma/secondary , Melanoma/therapy , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Myeloid Progenitor Cells/immunology , Myeloid Progenitor Cells/metabolism , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Tumor Escape/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism
11.
Cell ; 173(3): 634-648.e12, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29606356

ABSTRACT

Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119+CD45-CD71+ phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor ß (TGF-ß) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications.


Subject(s)
Disease Progression , Erythroblasts/cytology , Nerve Tissue Proteins/blood , Spleen/cytology , Transforming Growth Factor beta/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hep G2 Cells , Humans , Leukocyte Common Antigens/metabolism , Leukocytes/cytology , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/genetics , Signal Transduction
12.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Article in English | MEDLINE | ID: mdl-32300252

ABSTRACT

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Subject(s)
Biomedical Research/standards , Epithelial-Mesenchymal Transition , Animals , Cell Movement , Cell Plasticity , Consensus , Developmental Biology/standards , Humans , Neoplasms/pathology , Terminology as Topic
13.
Cell ; 171(7): 1611-1624.e24, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29198524

ABSTRACT

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis, and response to therapy. We profiled transcriptomes of ∼6,000 single cells from 18 head and neck squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and lymph node metastases. Stromal and immune cells had consistent expression programs across patients. Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define stromal interactions and a p-EMT program associated with metastasis.


Subject(s)
Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Neoplasm Metastasis/pathology , Carcinoma, Squamous Cell/genetics , Cells, Cultured , Epithelial-Mesenchymal Transition , Gene Expression Profiling , Head and Neck Neoplasms/genetics , Humans , Male , Single-Cell Analysis , Tumor Microenvironment
14.
Cell ; 168(4): 670-691, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187288

ABSTRACT

Metastases account for the great majority of cancer-associated deaths, yet this complex process remains the least understood aspect of cancer biology. As the body of research concerning metastasis continues to grow at a rapid rate, the biological programs that underlie the dissemination and metastatic outgrowth of cancer cells are beginning to come into view. In this review we summarize the cellular and molecular mechanisms involved in metastasis, with a focus on carcinomas where the most is known, and we highlight the general principles of metastasis that have begun to emerge.


Subject(s)
Carcinoma/pathology , Neoplasm Metastasis/pathology , Animals , Blood Platelets/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Neutrophils/metabolism , T-Lymphocytes/immunology , Tumor Microenvironment
15.
Mol Cell ; 84(19): 3775-3789.e6, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39153475

ABSTRACT

Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the "rG4ome"). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells in vitro and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.


Subject(s)
Carrier Proteins , Cell Nucleus , Epithelial-Mesenchymal Transition , G-Quadruplexes , Gene Expression Regulation, Neoplastic , Membrane Proteins , RNA Precursors , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Animals , Female , Humans , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Movement , Cell Nucleus/metabolism , Cell Nucleus/genetics , Epithelial-Mesenchymal Transition/genetics , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred NOD , Neoplasm Invasiveness , Protein Binding , RNA Precursors/metabolism , RNA Precursors/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism
16.
Nat Rev Mol Cell Biol ; 20(2): 69-84, 2019 02.
Article in English | MEDLINE | ID: mdl-30459476

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Neoplasms/pathology , Animals , Extracellular Matrix/pathology , Humans , Neoplastic Stem Cells/pathology , Tumor Microenvironment/physiology
17.
Cell ; 166(1): 21-45, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27368099

ABSTRACT

The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.


Subject(s)
Epithelial-Mesenchymal Transition , Fibrosis/pathology , Neoplasms/pathology , Animals , Embryonic Development , Epigenesis, Genetic , Humans , Transcription, Genetic
18.
Cell ; 164(5): 840-2, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26919422

ABSTRACT

TGF-ß is long considered a "protean" cytokine in cancer, changing its role from anti- to pro-tumorigenic in a context-dependent manner. In this issue of Cell, David et al. use mouse models of pancreatic cancer to shed light on the mechanistic basis of how TGF-ß-induced EMT is coupled to either apoptosis or tumor progression.


Subject(s)
Carcinoma, Ductal/genetics , Epithelial-Mesenchymal Transition , Gene Regulatory Networks , Pancreatic Neoplasms/genetics , Transforming Growth Factor beta/antagonists & inhibitors , Animals
19.
Cell ; 164(5): 1015-30, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26898331

ABSTRACT

TGF-ß signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-ß mediator Smad4. We show that TGF-ß induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-ß-sensitive PDA cells, EMT becomes lethal by converting TGF-ß-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-ß. TGF-ß-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-ß tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.


Subject(s)
Carcinoma, Ductal/genetics , Epithelial-Mesenchymal Transition , Gene Regulatory Networks , Pancreatic Neoplasms/genetics , Transforming Growth Factor beta/antagonists & inhibitors , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Apoptosis , Carcinoma, Ductal/pathology , Kruppel-Like Transcription Factors/metabolism , Mice , Organoids/metabolism , Organoids/pathology , Pancreatic Neoplasms/pathology , SOXC Transcription Factors/metabolism , Smad4 Protein/metabolism
20.
Cell ; 160(6): 1125-34, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25768908

ABSTRACT

Circular RNAs (circRNAs), formed by non-sequential back-splicing of pre-mRNA transcripts, are a widespread form of non-coding RNA in animal cells. However, it is unclear whether the majority of circRNAs represent splicing by-products without function or are produced in a regulated manner to carry out specific cellular functions. We show that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and find that the production of over one-third of abundant circRNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT. Furthermore, by modulating QKI levels, we show the effect on circRNA abundance is dependent on intronic QKI binding motifs. Critically, the addition of QKI motifs is sufficient to induce de novo circRNA formation from transcripts that are normally linearly spliced. These findings demonstrate circRNAs are both purposefully synthesized and regulated by cell-type specific mechanisms, suggesting they play specific biological roles in EMT.


Subject(s)
Epithelial-Mesenchymal Transition , RNA-Binding Proteins/metabolism , RNA/metabolism , Cell Line , Exons , Humans , Introns , RNA Splicing , RNA, Circular
SELECTION OF CITATIONS
SEARCH DETAIL