Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45.906
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Cell ; 184(15): 3873-3883.e12, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34171306

ABSTRACT

Reinventing potato from a clonally propagated tetraploid into a seed-propagated diploid, hybrid potato, is an important innovation in agriculture. Due to deleterious mutations, it has remained a challenge to develop highly homozygous inbred lines, a prerequisite to breed hybrid potato. Here, we employed genome design to develop a generation of pure and fertile potato lines and thereby the uniform, vigorous F1s. The metrics we applied in genome design included the percentage of genome homozygosity and the number of deleterious mutations in the starting material, the number of segregation distortions in the S1 population, the haplotype information to infer the break of tight linkage between beneficial and deleterious alleles, and the genome complementarity of the parental lines. This study transforms potato breeding from a slow, non-accumulative mode into a fast-iterative one, thereby potentiating a broad spectrum of benefits to farmers and consumers.


Subject(s)
Genome, Plant , Hybridization, Genetic , Solanum tuberosum/genetics , Crosses, Genetic , Diploidy , Fertility/genetics , Genes, Plant , Genetic Variation , Genetics, Population , Heterozygote , Homozygote , Hybrid Vigor/genetics , Mutation/genetics , Pedigree , Plant Breeding , Principal Component Analysis , Selection, Genetic
2.
Cell ; 177(6): 1480-1494.e19, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31056283

ABSTRACT

Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility.


Subject(s)
Calcium-Binding Proteins/metabolism , Sperm Motility/physiology , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium-Binding Proteins/physiology , Cell Line , Cell Membrane/metabolism , Fertility , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Spermatozoa/metabolism
3.
Immunity ; 54(7): 1478-1493.e6, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34015257

ABSTRACT

Viral infections during pregnancy are a considerable cause of adverse outcomes and birth defects, and the underlying mechanisms are poorly understood. Among those, cytomegalovirus (CMV) infection stands out as the most common intrauterine infection in humans, putatively causing early pregnancy loss. We employed murine CMV as a model to study the consequences of viral infection on pregnancy outcome and fertility maintenance. Even though pregnant mice successfully controlled CMV infection, we observed highly selective, strong infection of corpus luteum (CL) cells in their ovaries. High infection densities indicated complete failure of immune control in CL cells, resulting in progesterone insufficiency and pregnancy loss. An abundance of gap junctions, absence of vasculature, strong type I interferon (IFN) responses, and interaction of innate immune cells fully protected the ovarian follicles from viral infection. Our work provides fundamental insights into the effect of CMV infection on pregnancy loss and mechanisms protecting fertility.


Subject(s)
Corpus Luteum/immunology , Cytomegalovirus Infections/immunology , Fertility/immunology , Immunity, Innate/immunology , Animals , Corpus Luteum/virology , Cytomegalovirus/immunology , Cytomegalovirus Infections/virology , Female , Gap Junctions/immunology , Interferon Type I/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Pregnancy , Progesterone/immunology
4.
Cell ; 161(4): 868-78, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25936839

ABSTRACT

In mammalian cells, DNA methylation on the fifth position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC, as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N(6)-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylations of histone H3K4 and adenines and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , DNA Methylation , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Adenine/metabolism , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Fertility , Histones/metabolism , Mutation , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Phylogeny , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
5.
Mol Cell ; 82(9): 1678-1690.e12, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35305312

ABSTRACT

The functional consequence of N6-methyladenosine (m6A) RNA modification is mediated by "reader" proteins of the YTH family. YTH domain-containing 2 (YTHDC2) is essential for mammalian fertility, but its molecular function is poorly understood. Here, we identify U-rich motifs as binding sites of YTHDC2 on 3' UTRs of mouse testicular RNA targets. Although its YTH domain is an m6A-binder in vitro, the YTH point mutant mice are fertile. Significantly, the loss of its 3'→5' RNA helicase activity causes mouse infertility, with the catalytic-dead mutation being dominant negative. Biochemical studies reveal that the weak helicase activity of YTHDC2 is enhanced by its interaction with the 5'→3' exoribonuclease XRN1. Single-cell transcriptomics indicate that Ythdc2 mutant mitotic germ cells transition into meiosis but accumulate a transcriptome with mixed mitotic/meiotic identity that fail to progress further into meiosis. Finally, our demonstration that ythdc2 mutant zebrafish are infertile highlights its conserved role in animal germ cell development.


