Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 911
Filter
Add more filters

Publication year range
1.
BMC Microbiol ; 24(1): 43, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291363

ABSTRACT

Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with ß-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 µg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 µg/ml), Pancl (IC50 1.5 µg/ml), MCF7 (IC50 3.7 µg/ml) and WI38 (IC50 4.6 µg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 µg/ml) compared to Paclitaxel (2.0 µg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.


Subject(s)
Antineoplastic Agents , Epothilones , Epothilones/pharmacology , Epothilones/metabolism , Tubulin/metabolism , Aspergillus fumigatus , Fermentation , Chromatography, Liquid , Polymerization , Tandem Mass Spectrometry , Antineoplastic Agents/pharmacology , Cell Cycle
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047035

ABSTRACT

Epothilone is a natural 16-membered macrolide cytotoxic compound produced by the metabolism of the cellulose-degrading myxobacterium Sorangium cellulosum. This review summarizes results in the study of epothilones against cancer with preclinical results and clinical studies from 2010-2022. Epothilone have mechanisms of action similar to paclitaxel by inducing tubulin polymerization and apoptosis with low susceptibility to tumor resistance mechanisms. It is active against refractory tumors, being superior to paclitaxel in many respects. Since the discovery of epothilones, several derivatives have been synthesized, and most of them have failed in Phases II and III in clinical trials; however, ixabepilone and utidelone are currently used in clinical practice. There is robust evidence that triple-negative breast cancer (TNBC) treatment improves using ixabepilone plus capecitabine or utidelone in combination with capecitabine. In recent years innovative synthetic strategies resulted in the synthesis of new epothilone derivatives with improved activity against refractory tumors with better activities when compared to ixabepilone or taxol. These compounds together with specific delivery mechanisms could be developed in anti-cancer drugs.


Subject(s)
Antineoplastic Agents , Epothilones , Neoplasms , Humans , Epothilones/pharmacology , Epothilones/therapeutic use , Capecitabine/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Neoplasms/drug therapy
3.
Br J Cancer ; 126(12): 1695-1703, 2022 06.
Article in English | MEDLINE | ID: mdl-35149854

ABSTRACT

BACKGROUND: This multi-center RP2 study assessed activity/safety of ixabepilone + bevacizumab compared to ixabepilone in platinum-resistant/refractory ovarian/fallopian tube/primary peritoneal cancer. Additional objectives were to examine the role of prior bevacizumab and taxanes, and explore class III-ß-tubulin (TUBB3) as a predictive biomarker. METHODS: Participants were randomised to receive ixabepilone 20 mg/m2 days 1, 8, 15 with (IXA + BEV) or without (IXA) bevacizumab 10 mg/kg days 1, 15 every 28 days. Patients were stratified by prior BEV. The primary endpoint was PFS. OS, safety, and ORR served as secondary endpoints. RESULTS: Among 76 evaluable patients who received IXA + BEV (n = 39) compared to IXA (n = 37), the ORR was 33% (n = 13) versus 8% (n = 3)(P = 0.004), durable at 6 months in 37% (n = 14) and 3% (n = 1) (P < 0.001). BEV significantly improved PFS (median:5.5 vs 2.2 months, HR = 0.33, 95%CI 0.19-0.55, P < 0.001) and OS (median:10.0 vs 6.0 months, HR = 0.52, 95%CI 0.31-0.87, P = 0.006). Both regimens were well-tolerated. TUBB3 expression did not predict response. Subgroup analyses revealed minimal effect of prior BEV or taxane resistant/refractory status on response to IXA + BEV. CONCLUSIONS: IXA + BEV is a well-tolerated, effective combination for platinum/taxane-resistant ovarian cancer that extends PFS and likely OS relative to IXA monotherapy. Prior receipt of BEV should not preclude the use of IXA + BEV. TUBB3 is not a predictive biomarker. CLINICAL TRIAL REGISTRATION: NCT3093155.


Subject(s)
Fallopian Tube Neoplasms , Ovarian Neoplasms , Peritoneal Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/adverse effects , Carcinoma, Ovarian Epithelial/drug therapy , Epothilones , Fallopian Tube Neoplasms/drug therapy , Fallopian Tubes , Female , Humans , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/drug therapy , Platinum/therapeutic use
4.
J Transl Med ; 20(1): 466, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36221095

ABSTRACT

BACKGROUND: Liver carcinoma generally presents as an immunosuppressive microenvironment that promotes tumor evasion. The intercellular crosstalk of immune cells significantly influences the construction of an immunosuppressive microenvironment. This study aimed to investigate the important interactions between immune cells and their targeting drugs in liver carcinoma, by using single-cell and bulk transcriptomic data. METHODS: Single-cell and bulk transcriptomic data were retrieved from Gene Expression Omnibus (GSE159977, GSE136103, and GSE125449) and The Cancer Genome Atlas (TGCA-LIHC), respectively. Quality control, dimension reduction, clustering, and annotation were performed according to the Scanpy workflow based on Python. Cell-cell interactions were explored using the CellPhone database and CellChat. Trajectory analysis was executed using a partition-based graph abstraction method. The transcriptomic factors (TFs) were predicted using single-cell regulatory network inference and clustering (SCENIC). The target genes from TFs were used to establish a related score based on the TCGA cohort; this score was subsequently validated by survival, gene set enrichment, and immune cell infiltration analyses. Drug prediction was performed based on the Cancer Therapeutics Response Portal and PRISM Repurposing datasets. RESULTS: Thirty-one patients at four different states, including health, hepatitis, cirrhosis, and cancer, were enrolled in this study. After dimension reduction and clustering, twenty-two clusters were identified. Cell-cell interaction analyses indicated that macrophage-naive CD4 + T cell interaction significantly affect cancerous state. In brief, macrophages interact with naive CD4 + T cells via different pathways in different states. The results of SCENIC indicated that macrophages present in cancer cells were similar to those present during cirrhosis. A macrophage-naive CD4 + T cell (MNT) score was generated by the SCENIC-derived target genes. Based on the MNT score, five relevant drugs (inhibitor of polo-like kinase 1, inhibitor of kinesin family member 11, dabrafenib, ispinesib, and epothilone-b) were predicted. CONCLUSIONS: This study reveals the crucial role of macrophage-naive CD4 + T cell interaction in the immunosuppressive microenvironment of liver carcinoma. Tumor-associated macrophages may be derived from cirrhosis and can initiate liver carcinoma. Predictive drugs that target the macrophage-naive CD4 + T cell interaction may help to improve the immunosuppressive microenvironment and prevent immune evasion. The relevant mechanisms need to be further validated in experiments and cohort studies.


Subject(s)
Carcinoma, Hepatocellular , Epothilones , Liver Neoplasms , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Communication , Humans , Kinesins , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Macrophages/metabolism , T-Lymphocytes , Transcriptome/genetics , Tumor Microenvironment/genetics
5.
J Transl Med ; 20(1): 455, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36199146

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors of the digestive tract. Pyroptosis is a newly discovered programmed cell death that highly correlated with the prognosis of tumors. However, the prognostic value of pyroptosis in PAAD remains unclear. METHODS: A total of 178 pancreatic cancer PAAD samples and 167 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The "DESeq2" R package was used to identify differntially expressed pyroptosis-related genes between normal pancreatic samples and PAAD samples. The prognostic model was established in TCGA cohort based on univariate Cox and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses, which was validated in test set from Gene Expression Omnibus (GEO) cohort. Univariate independent prognostic analysis and multivariate independent prognostic analysis were used to determine whether the risk score can be used as an independent prognostic factor to predict the clinicopathological features of PAAD patients. A nomogram was used to predict the survival probability of PAAD patients, which could help in clinical decision-making. The R package "pRRophetic" was applied to calculate the drug sensitivity of each samples from high- and low-risk group. Tumor immune infiltration was investigated using an ESTIMATE algorithm. Finally, the pro-tumor phenotype of GSDMC was explored in PANC-1 and CFPAC-1 cells. RESULT: On the basis of univariate Cox and LASSO regression analyses, we constructed a risk model with identified five pyroptosis-related genes (IL18, CASP4, NLRP1, GSDMC, and NLRP2), which was validated in the test set. The PAAD samples were divided into high-risk and low-risk groups on the basis of the risk score's median. According to Kaplan Meier curve analysis, samples from high-risk groups had worse outcomes than those from low-risk groups. The time-dependent receiver operating characteristics (ROC) analysis revealed that the risk model could predict the prognosis of PAAD accurately. A nomogram accompanied by calibration curves was presented for predicting 1-, 2-, and 3-year survival in PAAD patients. More importantly, 4 small molecular compounds (A.443654, PD.173074, Epothilone. B, Lapatinib) were identified, which might be potential drugs for the treatment of PAAD patients. Finally, the depletion of GSDMC inhibits the proliferation, invasion, and migration of pancreatic adenocarcinoma cells. CONCLUSION: In this study, we developed a pyroptosis-related prognostic model based on IL18, CASP4, NLRP1, NLRP2, and GSDMC , which may be helpful for clinicians to make clinical decisions for PAAD patients and provide valuable insights for individualized treatment. Our result suggest that GSDMC may promote the proliferation and migration of PAAD cell lines. These findings may provide new insights into the roles of pyroptosis-related genes in PAAD, and offer  new therapeutic targets for the treatment of PAAD.


Subject(s)
Adenocarcinoma , Epothilones , Pancreatic Neoplasms , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Interleukin-18/metabolism , Lapatinib , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pore Forming Cytotoxic Proteins , Prognosis , Pyroptosis/genetics , Pancreatic Neoplasms
6.
Am J Pathol ; 191(12): 2245-2264, 2021 12.
Article in English | MEDLINE | ID: mdl-34563512

ABSTRACT

Whether alterations in the microtubule cytoskeleton affect the ability of endothelial cells (ECs) to sprout and form branching networks of tubes was investigated in this study. Bioassays of human EC tubulogenesis, where both sprouting behavior and lumen formation can be rigorously evaluated, were used to demonstrate that addition of the microtubule-stabilizing drugs, paclitaxel, docetaxel, ixabepilone, and epothilone B, completely interferes with EC tip cells and sprouting behavior, while allowing for EC lumen formation. In bioassays mimicking vasculogenesis using single or aggregated ECs, these drugs induce ring-like lumens from single cells or cyst-like spherical lumens from multicellular aggregates with no evidence of EC sprouting behavior. Remarkably, treatment of these cultures with a low dose of the microtubule-destabilizing drug, vinblastine, led to an identical result, with complete blockade of EC sprouting, but allowing for EC lumen formation. Administration of paclitaxel in vivo markedly interfered with angiogenic sprouting behavior in developing mouse retina, providing corroboration. These findings reveal novel biological activities for pharmacologic agents that are widely utilized in multidrug chemotherapeutic regimens for the treatment of human malignant cancers. Overall, this work demonstrates that manipulation of microtubule stability selectively interferes with the ability of ECs to sprout, a necessary step to initiate and form branched capillary tube networks.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Neovascularization, Pathologic/drug therapy , Paclitaxel/pharmacology , Animals , Blood Vessels/drug effects , Blood Vessels/growth & development , Cells, Cultured , Docetaxel/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/growth & development , Epothilones/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Mice , Mice, Inbred C57BL , Morphogenesis/drug effects , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/drug effects , Paclitaxel/analogs & derivatives
7.
Biotechnol Appl Biochem ; 69(4): 1723-1732, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34415071

ABSTRACT

Epothilone A, a microtubule-stabilizing agent used as therapeutics for the treatment of cancers, was biotransformed into three metabolites using Nocardia sp. CS692 and recombinant Nocardia overexpressing a cytochrome P450 from Streptomyces venezuelae (PikC). Among three metabolites produced in the biotransformation reaction mixtures, ESI/MS2 analysis predicted two metabolites (M1 and M2) as novel hydroxylated derivatives (M1 is hydroxylated at the C-8 position and M2 is hydroxylated at C-10 position), each with an opened-epoxide ring in their structure. Interestingly, metabolite M3 lacks an epoxide ring and is known as deoxyepothilone A, which is also called epothilone C. Metabolite M1 was produced only in PikC overexpressing strain. The endogenous enzymes of Nocardia sp. catalyzed hydroxylation of epothilone A to produce metabolite M2 and removed epoxide ring to produce metabolite M3. All the metabolites were identified based on UV-vis analysis and rigorous ESI/MS2 fragmentation based on epothilone A standard. The newly produced metabolites are anticipated to display novel cytotoxic effects and could be subjects of further pharmacological studies.


Subject(s)
Nocardia , Biotransformation , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Epothilones , Epoxy Compounds , Humans , Nocardia/genetics , Nocardia/metabolism
8.
Angew Chem Int Ed Engl ; 61(10): e202114614, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34902214

ABSTRACT

Optical methods to modulate microtubule dynamics show promise for reaching the micron- and millisecond-scale resolution needed to decrypt the roles of the cytoskeleton in biology. However, optical microtubule stabilisers are under-developed. We introduce "STEpos" as GFP-orthogonal, light-responsive epothilone-based microtubule stabilisers. They use a novel styrylthiazole photoswitch in a design to modulate hydrogen-bonding and steric effects that control epothilone potency. STEpos photocontrol microtubule dynamics and cell division with micron- and second-scale spatiotemporal precision. They substantially improve potency, solubility, and ease-of-use compared to previous optical microtubule stabilisers, and the structure-photoswitching-activity relationship insights in this work will guide future optimisations. The STEpo reagents can contribute greatly to high-precision research in cytoskeleton biophysics, cargo transport, cell motility, cell division, development, and neuroscience.


Subject(s)
Cytoskeleton/chemistry , Epothilones/chemistry , Green Fluorescent Proteins/chemistry , Microtubules/chemistry , Styrenes/chemistry , Thiazoles/chemistry , Models, Molecular , Molecular Structure , Photochemical Processes
9.
Biochem Biophys Res Commun ; 534: 330-336, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33272565

ABSTRACT

Microtubule is a key component of cytoskeleton and has been considered as an important target for the treatment of cancer. In particular, the tubulin taxane-site inhibitors such as taxol analogs and epothilones have achieved great success in clinical trials. However, the structural basis of many taxane-site inhibitors is still lacking in exploring their mechanism of action. We here reported crystal complex structures for three taxane-site inhibitors, Ixabepilone, Epothilone B, and Epothilone D, which were determined to 2.4 Å, 2.4 Å, and 2.85 Å, respectively. The crystal structures revealed that these taxane-site inhibitors possess similar binding modes to that of Epothilone A at the taxane site, e.g. making critical hydrogen-bonding interactions with multiple residues on the M-loop, which facilitating the tubulin polymerization. Furthermore, we summarized the binding modes of almost all taxane-site inhibitors and identified novel taxane-site ligands with simpler chemical structures through virtual screening. On this basis, new derivatives with higher binding affinity to tubulin were designed and developed, which can form additional hydrogen bond interactions with tubulin. Overall, this work determined the mechanism of action of epothilones and provided a structural basis to design reasonably novel taxane-site inhibitors with simpler structure and improved pharmacokinetic properties.


Subject(s)
Epothilones/chemistry , Epothilones/pharmacology , Microtubules/drug effects , Microtubules/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Tubulin/chemistry , Tubulin/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Epothilones/pharmacokinetics , Humans , Models, Molecular , Molecular Docking Simulation , Tubulin Modulators/pharmacokinetics , User-Computer Interface
10.
Gynecol Oncol ; 161(1): 113-121, 2021 04.
Article in English | MEDLINE | ID: mdl-33541735

ABSTRACT

BACKGROUND: Successfully combining targeted agents with chemotherapy is an important future goal for cancer therapy. However, an improvement in patient outcomes requires an enhanced understanding of the tumor biomarkers that predict for drug sensitivity. NRG Oncology/Gynecologic Oncology Group (GOG) Study GOG-86P was one of the first attempts to combine targeted agents (bevacizumab or temsirolimus) with chemotherapy in patients with advanced endometrial cancer. Herein we performed exploratory analyses to examine the relationship between mutations in TP53, the most commonly mutated gene in cancer, with outcomes on GOG-86P. METHODS: TP53 mutational status was determined and correlated with progression-free survival (PFS) and overall survival (OS) on GOG-86P. RESULTS: Mutations in TP53 were associated with improved PFS and OS for patients that received bevacizumab as compared to temsirolimus (PFS: HR 0.48, 95% CI 0.31, 0.75; OS: HR: 0.61, 95% CI 0.38, 0.98). By contrast, there was no statistically significant difference in PFS or OS between arms for cases with WT TP53. CONCLUSIONS: This exploratory study suggests that combining chemotherapy with bevacizumab, but not temsirolimus, may enhance PFS and OS for patients whose tumors harbor mutant p53. These data set the stage for larger clinical studies evaluating the potential of TP53 mutational status as a biomarker to guide choice of treatment for endometrial cancer patients. Clintrials.gov: NCT00977574.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Mutation , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Tumor Suppressor Protein p53/genetics , Angiogenesis Inhibitors/administration & dosage , Bevacizumab/administration & dosage , Carboplatin/administration & dosage , Clinical Trials, Phase II as Topic , Endometrial Neoplasms/pathology , Epothilones/administration & dosage , Female , Genes, p53 , Humans , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Paclitaxel/administration & dosage , Progression-Free Survival , Randomized Controlled Trials as Topic , Sirolimus/administration & dosage , Sirolimus/analogs & derivatives , Survival Rate , Treatment Outcome
11.
Proc Natl Acad Sci U S A ; 115(48): E11406-E11414, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429313

ABSTRACT

Drug receptor site occupancy is a central pharmacology parameter that quantitatively relates the biochemistry of drug binding to the biology of drug action. Taxanes and epothilones bind to overlapping sites in microtubules (MTs) and stabilize them. They are used to treat cancer and are under investigation for neurodegeneration. In cells, they cause concentration-dependent inhibition of MT dynamics and perturbation of mitosis, but the degree of site occupancy required to trigger different effects has not been measured. We report a live cell assay for taxane-site occupancy, and relationships between site occupancy and biological effects across four drugs and two cell lines. By normalizing to site occupancy, we were able to quantitatively compare drug activities and cell sensitivities independent of differences in drug affinity and uptake/efflux kinetics. Across all drugs and cells tested, we found that inhibition of MT dynamics, postmitotic micronucleation, and mitotic arrest required successively higher site occupancy. We also found interesting differences between cells and drugs, for example, insensitivity of the spindle assembly checkpoint to site occupancy. By extending our assay to a mouse xenograft tumor model, we estimated the initial site occupancy required for paclitaxel to completely prevent tumor growth as 80%. The most important cellular action of taxanes for cancer treatment may be formation of micronuclei, which occurs over a broad range of site occupancies.


Subject(s)
Antineoplastic Agents/metabolism , Bridged-Ring Compounds/metabolism , Taxoids/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Transport , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Epothilones/chemistry , Epothilones/metabolism , Epothilones/pharmacology , Humans , Kinetics , Microscopy , Microtubules/chemistry , Microtubules/metabolism , Taxoids/chemistry , Taxoids/pharmacology
12.
Microb Cell Fact ; 19(1): 180, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32933531

ABSTRACT

BACKGROUND: Epothilone B is a natural product that stabilizes microtubules, similar to paclitaxel (Taxol); therefore, epothilone B and several derivatives have shown obvious antitumour activities. Some of these products are in clinical trials, and one (ixabepilone, BMS) is already on the market, having been approved by the FDA in 2007. The terminal step in epothilone B biosynthesis is catalysed by the cytochrome P450 enzyme EpoK (CYP167A1), which catalyses the epoxidation of the C12-C13 double bond (in epothilone C and D) to form epothilone A and B, respectively. Although redox partners from different sources support the catalytic activity of EpoK in vitro, the conversion rates are low, and these redox partners are not applied to produce epothilone B in heterologous hosts. RESULTS: Schlegelella brevitalea DSM 7029 contains electron transport partners that efficiently support the catalytic activity of EpoK. We screened and identified one ferredoxin, Fdx_0135, by overexpressing putative ferredoxin genes in vivo and identified two ferredoxin reductases, FdR_0130 and FdR_7100, by whole-cell biotransformation of epothilone C to effectively support the catalytic activity of EpoK. In addition, we obtained strain H7029-3, with a high epothilone B yield and found that the proportion of epothilone A + B produced by this strain was 90.93%. Moreover, the whole-cell bioconversion strain 7029-10 was obtained; this strain exhibited an epothilone C conversion rate of 100% in 12 h. Further RT-qPCR experiments were performed to analyse the overexpression levels of the target genes. Gene knock-out experiments showed that the selected ferredoxin (Fdx_0135) and its reductases (FdR_0130 and FdR_7100) might participate in critical physiological processes in DSM 7029. CONCLUSION: Gene overexpression and whole-cell biotransformation were effective methods for identifying the electron transport partners of the P450 enzyme EpoK. In addition, we obtained an epothilone B high-yield strain and developed a robust whole-cell biotransformation system. This strain and system hold promise for the industrial production of epothilone B and its derivatives.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Epothilones/biosynthesis , Ferredoxins/genetics , Ferredoxins/metabolism , Sapindaceae/genetics , Sapindaceae/metabolism , Bacterial Proteins/biosynthesis , Biotransformation , Catalysis , Electron Transport , Gene Knockout Techniques , Genetic Complementation Test , Genome, Bacterial , Oxidation-Reduction
13.
J Org Chem ; 85(5): 2865-2917, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32065746

ABSTRACT

Despite previous studies within the epothilone field, only one member of this compound family, ixabepilone, made it to approval for clinical use. Recent advances in organic synthesis and medicinal chemistry allow further optimization of lead epothilone analogues aiming to improve their potencies and other pharmacological properties as part of the quest for discovery and development of new anticancer drugs, including antibody-drug conjugates as potential targeted cancer therapies. Herein, we report the design, synthesis, and biological evaluation of a series of new epothilone B analogues equipped with novel structural motifs, including fluorine-containing residues, 12,13-difluorocyclopropyl moieties, mono- and dimethylated macrolactones, and 1-keto macrocyclic systems, as well as two N-substituted ixabepilone analogues in which the 12,13-epoxide and macrolactam NH moieties were replaced, the former with a substituted aziridine moiety and the latter with an NCO-alkyl residue (imide or carbamate). Biological evaluation of these analogues revealed a number of exceptionally potent epothilone B analogues, demonstrating the potency enhancing effects of the fluorine residues and the aziridinyl moiety within the structure of the epothilone molecule and providing new and useful structure-activity relationships within this class of compounds.


Subject(s)
Antineoplastic Agents , Aziridines , Epothilones , Antineoplastic Agents/pharmacology , Epothilones/pharmacology , Epoxy Compounds , Fluorine , Lactams , Lactones , Structure-Activity Relationship
14.
Cell Biol Int ; 44(5): 1168-1183, 2020 May.
Article in English | MEDLINE | ID: mdl-32022385

ABSTRACT

Microtubule-stabilizing agents (MSAs), until now, have primarily been considered for their anti-proliferative effects in the setting of cancer. However, recent studies have revealed that one particular MSA, epothilone B (EpoB), can promote axonal regeneration after traumatic spinal cord injuries (SCI) even in the presence of inhibitor molecules such as neurite outgrowth inhibitor-A (Nogo-A). On the basis of the importance of having an efficient motor neuron (MN) differentiation protocol for stem cell therapy and the attention of MSAs for SCI treatment, our study investigated the effect of EpoB on human endometrial stem cells (hEnSCs) differentiation into MN-like cells. hEnSCs were isolated and characterized by flow cytometry. The hEnSC cell viability was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To mimic the in vivo inhibitory environment, hEnSCs were also differentiated in the presence of Nogo-A. After 15 days of differentiation, the expressions of MN-markers were evaluated by real-time reverse-transcriptase polymerase chain reaction and immunofluorescence. According to the MTT assay results, three doses (1, 5, and 10 nM) of EpoB were selected to evaluate their effect on MN-differentiation. All selected doses can increase the efficacy of hEnSCs differentiation into MN-like cells. In particular, the 10 nM EpoB dosage was shown to increase the axon elongation, cell alignment, and upregulation of these MN-markers compared with other doses. EpoB can improve MN differentiation from hEnSC and potentially provide a unique route for neuronal replacement in the setting of SCI.


Subject(s)
Cell Differentiation/drug effects , Epothilones/pharmacology , Motor Neurons/drug effects , Neurogenesis/drug effects , Stem Cells/drug effects , Cells, Cultured , Endometrium/cytology , Female , Humans , Motor Neurons/cytology , Stem Cells/cytology , Tubulin Modulators/pharmacology
15.
Neuroimage ; 189: 180-191, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30630081

ABSTRACT

White matter abnormalities, revealed by Diffusion Tensor Imaging (DTI), are observed in patients with Alzheimer's Disease (AD), representing neural network deficits that underlie gradual cognitive decline in patients. However, how DTI changes related to the development of Amyloid beta (Aß) and tau pathology, two key hallmarks of AD, remain elusive. We hypothesized that tauopathy induced by Aß could initiate an axonal degeneration, leading to DTI-detectable white matter abnormalities. We utilized the visual system of the transgenic p301L tau mice as a model system. Aß was injected in Lateral Geniculate Nucleus (LGN), where the Retinal Ganglion Cell (RGC) axons terminate. Longitudinal DTI was conducted to detect changes in the optic tract (OT) and optic nerve (ON), containing the distal and proximal segments of RGC axons, respectively. Our results showed DTI changes in OT (significant 13.2% reduction in axial diffusion, AxD vs. vehicle controls) followed by significant alterations in ON AxD and fractional anisotropy, FA. Histology data revealed loss of synapses, RGC axons and cell bodies resulting from the Aß injection. We further tested whether microtubule-stabilizing compound Epothilone D (EpoD) could ameliorate the damage. EpoD co-treatment with Aß was sufficient to prevent Aß-induced axon and cell loss. Using an acute injection paradigm, our data suggest that EpoD may mediate its protective effect by blocking localized, acute Aß-induced tau phosphorylation. This study demonstrates white matter disruption resulting from localized Aß, the importance of tau pathology induction to changes in white matter connectivity, and the use of EpoD as a potential therapeutic avenue to prevent the axon loss in AD.


Subject(s)
Amyloid beta-Peptides/pharmacology , Epothilones/pharmacology , Geniculate Bodies/drug effects , Nerve Degeneration , Peptide Fragments/pharmacology , Retinal Ganglion Cells/drug effects , Tauopathies , Tubulin Modulators/pharmacology , White Matter , Amyloid beta-Peptides/administration & dosage , Animals , Diffusion Tensor Imaging , Disease Models, Animal , Epothilones/administration & dosage , Mice , Nerve Degeneration/chemically induced , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/drug therapy , Nerve Degeneration/prevention & control , Peptide Fragments/administration & dosage , Tauopathies/chemically induced , Tauopathies/diagnostic imaging , Tauopathies/drug therapy , Tauopathies/pathology , Tubulin Modulators/administration & dosage , White Matter/diagnostic imaging , White Matter/drug effects
16.
Br J Cancer ; 121(7): 611-621, 2019 10.
Article in English | MEDLINE | ID: mdl-31481735

ABSTRACT

BACKGROUND: Evidence shows that the anticancer effects of microtubule targeting agents are not due solely to their antimitotic activities but also their ability to impair microtubule-dependent oncogenic signalling. METHODS: The effects of microtubule targeting agents on regulators of TGF-ß-induced epithelial-to-mesenchymal transition (EMT) were evaluated in breast cancer cell lines using high content imaging, gene and protein expression, siRNA-mediated knockdown and chromatin immunoprecipitation. RESULTS: Microtubule targeting agents rapidly and differentially alter the expression of Snail and Slug, key EMT-promoting transcription factors in breast cancer. Eribulin, vinorelbine and in some cases, ixabepalone, but not paclitaxel, inhibited TGF-ß-mediated Snail expression by impairing the microtubule-dependent nuclear localisation of Smad2/3. In contrast, eribulin and vinorelbine promoted a TGF-ß-independent increase in Slug in cells with low Smad4. Mechanistically, microtubule depolymerisation induces c-Jun, which consequently increases Slug expression in cells with low Smad4. CONCLUSION: These results identify a mechanism by which eribulin-mediated microtubule disruption could reverse EMT in preclinical models and in patients. Furthermore, high Smad4 levels could serve as a biomarker of this response. This study highlights that microtubule targeting drugs can exert distinct effects on the expression of EMT-regulating transcription factors and that identifying differences among these drugs could lead to their more rational use.


Subject(s)
Breast Neoplasms/metabolism , Furans/pharmacology , Ketones/pharmacology , Microtubules/drug effects , Smad4 Protein/metabolism , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Chromatin Immunoprecipitation/methods , Epithelial-Mesenchymal Transition/drug effects , Epothilones/pharmacology , Female , Gene Expression , Genes, jun , Humans , Paclitaxel/pharmacology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Tubulin Modulators/pharmacology , Vinorelbine/pharmacology
17.
J Chem Inf Model ; 59(5): 2218-2230, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30855963

ABSTRACT

Epothilones are among the most potent chemotherapeutic drugs used for the treatment of cancer. Epothilone A (EpoA), a natural product, is a macrocyclic molecule containing 34 non-hydrogen atoms and a thiazole side chain. NMR studies of EpoA in aqueous solution, unbound as well as bound to αß-tubulin, and unbound in dimethyl sulfoxide (DMSO) solution have delivered sets of nuclear Overhauser effect (NOE) atom-atom distance bounds, but no structures based on NMR data are present in structural data banks. X-ray diffraction of crystals has provided structures of EpoA unbound and bound to αß-tubulin. Since both crystal structures derived from X-ray diffraction intensities do not completely satisfy the three available sets of NOE distance bounds for EpoA, molecular dynamics (MD) simulations have been employed to obtain conformational ensembles in aqueous and in DMSO solution that are compatible with the respective NOE data. It was found that EpoA displays a larger conformational variability in DMSO than in water and the two conformational ensembles show little overlap. Yet, they both provide conformational scaffolds that are energetically accessible at physiological temperature and pressure.


Subject(s)
Epothilones/chemistry , Epothilones/metabolism , Molecular Dynamics Simulation , Tubulin Modulators/chemistry , Tubulin Modulators/metabolism , Tubulin/metabolism , Dimethyl Sulfoxide/chemistry , Ligands , Molecular Conformation , Water/chemistry
18.
J Peripher Nerv Syst ; 24 Suppl 2: S40-S51, 2019 10.
Article in English | MEDLINE | ID: mdl-31647157

ABSTRACT

Taxane-induced peripheral neurotoxicity (TIPN) is the most common non-hematological side effect of taxane-based chemotherapy, and may result in dose reductions and discontinuations, having as such a detrimental effect on patients' overall survival. Epothilones share similar mechanism of action with taxanes. The typical TIPN clinical presentation is mainly comprised of numbness and paresthesia, in a stocking-and-glove distribution and may progress more proximally over time, with paclitaxel being more neurotoxic than docetaxel. Motor and autonomic involvement is less common, whereas an acute taxane-induced acute pain syndrome is frequent. Patient reported outcomes questionnaires, clinical evaluation, and instrumental tools offer complementary information in TIPN. Its electrodiagnostic features include reduced/abolished sensory action potentials, and less prominent motor involvement, in keeping with a length-dependent, axonal dying back predominately sensory neuropathy. TIPN is dose-dependent and may be reversible within months after the end of chemotherapy. The single and cumulative delivered dose of taxanes is considered the main risk factor of TIPN development. Apart from the cumulative dose, other risk factors for TIPN include demographic, clinical, and pharmacogenetic features with several single-nucleotide polymorphisms potentially linked with increased susceptibility of TIPN. There are currently no neuroprotective strategies to reduce the risk of TIPN, and symptomatic treatments are very limited. This review critically examines the pathogenesis, incidence, risk factors (both clinical and pharmacogenetic), clinical phenotype and management of TIPN.


Subject(s)
Antineoplastic Agents/adverse effects , Bridged-Ring Compounds/adverse effects , Epothilones/adverse effects , Neurotoxicity Syndromes/diagnosis , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/diagnosis , Taxoids/adverse effects , Clinical Trials as Topic/methods , Duloxetine Hydrochloride/therapeutic use , Humans , Neurotoxicity Syndromes/therapy , Peripheral Nervous System Diseases/therapy , Prospective Studies , Serotonin and Noradrenaline Reuptake Inhibitors/therapeutic use , Treatment Outcome , Tubulin Modulators/adverse effects
19.
Mol Cell Neurosci ; 89: 80-94, 2018 06.
Article in English | MEDLINE | ID: mdl-29673913

ABSTRACT

Multiple System Atrophy (MSA) is a progressive neurodegenerative disease characterized by chronic neuroinflammation and widespread α-synuclein (α-syn) cytoplasmic inclusions. Neuroinflammation associated with microglial cells is typically located in brain regions with α-syn deposits. The potential link between microglial cell migration and the transport of pathological α-syn protein in MSA was investigated. Qualitative analysis via immunofluorescence of MSA cases (n = 4) revealed microglial cells bearing α-syn inclusions distal from oligodendrocytes bearing α-syn cytoplasmic inclusions, as well as close interactions between microglia and oligodendrocytes bearing α-syn, suggestive of a potential transfer mechanism between microglia and α-syn bearing cells in MSA and the possibility of microglia acting as a mobile vehicle to spread α-syn between anatomically connected brain regions. Further In vitro experiments using microglial-like differentiated THP-1 cells were conducted to investigate if microglial cells could act as potential transporters of α-syn. Monomeric or aggregated α-syn was immobilized at the centre of glass coverslips and treated with either cell free medium, undifferentiated THP-1 cells or microglial-like phorbol-12-myristate-13-acetate differentiated THP-1 cells (48 h; n = 3). A significant difference in residual immobilized α-syn density was observed between cell free controls and differentiated (p = 0.016) as well as undifferentiated and differentiated THP-1 cells (p = 0.032) when analysed by quantitative immunofluorescence. Furthermore, a significantly greater proportion of differentiated cells were observed bearing α-syn aggregates distal from the immobilized protein than their non-differentiated counterparts (p = 0.025). Similar results were observed with Highly Aggressive Proliferating Immortalised (HAPI) microglial cells, with cells exposed to aggregated α-syn yielding lower residual immobilized α-syn (p = 0.004) and a higher proportion of α-syn positive distal cells (p = 0.001) than cells exposed to monomeric α-syn. Co-treatment of THP-1 groups with the tubulin depolymerisation inhibitor, Epothilone D (EpoD; 10 nM), was conducted to investigate if inhibition of microtubule activity had an effect on cell migration and residual immobilized α-syn density. There was a significant increase in both residual immobilized α-syn between EpoD treated and non-treated differentiated cells exposed to monomeric (p = 0.037) and aggregated (p = 0.018) α-syn, but not with undifferentiated cells. Differentiated THP-1 cells exposed to immobilized aggregated α-syn showed a significant difference in the proportion of distal aggregate bearing cells between EpoD treated and untreated (p = 0.027). The results suggest microglia could play a role in α-syn transport in MSA, a role which could potentially be inhibited therapeutically by EpoD.


Subject(s)
Epothilones/pharmacology , Microglia/metabolism , Multiple System Atrophy/metabolism , Tubulin Modulators/pharmacology , alpha-Synuclein/metabolism , Aged , Animals , Brain/metabolism , Brain/pathology , Cell Line , Cell Line, Tumor , Cell Movement , Humans , Microglia/drug effects , Microglia/physiology , Multiple System Atrophy/pathology , Rats
20.
Proc Natl Acad Sci U S A ; 113(41): 11453-11458, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27663731

ABSTRACT

The i.p. administration of chemotherapy in ovarian and uterine serous carcinoma patients by biodegradable nanoparticles may represent a highly effective way to suppress peritoneal carcinomatosis. However, the efficacy of nanoparticles loaded with chemotherapeutic agents is currently hampered by their fast clearance by lymphatic drainage. Here, we show that a unique formulation of bioadhesive nanoparticles (BNPs) can interact with mesothelial cells in the abdominal cavity and significantly extend the retention of the nanoparticles in the peritoneal space. BNPs loaded with a potent chemotherapeutic agent [epothilone B (EB)] showed significantly lower systemic toxicity and higher therapeutic efficacy against i.p. chemotherapy-resistant uterine serous carcinoma-derived xenografts compared with free EB and non-BNPs loaded with EB.


Subject(s)
Adhesives/administration & dosage , Drug Delivery Systems , Nanoparticles/administration & dosage , Animals , Cell Proliferation/drug effects , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Epothilones/administration & dosage , Epothilones/pharmacology , Epothilones/therapeutic use , Female , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Injections, Intraperitoneal , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL