Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters

Publication year range
1.
Nature ; 599(7883): 102-107, 2021 11.
Article in English | MEDLINE | ID: mdl-34616039

ABSTRACT

Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.


Subject(s)
Astrocytes/chemistry , Astrocytes/metabolism , Cell Death/drug effects , Lipids/chemistry , Lipids/toxicity , Animals , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/toxicity , Fatty Acid Elongases/deficiency , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Female , Gene Knockout Techniques , Male , Mice , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurotoxins/chemistry , Neurotoxins/toxicity
2.
J Biol Chem ; 300(2): 105600, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38335573

ABSTRACT

The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by ß-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 ß-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Pseudomonas putida , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Acyl Carrier Protein/metabolism , Escherichia coli/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids , Glycogen Synthase , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
3.
J Lipid Res ; 65(6): 100562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762122

ABSTRACT

Perinatal exposure to omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) can be characterized through biomarkers in maternal or cord blood or breast milk. Objectives were to describe perinatal PUFA status combining multiple biofluids and to investigate how it was influenced by dietary intake during pregnancy and maternal FADS and ELOVL gene polymorphisms. This study involved 1,901 mother-child pairs from the EDEN cohort, with PUFA levels measured in maternal and cord erythrocytes, and colostrum. Maternal dietary PUFA intake during the last trimester was derived from a food frequency questionnaire. Twelve single-nucleotide polymorphisms in FADS and ELOVL genes were genotyped from maternal DNA. Principal component analysis incorporating PUFA levels from the three biofluids identified patterns of perinatal PUFA status. Spearman's correlations explored associations between patterns and PUFA dietary intake, and linear regression models examined pattern associations with FADS or ELOVL haplotypes. Five patterns were retained: "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs"; "Omega-6 LC-PUFAs"; "Colostrum LC-PUFAs"; "Omega-6 precursor (LA) and DGLA"; "Omega-6 precursor and colostrum ALA". Maternal omega-3 LC-PUFA intakes were correlated with "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" (r(DHA) = 0.33) and "Omega-6 LC-PUFAs" (r(DHA) = -0.19) patterns. Strong associations were found between FADS haplotypes and PUFA patterns except for "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs". Lack of genetic association with the "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" pattern, highly correlated with maternal omega-3 LC-PUFA intake, emphasizes the importance of adequate omega-3 LC-PUFA intake during pregnancy and lactation. This study offers a more comprehensive assessment of perinatal PUFA status and its determinants.


Subject(s)
Fatty Acid Desaturases , Fatty Acids, Unsaturated , Polymorphism, Single Nucleotide , Humans , Female , Pregnancy , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Adult , Fatty Acids, Unsaturated/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Omega-6/metabolism , Delta-5 Fatty Acid Desaturase , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/administration & dosage , Diet , Colostrum/chemistry , Colostrum/metabolism , Fetal Blood/metabolism , Fetal Blood/chemistry , Infant, Newborn
4.
Mol Carcinog ; 63(6): 1079-1091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38426809

ABSTRACT

This study was to explore the role of ELOVL6 in the development of head and neck squamous cell carcinoma (HNSCC). Considering its previously identified oncogenic role in hepatocellular carcinoma. ELOVL6 gene expression, clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on the data from Gene Expression Omnibus and The Cancer Genome Atlas, with additional bioinformatics analyses performed. Human HNSCC tissue microarray and cell lines were used. The expression of ELOVL6 in HNSCC was detected by quantitative polymerase chain reaction, immunohistochemistry assay, and western blot analysis. The proliferation ability of HNSCC cells, invasion, and apoptosis were evaluated using cell counting kit-8 method, Transwell assay, and flow cytometry, respectively. Based on the data derived from the cancer databases and our HNSCC cell and tissue studies, we found that ELOVL6 was overexpressed in HNSCC. Moreover, ELOVL6 expression level had a positive correlation with clinicopathology of HNSCC. Gene set enrichment analysis showed that ELOVL6 affected the occurrence of HNSCC through WNT signaling pathway. Functional experiments demonstrated that ELOVL6 knockdown inhibited the proliferation and invasion of HNSCC cells while promoting apoptosis. Additionally, compound 3f, an agonist of WNT/ß-catenin signaling pathway, enhances the effect of ELOVL6 on the progression of HNSCC cells. ELOVL6 is upregulated in HNSCC and promotes the development of HNSCC cells by inducing WNT/ß-catenin signaling pathway. ELOVL6 stands a potential target for the treatment of HNSCC and a prognosis indicator of human HNSCC.


Subject(s)
Apoptosis , Cell Proliferation , Disease Progression , Fatty Acid Elongases , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Proliferation/genetics , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Male , Female , Middle Aged , Prognosis , Cell Movement/genetics
5.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570120

ABSTRACT

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Subject(s)
Bass , DNA Virus Infections , Fatty Acid Elongases , Fish Diseases , Fish Proteins , Lipid Metabolism , Virus Replication , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , Bass/immunology , Bass/genetics , Fatty Acid Elongases/genetics , Nodaviridae/physiology , Gene Expression Regulation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Birnaviridae Infections/veterinary , Birnaviridae Infections/immunology , Birnaviridae Infections/virology , Gene Expression Profiling/veterinary , Iridoviridae/physiology , Iridovirus/physiology , Phylogeny , Sequence Alignment/veterinary , Amino Acid Sequence , Metabolic Reprogramming
6.
Lipids Health Dis ; 23(1): 144, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760797

ABSTRACT

BACKGROUND: Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS: Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS: In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION: Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.


Subject(s)
3T3-L1 Cells , Adipose Tissue, White , Cachexia , Fatty Acid Elongases , Neoplasms , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Animals , Cachexia/genetics , Cachexia/metabolism , Cachexia/pathology , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/pathology , Male , Female , Palmitic Acid/metabolism , Lipogenesis/genetics , Middle Aged , Fatty Acids/metabolism
7.
Hum Genet ; 142(8): 1055-1076, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37199746

ABSTRACT

Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.


Subject(s)
Spinocerebellar Ataxias , Animals , Mice , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Ataxia , Fatty Acid Elongases/genetics , Amino Acid Sequence , Mutation
8.
Mol Ecol ; 32(4): 970-982, 2023 02.
Article in English | MEDLINE | ID: mdl-36461663

ABSTRACT

Long-chain (≥C20 ) polyunsaturated fatty acids (LC-PUFAs) are physiologically important fatty acids for most animals, including humans. Although most LC-PUFA production occurs in aquatic primary producers such as microalgae, recent research indicates the ability of certain groups of (mainly marine) invertebrates for endogenous LC-PUFA biosynthesis and/or bioconversion from dietary precursors. The genetic pathways for and mechanisms behind LC-PUFA biosynthesis remain unknown in many invertebrates to date, especially in non-model species. However, the numerous genomic and transcriptomic resources currently available can contribute to our knowledge of the LC-PUFA biosynthetic capabilities of metazoans. Within our previously generated transcriptome of the benthic harpacticoid copepod Platychelipus littoralis, we detected expression of one methyl-end desaturase, one front-end desaturase, and seven elongases, key enzymes responsible for LC-PUFA biosynthesis. To demonstrate their functionality, we characterized eight of them using heterologous expression in yeast. The P. littoralis methyl-end desaturase has Δ15/17/19 desaturation activity, enabling biosynthesis of α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid (DHA) from 18:2 n-6, 20:4 n-6 and 22:5 n-6, respectively. Its front-end desaturase has Δ4 desaturation activity from 22:5 n-3 to DHA, implying that P. littoralis has multiple pathways to produce this physiologically important fatty acid. All studied P. littoralis elongases possess varying degrees of elongation activity for saturated and unsaturated fatty acids, producing aliphatic hydrocarbon chains with lengths of up to 30 carbons. Our investigation revealed a functionally diverse range of fatty acid biosynthesis genes in copepods, which highlights the need to scrutinize the role that primary consumers could perform in providing essential nutrients to upper trophic levels.


Subject(s)
Eicosapentaenoic Acid , Fatty Acids, Unsaturated , Humans , Animals , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Genome , Saccharomyces cerevisiae/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism
9.
Transgenic Res ; 32(4): 251-264, 2023 08.
Article in English | MEDLINE | ID: mdl-37468714

ABSTRACT

Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccßA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, ß-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccßA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.


Subject(s)
Carps , Ictaluridae , Oncorhynchus , Animals , Ictaluridae/genetics , Fatty Acid Elongases/genetics , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Animals, Genetically Modified/genetics , Oncorhynchus/genetics
10.
Transgenic Res ; 32(5): 411-421, 2023 10.
Article in English | MEDLINE | ID: mdl-37615877

ABSTRACT

n-3 polyunsaturated fatty acids (n-3 PUFAs), including α-linolenic acid and eicosapentaenoic acid (EPA), are essential nutrients for vertebrates including humans. Vertebrates are n-3 PUFA-auxotrophic; hence, dietary intake of n-3 PUFAs is required for their normal physiology and development. Although fish meal and oil have been utilized as primary sources of n-3 PUFAs by humans and aquaculture, these traditional n-3 PUFA sources are expected to be exhausted because of the increasing consumption requirements of humans. Hence, it is necessary to establish alternative n-3 PUFA sources to reduce the gap between the supply and demand of n-3 PUFAs. Here, we investigated whether insects, which are considered as a novel source of essential nutrients, could store n-3 PUFAs by the forced expression of n-3 PUFA biosynthetic enzymes. We utilized Drosophila as an insect model to generate transgenic strains expressing Caenorhabditis elegans PUFA biosynthetic enzymes and examined their effects on the proportion of fatty acids. The ubiquitous expression of methyl-end desaturase FAT-1 prominently enhanced the proportions of α-linolenic acid, indicating that FAT-1 is useful for metabolic engineering to fortify α-linolenic acid in insect. Furthermore, the ubiquitous expression of nematode front-end desaturases (FAT-3 and FAT-4), PUFA elongase (ELO-1), and FAT-1 led to EPA bioproduction. Hence, nematode PUFA biosynthetic genes may serve as powerful genetic tools for enhancing the proportion of EPA in insects. This study represents the first step toward the establishment of n-3 PUFA-producing insects.


Subject(s)
Fatty Acids, Omega-3 , Animals , Humans , Fatty Acids, Omega-3/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Fatty Acid Elongases/genetics , alpha-Linolenic Acid , Fatty Acids , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism
11.
Proc Natl Acad Sci U S A ; 117(51): 32433-32442, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288688

ABSTRACT

Ferroptosis is an iron-dependent regulated necrosis mediated by lipid peroxidation. Cancer cells survive under metabolic stress conditions by altering lipid metabolism, which may alter their sensitivity to ferroptosis. However, the association between lipid metabolism and ferroptosis is not completely understood. In this study, we found that the expression of elongation of very long-chain fatty acid protein 5 (ELOVL5) and fatty acid desaturase 1 (FADS1) is up-regulated in mesenchymal-type gastric cancer cells (GCs), leading to ferroptosis sensitization. In contrast, these enzymes are silenced by DNA methylation in intestinal-type GCs, rendering cells resistant to ferroptosis. Lipid profiling and isotope tracing analyses revealed that intestinal-type GCs are unable to generate arachidonic acid (AA) and adrenic acid (AdA) from linoleic acid. AA supplementation of intestinal-type GCs restores their sensitivity to ferroptosis. Based on these data, the polyunsaturated fatty acid (PUFA) biosynthesis pathway plays an essential role in ferroptosis; thus, this pathway potentially represents a marker for predicting the efficacy of ferroptosis-mediated cancer therapy.


Subject(s)
Fatty Acids, Unsaturated/biosynthesis , Ferroptosis/physiology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Arachidonic Acid/genetics , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Carbolines/pharmacology , Cell Line, Tumor , DNA Methylation , Delta-5 Fatty Acid Desaturase , Enhancer Elements, Genetic , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Humans , Lipid Metabolism/genetics , Promoter Regions, Genetic , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology
12.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139442

ABSTRACT

Colorectal cancer (CRC) cells show some alterations in lipid metabolism, including an increased fatty acid elongation. This study was focused on investigating the effect of a small interfering RNA (siRNA)-mediated decrease in fatty acid elongation on CRC cells' survival and migration. In our study, the elongase 4 (ELOVL4) and elongase 6 (ELOVL6) genes were observed to be highly overexpressed in both the CRC tissue obtained from patients and the CRC cells cultured in vitro (HT-29 and WiDr cell lines). The use of the siRNAs for ELOVL4 and ELOVL6 reduced cancer cell proliferation and migration rates. These findings indicate that the altered elongation process decreased the survival of CRC cells, and in the future, fatty acid elongases can be potentially good targets in novel CRC therapy.


Subject(s)
Acetyltransferases , Colorectal Neoplasms , Humans , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Cell Proliferation/genetics , Fatty Acids/metabolism , Colorectal Neoplasms/genetics
13.
Fish Physiol Biochem ; 49(3): 425-439, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37074473

ABSTRACT

The splendid alfonsino Beryx splendens is a commercially important deep-sea fish in East Asian countries. Because the wild stock of this species has been declining, there is an urgent need to develop aquaculture systems. In the present study, we investigated the long-chain polyunsaturated fatty acid (LC-PUFA) requirements of B. splendens, which are known as essential dietary components in many carnivorous marine fish species. The fatty acid profiles of the muscles, liver, and stomach contents of B. splendens suggested that it acquires substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from its natural diet. The functional characterization of a fatty acid desaturase (Fads2) and three elongases (Elovl5, Elovl4a, and Elovl4b) from B. splendens confirmed their enzymatic capabilities in LC-PUFA biosynthesis. Fads2 showed Δ6 and Δ8 bifunctional desaturase activities. Elovl5 showed preferential elongase activities toward C18 and C20 PUFA substrates, whereas Elovl4a and Elovl4b showed activities toward various C18-22 substrates. Given that Fads2 showed no Δ5 desaturase activity and no other fads-like sequence was found in the B. splendens genome, EPA and arachidonic acid cannot be synthesized from C18 precursors; hence, they can be categorized as dietary essential fatty acids in B. splendens. EPA can be converted into DHA in B. splendens via the so-called Sprecher pathway. However, given that fads2 is only expressed in the brain, it is unlikely that the capacity of B. splendens to biosynthesize DHA from EPA can fulfill its physiological requirements. These results will be useful to researchers developing B. splendens aquaculture methods.


Subject(s)
Fish Proteins , Fishes , Animals , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fish Proteins/metabolism , Fishes/metabolism , Fatty Acid Desaturases/genetics , Fatty Acids, Essential , Eicosapentaenoic Acid , Docosahexaenoic Acids , Diet/veterinary , Fatty Acids
14.
J Biol Chem ; 296: 100303, 2021.
Article in English | MEDLINE | ID: mdl-33465374

ABSTRACT

Membrane phospholipids play pivotal roles in various cellular processes, and their levels are tightly regulated. In the retina, phospholipids had been scrutinized because of their distinct composition and requirement in visual transduction. However, how lipid composition changes during retinal development remains unclear. Here, we used liquid chromatography-mass spectrometry (LC-MS) to assess the dynamic changes in the levels of two main glycerophospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the developing mouse retina under physiological and pathological conditions. The total levels of PC and PE increased during retinal development, and individual lipid species exhibited distinct level changes. The amount of very-long-chain PC and PE increased dramatically in the late stages of retinal development. The mRNA levels of Elovl2 and Elovl4, genes encoding enzymes essential for the synthesis of very-long-chain polyunsaturated fatty acids, increased in developing photoreceptors. Cell sorting based on CD73 expression followed by LC-MS revealed distinct changes in PC and PE levels in CD73-positive rod photoreceptors and CD73-negative retinal cells. Finally, using the NaIO3-induced photoreceptor degeneration model, we identified photoreceptor-specific changes in PC and PE levels from 1 day after NaIO3 administration, before the outer segment of photoreceptors displayed morphological impairment. In conclusion, our findings provide insight into the dynamic changes in PC and PE levels in the developing and adult mouse retina under physiological and pathological conditions. Furthermore, we provide evidence that cell sorting followed by LC-MS is a promising approach for investigating the relevance of lipid homeostasis in the function of different retinal cell types.


Subject(s)
Gene Expression Regulation, Developmental , Membrane Lipids/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Retinal Degeneration/metabolism , Retinal Rod Photoreceptor Cells/metabolism , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Chromatography, Liquid , Eye Proteins/genetics , Eye Proteins/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Flow Cytometry , Iodates/administration & dosage , Mass Spectrometry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred ICR , Organogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinal Degeneration/chemically induced , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/cytology
15.
BMC Genomics ; 23(1): 705, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253734

ABSTRACT

BACKGROUND: Elongases of very long chain fatty acids (ELOVLs), a family of first rate-limiting enzymes in the synthesis of long-chain fatty acids, play an essential role in the biosynthesis of complex lipids. Disrupting any of ELOVLs affects normal growth and development in mammals. Genetic variations in ELOVLs are associated with backfat or intramuscular fatty acid composition in livestock. However, the effects of ELOVL gene family on breeding selection and lipid deposition in different tissues are still unknown in chickens. RESULTS: Genetic variation patterns and genetic associations analysis showed that the genetic variations of ELOVL genes were contributed to breeding selection of commercial varieties in chicken, and 14 SNPs in ELOVL2-6 were associated with body weight, carcass or fat deposition traits. Especially, one SNP rs17631638T > C in the promoter of ELOVL3 was associated with intramuscular fat content (IMF), and its allele frequency was significantly higher in native and layer breeds compared to that in commercial broiler breeds. Quantitative real-time PCR (qRT-PCR) determined that the ELOVL3 expressions in pectoralis were affected by the genotypes of rs17631638T > C. In addition, the transcription levels of ELOVL genes except ELOVL5 were regulated by estrogen in chicken liver and hypothalamus with different regulatory pathways. The expression levels of ELOVL1-6 in hypothalamus, liver, abdominal fat and pectoralis were correlated with abdominal fat weight, abdominal fat percentage, liver lipid content and IMF. Noteworthily, expression of ELOVL3 in pectoralis was highly positively correlated with IMF and glycerophospholipid molecules, including phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol and phospholipids inositol, rich in ω-3 and ω-6 long-chain unsaturated fatty acids, suggesting ELOVL3 could contribute to intramuscular fat deposition by increasing the proportion of long-chain unsaturated glycerophospholipid molecules in pectoralis. CONCLUSIONS: In summary, we demonstrated the genetic contribution of ELOVL gene family to breeding selection for specialized varieties, and revealed the expression regulation of ELOVL genes and their potential roles in regulating lipid deposition in different tissues. This study provides new insights into understanding the functions of ELOVL family on avian growth and lipid deposition in different tissues and the genetic variation in ELOVL3 may aid the marker-assisted selection of meat quality in chicken.


Subject(s)
Chickens , Fatty Acids, Omega-3 , Animals , Estrogens , Ethanolamines , Fatty Acid Elongases/genetics , Fatty Acids/metabolism , Glycerophospholipids , Inositol , Mammals/metabolism , Phosphatidylcholines , Phosphatidylglycerols , Phospholipids
16.
Cancer Sci ; 113(8): 2738-2752, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35670054

ABSTRACT

Renal cell carcinoma (RCC) features altered lipid metabolism and accumulated polyunsaturated fatty acids (PUFAs). Elongation of very long-chain fatty acid (ELOVL) family enzymes catalyze fatty acid elongation, and ELOVL5 is indispensable for PUFAs elongation, but its role in RCC progression remains unclear. Here, we show that higher levels of ELOVL5 correlate with poor RCC clinical prognosis. Liquid chromatography/electrospray ionization-tandem mass spectrometry analysis showed decreases in ELOVL5 end products (arachidonic acid and eicosapentaenoic acid) under CRISPR/Cas9-mediated knockout of ELOVL5 while supplementation with these fatty acids partially reversed the cellular proliferation and invasion effects of ELOVL5 knockout. Regarding cellular proliferation and invasion, CRISPR/Cas9-mediated knockout of ELOVL5 suppressed the formation of lipid droplets and induced apoptosis via endoplasmic reticulum stress while suppressing renal cancer cell proliferation and in vivo tumor growth. Furthermore, CRISPR/Cas9-mediated knockout of ELOVL5 inhibited AKT Ser473 phosphorylation and suppressed renal cancer cell invasion through chemokine (C-C motif) ligand-2 downregulation by AKT-mTOR-STAT3 signaling. Collectively, these results suggest that ELOVL5-mediated fatty acid elongation promotes not only cellular proliferation but also invasion in RCC.


Subject(s)
Carcinoma, Renal Cell , Fatty Acid Elongases , Kidney Neoplasms , Acetyltransferases/genetics , Acetyltransferases/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Proliferation/genetics , Fatty Acid Elongases/genetics , Fatty Acids , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Proto-Oncogene Proteins c-akt
17.
Hepatology ; 74(4): 1845-1863, 2021 10.
Article in English | MEDLINE | ID: mdl-33928675

ABSTRACT

BACKGROUND AND AIMS: Human NAFLD is characterized at early stages by hepatic steatosis, which may progress to NASH when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through down-regulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence, and liver fibrosis in NAFLD/NASH. APPROACH AND RESULTS: In vivo, 4-week-old male wild-type, Sct-/- and Sctr-/- mice were fed a control diet or high-fat diet (HFD) for 16 weeks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry and quantitative PCR. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between wild-type mice and Sct-/- /Sctr-/- mice. CONCLUSION: The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by up-regulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/genetics , Secretin/genetics , Animals , Bile Ducts/cytology , Bile Ducts/metabolism , Cell Line , Cellular Senescence/genetics , Disease Models, Animal , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids, Nonesterified , Hepatocytes/metabolism , Humans , Lipogenesis/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phenotype , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Secretin/metabolism , Up-Regulation
18.
FASEB J ; 35(2): e21327, 2021 02.
Article in English | MEDLINE | ID: mdl-33455016

ABSTRACT

Recently, elongase of very long chain fatty acids-3 (ELOVL3) was demonstrated to play a pivotal role in physiology and biochemistry of the ocular surface by maintaining a proper balance in the lipid composition of meibum. The goal of this study was to further investigate the effects of ELOVL3 ablation in homozygous Elovl3-knockout mice (E3hom) in comparison with age and sex matched wild-type controls (E3wt). Slit lamp examination of the ocular surface of mice, and histological examination of their ocular tissues, highlighted a severe negative impact of Elovl3 inactivating mutation on the Meibomian glands (MG) and conjunctiva of mice. MG transcriptomes of the E3hom and E3wt mice were assessed and revealed a range of up- and downregulated genes related to lipid biosynthesis, inflammation, and stress response, compared with E3wt mice. Heat stage polarized light microscopy was used to assess melting characteristics of normal and abnormal meibum. The loss of Elovl3 led to a 8°C drop in the melting temperature of meibum in E3hom mice, and increased its fluidity. Also noted were the excessive accumulation of lipid material and tears around the eye and severe ocular inflammation, among other abnormalities.


Subject(s)
Fatty Acid Elongases/metabolism , Tears/metabolism , Animals , Fatty Acid Elongases/genetics , Female , Homeostasis , Lipid Metabolism , Male , Meibomian Glands/metabolism , Mice , Mutation , Transcriptome
19.
Mol Biol Rep ; 49(2): 1643-1647, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35028856

ABSTRACT

BACKGROUND: Fatty acid elongases (FAEs), which catalyse elongation reactions of a carbon chain of very-long-chain fatty acids, play an important role in shoot development in rice. The elongation reactions consist of four sequential reactions catalysed by distinct enzymes, which are assumed to form an elongation complex. However, no interacting proteins of ONION1 (ONI1) and ONI2, which are ketoacyl CoA synthase catalyzing the first step and are required for shoot development in rice, are reported. METHODS AND RESULTS: In this study ketoacyl CoA reductase (KCR) that interacts with ONI1 and ONI2 was searched. A database search identified 10 KCR genes in the rice genome. Among the genes, the expression pattern of KCR1 was similar to that of ONI2. Yeast two-hybrid analysis showed interaction of ONI2 with KCR1, which was confirmed by GST pull-down assay. No interacting partner of ONI1 was identified. CONCLUSIONS: Our results suggest that ONI2 and KCR1 form an FAE complex that may play a role in biosynthesizing VLCFAs during shoot development.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Fatty Acid Elongases/metabolism , Oryza/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/physiology , Acetyltransferases/genetics , Amino Acid Sequence/genetics , Cloning, Molecular/methods , Coenzyme A/genetics , Coenzyme A/metabolism , Fatty Acid Elongases/genetics , Fatty Acids/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Oxidoreductases/genetics , Plant Proteins/genetics
20.
Dev Psychopathol ; 34(3): 864-874, 2022 08.
Article in English | MEDLINE | ID: mdl-33461631

ABSTRACT

DNA methylation of the elongation of very long chain fatty acids protein 2 (ELOVL2) was suggested as a biomarker of biological aging, while childhood maltreatment (CM) has been associated with accelerated biological aging. We investigated the association of age and CM experiences with ELOVL2 methylation in peripheral blood mononuclear cells (PBMC). Furthermore, we investigated ELOVL2 methylation in the umbilical cord blood mononuclear cells (UBMC) of newborns of mothers with and without CM. PBMC and UBMC were isolated from 113 mother-newborn dyads and genomic DNA was extracted. Mothers with and without CM experiences were recruited directly postpartum. Mass array spectrometry and pyrosequencing were used for methylation analyses of ELOVL2 intron 1, and exon 1 and 5' end, respectively. ELOVL2 5' end and intron 1 methylation increased with higher age but were not associated with CM experiences. On the contrary, overall ELOVL2 exon 1 methylation increased with higher CM, but these changes were minimal and did not increase with age. Maternal CM experiences and neonatal methylation of ELOVL2 intron 1 or exon 1 were not significantly correlated. Our study suggests region-specific effects of chronological age and experienced CM on ELOVL2 methylation and shows that the epigenetic biomarker for age within the ELOVL2 gene does not show accelerated biological aging years after CM exposure.


Subject(s)
Child Abuse , DNA Methylation , Aging , Child , Fatty Acid Elongases/genetics , Female , Humans , Infant, Newborn , Leukocytes, Mononuclear
SELECTION OF CITATIONS
SEARCH DETAIL