Subject(s)
DNA-Binding Proteins/metabolism , Exoribonucleases/metabolism , RNA Helicases , Zebrafish , Animals , Fertility/genetics , Mammals/metabolism , Meiosis , Mice , RNA/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Zebrafish/genetics
6.
Nature ; 620(7974): 600-606, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495691

ABSTRACT

Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations1-4. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies. Here we report ancient DNA, strontium isotope and contextual data from more than 100 individuals from the site Gurgy 'les Noisats' (France), dated to the western European Neolithic around 4850-4500 BC. We find that this burial community was genetically connected by two main pedigrees, spanning seven generations, that were patrilocal and patrilineal, with evidence for female exogamy and exchange with genetically close neighbouring groups. The microdemographic structure of individuals linked and unlinked to the pedigrees reveals additional information about the social structure, living conditions and site occupation. The absence of half-siblings and the high number of adult full siblings suggest that there were stable health conditions and a supportive social network, facilitating high fertility and low mortality5. Age-structure differences and strontium isotope results by generation indicate that the site was used for just a few decades, providing new insights into shifting sedentary farming practices during the European Neolithic.


Subject(s)
Anthropology, Cultural , Pedigree , Social Environment , Adult , Child , Female , Humans , Male , Agriculture/history , Burial/history , Fathers/history , Fertility , France , History, Ancient , Mortality/history , Siblings , Social Support/history , Strontium Isotopes/analysis , Mothers/history
7.
Nature ; 623(7985): 202-209, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880361

ABSTRACT

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Sea Urchins , Spermatozoa , Animals , Male , Allosteric Regulation , Cyclic AMP/metabolism , Fertility , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ligands , Protein Domains , Protein Multimerization , Sea Urchins/chemistry , Sea Urchins/metabolism , Spermatozoa/chemistry , Spermatozoa/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism
8.
Mol Cell ; 81(19): 3884-3885, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624214

ABSTRACT

Mutations in the piRNA pathway protein components lead to transposon activation and fertility defects. In contrast, Gebert et al., (2021) saw no defects in transposon silencing or fertility when they deleted three large germline piRNA clusters in D. melanogaster.


Subject(s)
Drosophila melanogaster , Germ Cells , Animals , Drosophila melanogaster/genetics , Fertility , RNA, Small Interfering
9.
Mol Cell ; 81(19): 3965-3978.e5, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34352205

ABSTRACT

PIWI proteins and their guiding Piwi-interacting small RNAs (piRNAs) are crucial for fertility and transposon defense in the animal germline. In most species, the majority of piRNAs are produced from distinct large genomic loci, called piRNA clusters. It is assumed that germline-expressed piRNA clusters, particularly in Drosophila, act as principal regulators to control transposons dispersed across the genome. Here, using synteny analysis, we show that large clusters are evolutionarily labile, arise at loci characterized by recurrent chromosomal rearrangements, and are mostly species-specific across the Drosophila genus. By engineering chromosomal deletions in D. melanogaster, we demonstrate that the three largest germline clusters, which account for the accumulation of >40% of all transposon-targeting piRNAs in ovaries, are neither required for fertility nor for transposon regulation in trans. We provide further evidence that dispersed elements, rather than the regulatory action of large Drosophila germline clusters in trans, may be central for transposon defense.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Evolution, Molecular , Fertility/genetics , Multigene Family , Ovary/physiology , RNA Stability , RNA, Small Interfering/genetics , Animals , Animals, Genetically Modified , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Chromosome Deletion , Chromosomes, Insect , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation, Developmental , Ovary/metabolism , RNA, Small Interfering/metabolism
10.
Mol Cell ; 81(11): 2388-2402.e8, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33852894

ABSTRACT

Small RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins. Without DPF-3 activity, these WAGO proteins lose their proper complement of 22G RNAs. Desilencing of repeat-containing and transposon-derived transcripts, DNA damage, and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DPF-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes silencing of selfish genetic elements by ensuring Ago association with appropriate small RNAs.


Subject(s)
Argonaute Proteins/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Protein Processing, Post-Translational , RNA, Helminth/genetics , Animals , Argonaute Proteins/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Fertility/genetics , Proteolysis , RNA, Helminth/antagonists & inhibitors , RNA, Helminth/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Substrate Specificity
11.
Genes Dev ; 35(9-10): 619-634, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33888561

ABSTRACT

Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.


Subject(s)
Cell Cycle Checkpoints/genetics , Fertility/genetics , Gonads/growth & development , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Gonads/metabolism , Mice , Sex Determination Processes/genetics , Single-Cell Analysis
12.
Annu Rev Genet ; 54: 213-236, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32870729

ABSTRACT

Natural highly fecund populations abound. These range from viruses to gadids. Many highly fecund populations are economically important. Highly fecund populations provide an important contrast to the low-fecundity organisms that have traditionally been applied in evolutionary studies. A key question regarding high fecundity is whether large numbers of offspring are produced on a regular basis, by few individuals each time, in a sweepstakes mode of reproduction. Such reproduction characteristics are not incorporated into the classical Wright-Fisher model, the standard reference model of population genetics, or similar types of models, in which each individual can produce only small numbers of offspring relative to the population size. The expected genomic footprints of population genetic models of sweepstakes reproduction are very different from those of the Wright-Fisher model. A key, immediate issue involves identifying the footprints of sweepstakes reproduction in genomic data. Whole-genome sequencing data can be used to distinguish the patterns made by sweepstakes reproduction from the patterns made by population growth in a population evolving according to the Wright-Fisher model (or similar models). If the hypothesis of sweepstakes reproduction cannot be rejected, then models of sweepstakes reproduction and associated multiple-merger coalescents will become at least as relevant as the Wright-Fisher model (or similar models) and the Kingman coalescent, the cornerstones of mathematical population genetics, in further discussions of evolutionary genomics of highly fecund populations.


Subject(s)
Fertility/genetics , Biological Evolution , Genetics, Population/methods , Genomics/methods , Humans , Models, Genetic , Population Density , Population Growth , Reproduction/genetics
13.
Nat Rev Mol Cell Biol ; 22(4): 242-243, 2021 04.
Article in English | MEDLINE | ID: mdl-33558683
14.
Nature ; 612(7941): 725-731, 2022 12.
Article in English | MEDLINE | ID: mdl-36517592

ABSTRACT

Ribosomes are highly sophisticated translation machines that have been demonstrated to be heterogeneous in the regulation of protein synthesis1,2. Male germ cell development involves complex translational regulation during sperm formation3. However, it remains unclear whether translation during sperm formation is performed by a specific ribosome. Here we report a ribosome with a specialized nascent polypeptide exit tunnel, RibosomeST, that is assembled with the male germ-cell-specific protein RPL39L, the paralogue of core ribosome (RibosomeCore) protein RPL39. Deletion of RibosomeST in mice causes defective sperm formation, resulting in substantially reduced fertility. Our comparison of single-particle cryo-electron microscopy structures of ribosomes from mouse kidneys and testes indicates that RibosomeST features a ribosomal polypeptide exit tunnel of distinct size and charge states compared with RibosomeCore. RibosomeST predominantly cotranslationally regulates the folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm. Moreover, we found that specialized functions of RibosomeST were not replaceable by RibosomeCore. Taken together, identification of this sperm-specific ribosome should greatly expand our understanding of ribosome function and tissue-specific regulation of protein expression pattern in mammals.


Subject(s)
Fertility , Ribosomes , Spermatozoa , Animals , Male , Mice , Cryoelectron Microscopy/methods , Peptides/chemistry , Peptides/metabolism , Protein Biosynthesis , Protein Folding , Ribosomes/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Fertility/physiology , Organ Specificity , Ribosomal Proteins , Kidney/cytology , Testis/cytology
15.
Nature ; 608(7921): 93-97, 2022 08.
Article in English | MEDLINE | ID: mdl-35794471

ABSTRACT

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.


Subject(s)
Anopheles , Ecdysteroids , Malaria , Sexual Behavior, Animal , Animals , Anopheles/enzymology , Anopheles/parasitology , Anopheles/physiology , Ecdysteroids/biosynthesis , Ecdysteroids/metabolism , Female , Fertility , Humans , Malaria/parasitology , Malaria/prevention & control , Malaria/transmission , Male , Mosquito Vectors/parasitology , Oviposition , Phosphorylation , Plasmodium
16.
Mol Cell ; 77(5): 999-1013.e6, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32017896

ABSTRACT

U6 snRNA, as an essential component of the catalytic core of the pre-mRNA processing spliceosome, is heavily modified post-transcriptionally, with 2'-O-methylation being most common. The role of these modifications in pre-mRNA splicing as well as their physiological function in mammals have remained largely unclear. Here we report that the La-related protein LARP7 functions as a critical cofactor for 2'-O-methylation of U6 in mouse male germ cells. Mechanistically, LARP7 promotes U6 loading onto box C/D snoRNP, facilitating U6 2'-O-methylation by box C/D snoRNP. Importantly, ablation of LARP7 in the male germline causes defective U6 2'-O-methylation, massive alterations in pre-mRNA splicing, and spermatogenic failure in mice, which can be rescued by ectopic expression of wild-type LARP7 but not an U6-loading-deficient mutant LARP7. Our data uncover a novel role of LARP7 in regulating U6 2'-O-methylation and demonstrate the functional requirement of such modification for splicing fidelity and spermatogenesis in mice.


Subject(s)
RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/metabolism , Spermatogenesis , Spermatozoa/metabolism , Spliceosomes/metabolism , Animals , Fertility , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Male , Methylation , Mice, Inbred C57BL , Mice, Knockout , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Small Nuclear/genetics , RNA-Binding Proteins/genetics , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Signal Transduction , Spermatogenesis/genetics , Spliceosomes/genetics
17.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32943573

ABSTRACT

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Subject(s)
Dosage Compensation, Genetic , Gametogenesis/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Cell Line , Embryonic Stem Cells , Fertility/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice , Mice, Knockout
18.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953252

ABSTRACT

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Subject(s)
Fertility , Mice, Knockout , Spermatogenesis , Spermatogonia , Testis , Animals , Male , Spermatogenesis/genetics , Spermatogenesis/physiology , Mice , Fertility/genetics , Testis/metabolism , Spermatogonia/metabolism , Spermatogonia/cytology , Sertoli Cells/metabolism , Cell Differentiation , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/metabolism , RNA Stability/genetics , Infertility, Male/genetics
19.
Nature ; 596(7872): 393-397, 2021 08.
Article in English | MEDLINE | ID: mdl-34349265

ABSTRACT

Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.


Subject(s)
Aging/genetics , Ovary/metabolism , Adult , Alleles , Animals , Bone and Bones/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 2/genetics , Diabetes Mellitus, Type 2 , Diet , Europe/ethnology , Asia, Eastern/ethnology , Female , Fertility/genetics , Fragile X Mental Retardation Protein/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Healthy Aging/genetics , Humans , Longevity/genetics , Menopause/genetics , Menopause, Premature/genetics , Mice , Mice, Inbred C57BL , Middle Aged , Primary Ovarian Insufficiency/genetics , Uterus
20.
Mol Cell ; 74(5): 982-995.e6, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31076285

ABSTRACT

PIWI-interacting RNAs (piRNAs) silence transposons in Drosophila ovaries, ensuring female fertility. Two coupled pathways generate germline piRNAs: the ping-pong cycle, in which the PIWI proteins Aubergine and Ago3 increase the abundance of pre-existing piRNAs, and the phased piRNA pathway, which generates strings of tail-to-head piRNAs, one after another. Proteins acting in the ping-pong cycle localize to nuage, whereas phased piRNA production requires Zucchini, an endonuclease on the mitochondrial surface. Here, we report that Armitage (Armi), an RNA-binding ATPase localized to both nuage and mitochondria, links the ping-pong cycle to the phased piRNA pathway. Mutations that block phased piRNA production deplete Armi from nuage. Armi ATPase mutants cannot support phased piRNA production and inappropriately bind mRNA instead of piRNA precursors. We propose that Armi shuttles between nuage and mitochondria, feeding precursor piRNAs generated by Ago3 cleavage into the Zucchini-dependent production of Aubergine- and Piwi-bound piRNAs on the mitochondrial surface.


Subject(s)
Argonaute Proteins/genetics , Drosophila Proteins/genetics , Mitochondria/genetics , Peptide Initiation Factors/genetics , RNA Helicases/genetics , RNA, Small Interfering/genetics , Animals , Drosophila melanogaster/genetics , Endoribonucleases/genetics , Female , Fertility/genetics , Germ Cells/metabolism , Mitochondria/metabolism , Mutation , Ovary/growth & development , Ovary/metabolism , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL