ABSTRACT
Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.
Subject(s)
Fish Diseases , Flatfishes , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Phylogeny , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Flatfishes/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics , Fish Diseases/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/genetics , Molecular Docking Simulation , Aeromonas salmonicida/immunology , Molecular Chaperones/metabolism , Molecular Chaperones/geneticsABSTRACT
Intestinal damage and inflammation are major health and welfare issues in aquaculture. Considerable efforts have been devoted to enhancing intestinal health, with a specific emphasis on dietary additives. Branch chain amino acids, particularly leucine, have been reported to enhance growth performance in various studies. However, few studies have focused on the effect of leucine on the intestinal function and its underlying molecular mechanism is far from fully illuminated. In the present study, we comprehensively evaluated the effect of dietary leucine supplementation on intestinal physiology, signaling transduction and microbiota in fish. Juvenile turbot (Scophthalmus maximus L.) (10.13 ± 0.01g) were fed with control diet (Con diet) and leucine supplementation diet (Leu diet) for 10 weeks. The findings revealed significant improvements in intestinal morphology and function in the turbot fed with Leu diet. Leucine supplementation also resulted in a significant increase in mRNA expression levels of mucosal barrier genes, indicating enhanced intestinal integrity. The transcriptional levels of pro-inflammatory factors il-1ß, tnf-α and irf-1 was decreased in response to leucine supplementation. Conversely, the level of anti-inflammatory factors tgf-ß, il-10 and nf-κb were up-regulated by leucine supplementation. Dietary leucine supplementation led to an increase in intestinal complement (C3 and C4) and immunoglobulin M (IgM) levels, along with elevated antioxidant activity. Moreover, dietary leucine supplementation significantly enhanced the postprandial phosphorylation level of the target of rapamycin (TOR) signaling pathway in the intestine. Finally, intestinal bacterial richness and diversity were modified and intestinal bacterial composition was re-shaped by leucine supplementation. Overall, these results provide new insights into the beneficial role of leucine supplementation in promoting intestinal health in turbot, offering potential implications for the use of leucine as a nutritional supplement in aquaculture practices.
Subject(s)
Flatfishes , Microbiota , Animals , Leucine/pharmacology , Flatfishes/microbiology , Intestines , Signal Transduction , Diet/veterinary , Dietary Supplements/analysis , Animal Feed/analysisABSTRACT
Vitamin D (VD) plays a vital role in various physiological processes in addition to its classic functions on maintaining the balance of Ca and P metabolism. However, there still are gaps to understand in depth the issues on the precise requirement, metabolic processes and physiological functions of VD in fish. In this study, we investigated the effects of VD on the growth, intestinal health, host immunity and metabolism in turbot (Scophthalmus maximus L.), one important commercial carnivorous fish in aquaculture, through the supplementation of different doses of dietary VD3 (0, 200, 400, 800 and 1600 µg VD3/kg diet). According to our results, the optimal VD3 level in the feed for turbot growth was estimated to be around 400 IU/kg, whereas VD3 deficiency or overdose in diets induced the intestinal inflammation, lowered the diversity of gut microbiota and impaired the host resistance to bacterial infection in turbot. Moreover, the level of 1α,25(OH)2D3, the active metabolite of VD3, reached a peak value in the turbot serum in the 400 µg group, although the concentrations of Ca and phosphate in the turbot were stable in all groups. Finally, the deficiency of dietary VD3 disturbed the nutritional metabolism in turbot, especially the metabolism of lipids and glucose. In conclusion, this study evaluated the optimal dose of dietary VD3 for turbot and provided the evidence that VD has a significant impact on intestinal health, host immunity and nutritional metabolism in fish, which deepened our understanding on the physiological functions and metabolism of VD3 in fish.
Subject(s)
Flatfishes , Gastrointestinal Microbiome , Animals , Vitamin D/pharmacology , Flatfishes/microbiology , Intestines , DietABSTRACT
Neutrophils can capture and kill pathogens by releasing neutrophils extracellular traps (NETs), which play critical roles in anti-microbial infection in mammals; however, the mechanisms involved in NETs formation and its role in anti-bacterial infection in teleost fish remains largely unknown. In this study, to explore the function of NETs in turbot, we established an in vitro bacterial infection model in head kidney derived neutrophils, and found that the haemolysin over-expressed Edwardsiella piscicida (ethA+) could induce a robust phenotype of NETs, compared with that in wild type or ethA mutant (ethA+ -ΔethA) strains. Besides, the NETosis was mediated by ethA+ -induced pyroptosis, and arms the ability of bacterial killing in neutrophils of turbot. Moreover, we found that neutrophils elastase (NE) might involves in this pyroptotic signaling, rather than inflammatory Smcaspase. Taken together, this study reveals the important role of pyroptosis in NETs formation in turbot neutrophils, suggesting that NETs formation is a critical immune response during bacterial infection in teleost fish.
Subject(s)
Bacterial Infections , Extracellular Traps , Flatfishes , Pyroptosis , Animals , Bacterial Infections/immunology , Bacterial Infections/veterinary , Flatfishes/immunology , Flatfishes/microbiology , NeutrophilsABSTRACT
The class A scavenger receptors play important roles in innate immunity and are distributed on plasma membrane of macrophages and other cell types. Notably, the class A scavenger receptor 4 (SCARA4) contains a typical C-type (calcium-dependent) lectin domain, which belongs to the collectin family of pattern recognition receptors and is involved in the immune response against infection. Here, one turbot SCARA4 gene was identified with a 2,292 bp open reading frame (ORF) encoding 763 amino acid residues. Multiple sequence analysis and phylogenetic analysis confirmed that SmSCARA4 gene was more close to that of P. olivaceus. Gene structure and syntenic analysis showed conserved exon/intron organization pattern and syntenic pattern across selected vertebrate species. Tissue distribution analysis showed SmSCARA4 was expressed in all the tested healthy tissues with the relative high expression levels in skin, gill and spleen. Following both E. tarda and V. anguillarum challenge in vivo, SmSCARA4 was significantly repressed in gill and intestine. Remarkably, SmSCARA4 showed the strongest binding ability to LPS and strongest upregulation in turbot head kidney macrophages in response to LPS. Knockdown and overexpression of SmSCARA4 revealed its interactions with the two pro-inflammatory cytokines, TNF-α and IL-1ß. Finally, repression of SmSCARA4 via combined treatment of LPS and overexpression of SmSCARA4 construct in turbot head kidney macrophages further indicated an inhibitory role of SmSCARA4 in LPS-stimulated inflammation. Taken together, turbot SmSCARA4 plays an important role in turbot immunity, especially in the mucosa-related systems; SmSCARA4 possesses strong binding specificity to LPS, and exerts protective roles in response to LPS infection by reducing the release of pro-inflammatory cytokines. The mechanisms of inhibitory role of SmSCARA4 in LPS-elicited inflammation await further investigation.
Subject(s)
Fish Diseases , Flatfishes , Scavenger Receptors, Class A , Vibrio Infections , Animals , Cytokines/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/genetics , Flatfishes/immunology , Flatfishes/microbiology , Gene Expression Profiling , Gene Expression Regulation , Inflammation , Lipopolysaccharides/pharmacology , Phylogeny , Scavenger Receptors, Class A/genetics , Vibrio/pathogenicity , Vibrio Infections/veterinaryABSTRACT
An eight-week feeding trial was conducted to investigate the effects of diets supplemented with three sulfur-containing amino acids (SAA), namely, methionine, cysteine, and taurine, on the intestinal health status of juvenile turbot (Scophthalmus maximus) fed high-lipid diets. Four diets were formulated, namely, a high-lipid control diet (16% lipid, HL) and three SAA-supplemented diets, which were formulated by supplementing 1.5% methionine (HLM), 1.5% cysteine (HLC), and 1.5% taurine (HLT) into the HL control diet, respectively. Each diet was assigned to triplicate tanks, and each tank was stocked with 30 juvenile fish (appr. initial weight, 8 g). The histological and morphometric results showed that dietary SAA supplementation obviously improved the intestinal morphology and integrity, in particular as reflected by higher height of microvilli and mucosal folds. Dietary SAA supplementation, in particular cysteine, up-regulated the gene expression of mucin-2 and tight junction proteins (ZO-1, Tricellilun and JAM). Dietary SAA supplementation remarkably down-regulated the gene expression of apoptosis-related factors such as p38, JNK, and Bax, expression of pro-inflammatory factors (e.g., NF-κB, AP-1 IL-1ß, IL-8, and TNF-α). SAA supplementation resulted in higher antioxidative abilities in the intestine. Additionally, dietary SAA supplementation largely altered the communities of intestinal microbiota. Compared with the HL group, higher relative abundance of potential beneficial bacteria, and lower relative abundance of opportunistic pathogens were observed in SAA-supplemented groups. Dietary taurine supplementation significantly increased the relative abundance of Ligilactobacillus (in particular Lactobacillus murinus) and Limosilactobacillus (especially Lactobacillus reuteri). In conclusion, dietary sulfur-containing amino acids supplementation have promising potential in ameliorating the intestinal inflammation of turbot fed high-lipid diets. Especially dietary cysteine and taurine supplementation have more positive effects on the communities of the intestinal microbiota of turbot.
Subject(s)
Flatfishes , Amino Acids , Animal Feed/analysis , Animals , Cysteine , Diet/veterinary , Dietary Supplements/analysis , Flatfishes/microbiology , Interleukin-8 , Intestines , Lipids , Methionine , Mucin-2 , NF-kappa B , Sulfur , Taurine/pharmacology , Tight Junction Proteins , Transcription Factor AP-1 , Tumor Necrosis Factor-alpha , bcl-2-Associated X ProteinABSTRACT
A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interferon-γ (IFN-γ) and transforming growth factor-ß (TGF-ß). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.
Subject(s)
Dietary Fats/administration & dosage , Flatfishes/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/metabolism , Apoptosis/genetics , Cytokines/genetics , Fish Proteins/genetics , Flatfishes/genetics , Flatfishes/microbiology , Gastrointestinal Microbiome/genetics , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Intestines/metabolism , Intestines/pathologyABSTRACT
Based on 1572 re-sequenced Chinese tongue sole (Cynoglossus semilaevis), we investigated the accuracy of four genomic methods at predicting genomic estimated breeding values (GEBVs) of Vibrio harveyi resistance in C. semilaevis when SNPs varying from 500 to 500â¯k. All methods outperformed the pedigree-based best linear unbiased prediction when SNPs reached 50â¯k or more. Then, we developed an SNP array "Solechip No.1" for C. semilaevis breeding using the Affymetrix Axiom technology. This array contains 38,295 SNPs with an average of 10.5â¯kb inter-spacing between two adjacent SNPs. We selected 44 candidates as the parents of 23 families and genotyped them by the array. The challenge survival rates of offspring families had a correlation of 0.706 with the mid-parental GEBVs. This SNP array is a convenient and reliable tool in genotyping, which could be used for improving V. harveyi resistance in C. semilaevis coupled with the genomic selection methods.
Subject(s)
Fish Diseases , Flatfishes , Vibrio Infections , Animals , China , Fish Diseases/genetics , Fish Diseases/microbiology , Flatfishes/genetics , Flatfishes/microbiology , Genomics , Polymorphism, Single Nucleotide , Vibrio , Vibrio Infections/genetics , Vibrio Infections/veterinaryABSTRACT
Infectious diseases are one of the main causes of social and economical losses in world aquaculture. Senegalese sole (Solea senegalensis) is an important species for aquaculture in southern Europe, whose production is affected by the appearance of bacterial diseases such as photobacteriosis, a septicemia caused by Photobacterium damselae subsp. piscicida (Phdp). The aim of this study was to obtain an oral DNA nanovaccine and to evaluate its efficacy against Phdp in S. senegalensis juveniles. For this purpose, the amplified product corresponding to the protein inosine-5'-monophophate dehydrogenase (IMPDH) from Phdp, was cloned into the expression vector pcDNA™6.2/C-EmGFP-GW obtaining the DNA vaccine named as pPDPimpdh. The correct transcription and protein expression was verified at 48 h post tansfection in HEK293 cells. Chitosan nanoparticles (CS-TPP NPs) were prepared by ionotropic gelation and their features were appropriate for use as oral delivery system. Therefore, pPDPimpdh was protected with chitosan CS-TPP NPs throughout complex coacervation method giving as a result a DNA nanovaccine referred as CS-TPP+pPDPimpdh NPs. Sole juveniles were vaccinated orally with CS-TPP NPs, pPDPimpdh and CS-TPP+pPDPimpdh NPs followed by a challenge with Phdp at 30 days post vaccination (dpv). The relative percentage survival (RPS) for pPDPimpdh vaccinated groups was 6.25%, probably due to its degradation in the digestive tract. RPS value obtained for CS-TPP NPs and CS-TPP+pPDPimpdh NPs was 40% and antibodies were observed in both cases. However, a delay in mortality was observed in sole juveniles vaccinated orally with CS-TPP+pPDPimpdh NPs. In fact, an upregulation of tf, mhcII, cd8a and igm in the posterior gut and c3, hamp1, tf and cd4 in spleen was observed in juveniles vaccinated with CS-TPP+pPDPimpdh NPs. After challenge, a modulation of cd8a and cd4 expression levels in the posterior gut and c3, tf, lyg, cd4, igm and igt expression levels in spleen was observed. Moreover, the concentration of lysozyme in skin mucus significantly increased in fish vaccinated orally with CS-TPP+pPDPimpdh NPs at 11 dpc. These data indicate that oral vaccination with CS-TPP+pPDPimpdh NPs could be acting through the non-specific immune responses as well as the specific humoral and cell mediated immunity and provide the first step toward a development of an oral DNA nanovaccine against Phdp in sole.
Subject(s)
Chitosan/administration & dosage , Fish Diseases/prevention & control , Flatfishes , Gram-Negative Bacterial Infections/prevention & control , Nanoparticles/administration & dosage , Photobacterium/immunology , Vaccines, DNA/administration & dosage , Administration, Oral , Animals , Flatfishes/microbiology , Gram-Negative Bacterial Infections/veterinaryABSTRACT
Accumulating evidence supports that vitamin D3 (VD3) possesses immunomodulatory properties besides its classical actions in calcium and bone homeostasis. In this study, juvenile turbots were fed with the diets containing 0 IU/kg VD3 or the optimum dose of 400 IU/kg VD3 for 8 weeks. To investigate the effects of VD3 on anti-infectious immunity in fish, 107 CFU Edwardsiella tarda was injected intraperitoneally to each juvenile turbot after the feeding trial. Our results showed that the mortality of infected turbots with dietary VD3 was much lower than that in VD3 deficient group, and the supplementation of dietary VD3 significantly reduced the bacterial load in the spleen of infected turbots. Further analysis demonstrated that the production of reactive oxygen species (ROS) in haemocytes and lysozyme activity in serum was elevated, and the responses of T cells and B cells were modulated in VD3-supplemented turbots. Moreover, the inflammation was significantly exacerbated in the infected turbots fed with 0 IU/kg VD3 compared to the fish fed with 400 IU/kg VD3. In addition, the head kidney macrophages (HKMs) in turbots were isolated and incubated with VD3in vitro, the results showed that VD3 significantly promoted the bactericidal activity in HKMs. In conclusion, our study has shown clear evidence that VD3 positively regulates the innate and adaptive immunity in fish, which is beneficial to the defense in fish against pathogen infection.
Subject(s)
Bacterial Infections , Fish Diseases , Flatfishes , Animals , Bacterial Infections/drug therapy , Cholecalciferol/pharmacology , Dietary Supplements , Edwardsiella tarda , Fish Diseases/drug therapy , Fish Diseases/microbiology , Flatfishes/microbiologyABSTRACT
Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.
Subject(s)
Fish Diseases , Flatfishes , Vibrio Infections , Vibrio vulnificus , Vibrio , Animals , Anti-Bacterial Agents , Bacterial Vaccines , Fish Diseases/microbiology , Fish Diseases/prevention & control , Flatfishes/microbiology , Peptides , Vaccines, Inactivated , Vibrio/immunology , Vibrio Infections/prevention & control , Vibrio Infections/veterinaryABSTRACT
The aim of this study was to investigate the effects of dietary bile acids (BAs) on intestinal healthy status of tongue sole in terms of immunity, antioxidant status, digestive ability, mucosal barrier-related genes expression and microbiota. Three experimental diets were prepared with BA levels at 0 mg/kg (CT), 300 mg/kg (BA1) and 900 mg/kg (BA2) in a commercial basal diet. Each diet was fed to three replicates with 120 fish (10.87 ± 0.32 g) in each tank. After an 8-week feeding trial, growth parameters were significantly enhanced in both BAs supplementary groups (P < 0.05), and compared with CT group, survival rate in BA2 group was significantly improved (P < 0.05). Intestinal lysozyme activity and contents of immunoglobulin M and complement 3 were significantly increased in both BAs supplementary groups (P < 0.05), suggesting an enhancement effect on the non-specific immune response. BAs inclusion also significantly improved intestinal antioxidant capabilities by increasing antioxidase activities and decreasing malondialdehyde levels. In addition, compared with CT group, intestinal digestive ability was substantially enhanced as indicated by the significantly increased lipase activity in BA2 group (P < 0.05) and significantly increased amylase activity in BA1 and BA2 groups (P < 0.05). Coincidentally, BAs inclusion significantly upregulated the relative expression of intestinal mucosal barrier-related genes (P < 0.05). Further, dietary BAs distinctly remodeled intestinal microbiota by decreased the abundance of some potential pathogenic bacteria. In conclusion, dietary BAs supplementation is an effective way to improve the intestinal healthy status of tongue sole.
Subject(s)
Bile Acids and Salts/pharmacology , Dietary Supplements , Flatfishes , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Alkaline Phosphatase/immunology , Amylases/metabolism , Animals , Complement C3/immunology , Diet/veterinary , Fish Proteins/metabolism , Flatfishes/genetics , Flatfishes/immunology , Flatfishes/metabolism , Flatfishes/microbiology , Gene Expression Regulation/drug effects , Immunoglobulin M/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lipase/metabolism , Muramidase/immunology , Oxidoreductases/metabolism , Peptide Hydrolases/metabolism , Tight Junction Proteins/geneticsABSTRACT
Coming along with high water reuse in sustainable and intensive recirculating aquaculture systems (RASs), the waste products of fish in rearing water is continuously accumulated. Nitrate, the final product of biological nitrification processes, which may cause aquatic toxicity to fish in different degrees when exposed for a long time. Therefore, the present study was conducted to evaluate the impact of chronic nitrate exposure on intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot. For that, groups of juvenile turbot were exposed to 0 (control check, CK), 50 (low nitrate, L), 200 (medium nitrate, M), and 400 (high nitrate, H) mg L-1 nitrate-N in small-sized recirculating aquaculture systems. After the 60-day experiment period, we found that exposure to a high concentration of nitrate-N caused obvious pathological damages to the intestine; for instance, atrophy of intestinal microvilli and necrosis in the lamina propria. Quantitative real-time PCR analysis revealed a significant downregulation of the barrier forming tight junction genes like occludin, claudin-like etc. under H treatment (P < 0.05). Intestinal MUC-2 expression also decreased significantly in the nitrate treatment groups compared to that in the control (P < 0.05). Additionally, the expression of HSP70 and HSP90 heat-shock proteins, toll-like receptor-3 (TLR-3), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) significantly increased (P < 0.05), whereas that of transforming growth factor-ß (TGF-ß), lysozyme (LYS), and insulin-like growth factor-I (IGF-I) significantly decreased with H treatment (P < 0.05). The results also revealed that intestinal microbial community was changed following nitrate exposure and could alter the α-diversity and ß-diversity. Specifically, the proportion of intrinsic flora decreased, whereas that of the potential pathogens significantly increased with M and H treatments (P < 0.05). In conclusion, chronic nitrate exposure could weaken the barrier function and disturb the composition of intestinal microbiota in marine teleosts, thereby harming their health condition.
Subject(s)
Flatfishes/growth & development , Gastrointestinal Microbiome/drug effects , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Intestines/drug effects , Nitrates/toxicity , Water Pollutants, Chemical/toxicity , Animals , DNA, Bacterial/genetics , Dose-Response Relationship, Drug , Flatfishes/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/microbiologyABSTRACT
The Phaeobacter genus has been explored as probiotics in mariculture as a sustainable strategy for the prevention of bacterial infections. Its antagonistic effect against common fish pathogens is predominantly due to the production of the antibacterial compound tropodithietic acid (TDA), and TDA-producing strains have repeatedly been isolated from mariculture environments. Despite many in vitro trials targeting pathogens, little is known about its impact on host-associated microbiomes in mariculture. Hence, the purpose of this study was to investigate how the addition of a TDA-producing Phaeobacter inhibens strain affects the microbiomes of live feed organisms and fish larvae. We used 16S rRNA gene sequencing to characterize the bacterial diversity associated with live feed microalgae (Tetraselmis suecica), live feed copepod nauplii (Acartia tonsa), and turbot (Scophthalmus maximus) eggs/larvae. The microbial communities were unique to the three organisms investigated, and the addition of the probiotic bacterium had various effects on the diversity and richness of the microbiomes. The structure of the live feed microbiomes was significantly changed, while no effect was seen on the community structure associated with turbot larvae. The changes were seen primarily in particular taxa. The Rhodobacterales order was indigenous to all three microbiomes and decreased in relative abundance when P. inhibens was introduced in the copepod and turbot microbiomes, while it was unaffected in the microalgal microbiome. Altogether, the study demonstrates that the addition of P. inhibens in higher concentrations, as part of a probiotic regime, does not appear to cause major imbalances in the microbiome, but the effects were specific to closely related taxa.IMPORTANCE This work is an essential part of the risk assessment of the application of roseobacters as probiotics in mariculture. It provides insights into the impact of TDA-producing Phaeobacter inhibens on the commensal bacteria related to mariculture live feed and fish larvae. Also, the study provides a sequencing-based characterization of the microbiomes related to mariculture-relevant microalga, copepods, and turbot larvae.
Subject(s)
Chlorophyta/microbiology , Copepoda/microbiology , Flatfishes/microbiology , Microbiota , Probiotics/pharmacology , Rhodobacteraceae/chemistry , Animal Feed , Animals , Bacteria/isolation & purification , Copepoda/growth & development , Flatfishes/growth & development , Larva/microbiology , Microalgae/microbiology , Ovum/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysisABSTRACT
BACKGROUND: Vibrio scophthalmi is an opportunistic bacterial pathogen, which is widely distributed in the marine environment. Earlier studies have suggested that it is a normal microorganism in the turbot gut. However, recent studies have confirmed that this bacterial strain can cause diseases in many different marine animals. Therefore, it is necessary to investigate its whole genome for better understanding its physiological and pathogenic mechanisms. RESULTS: In the present study, we obtained a pathogenic strain of V. scophthalmi from diseased half-smooth tongue sole (Cynoglossus semilaevis) and sequenced its whole genome. Its genome contained two circular chromosomes and two plasmids with a total size of 3,541,838 bp, which harbored 3185 coding genes. Among these genes, 2648, 2298, and 1915 genes could be found through annotation information in COG, Blast2GO, and KEGG databases, respectively. Moreover, 10 genomic islands were predicted to exist in the chromosome I through IslandViewer online system. Comparison analysis in VFDB and PHI databases showed that this strain had 334 potential virulence-related genes and 518 pathogen-host interaction-related genes. Although it contained genes related to four secretion systems of T1SS, T2SS, T4SS, and T6SS, there was only one complete T2SS secretion system. Based on CARD database blast results, 180 drug resistance genes belonging to 27 antibiotic resistance categories were found in the whole genome of such strain. However, there were many differences between the phenotype and genotype of drug resistance. CONCLUSIONS: Based on the whole genome analysis, the pathogenic V. scophthalmi strain contained many types of genes related to pathogenicity and drug resistance. Moreover, it showed inconsistency between phenotype and genotype on drug resistance. These results suggested that the physiological mechanism seemed to be complex.
Subject(s)
Fish Diseases/microbiology , Flatfishes/microbiology , Vibrio Infections/veterinary , Vibrio/genetics , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Fish Diseases/pathology , Genes, Bacterial/genetics , Genome Size , Genome, Bacterial/genetics , Genomic Islands , Host-Pathogen Interactions/genetics , Microbial Sensitivity Tests , Phylogeny , Vibrio/classification , Vibrio/drug effects , Vibrio/pathogenicity , Vibrio Infections/microbiology , Vibrio Infections/pathology , Virulence Factors/geneticsABSTRACT
Generally speaking, fish intestinal microbiota is easily affected by food or water environment, and it may be dynamically changed along with body growth. However, it remains unclear whether fish gut microbiota can be affected under any conditions. In the present study, we focused on cultured larval turbot (Scophthalmus maximus) and tracked its artificial breeding process from eggs to larvae in two farms located in different regions of China. Through continuous sampling, we analyzed and compared characteristics of intestinal microbiota in turbot larvae and its correlation with the bacteria in water and food at different developmental stages. The results showed that there was a steady group of microbiota in larval gut, and the highest relative abundance of strain was same between the two farms. This microbiota was established soon after hatching of fertilized eggs. Particularly, the structure of this microbiota was nearly not changeable afterward 3-4 months of development. The bacteria carried by fertilized eggs might play an important role during the formation of this microbiota. In conclusion, our findings suggested that there was a core microbiota represented by Lactococcus sp. in gut of artificially bred turbot larvae. The relative proportion of such strain in gut was higher than 30% at the initial stage of turbot life.
Subject(s)
Bacterial Physiological Phenomena , Flatfishes/microbiology , Gastrointestinal Microbiome/physiology , Animals , Breeding , China , Flatfishes/growth & development , Zygote/microbiologyABSTRACT
To understand the efficacy of lactic acid bacteria (LAB) as probiotics on the growth, immune response and intestinal microbiota of turbot Scophthalmus maximus, in this study, the Leuconostoc mesenteroides HY2 strain screened from wide caught fish was bath administrated for juvenile turbot with no bacteria administrated as control. The mRNA levels of toll-like receptors 3 (TLR3), interleukin 8 (IL-8) and interferon induced with helicase C domain 1 (IFIH1) in different organs (i.e. intestine, liver, spleen, kidney, brain and skin) were analyzed using RT-PCR technology. The intestinal microbiota was analyzed by 16S rRNA sequencing, in which principal co-ordinates analysis (PCoA) as well as cluster analysis was performed. The results showed that the specific growth rate of turbot in the LAB treatment was significantly higher than those of the control group (P < 0.05). The expression levels of TLR3, IL-8 and IFIH1 were significantly up-regulated in the organs of LAB treatment, except that IL-8 was slightly down-regulated in kidney. A total of 42 phyla in intestinal microbiota were identified. The composition of intestinal microbiota showed significant differences between LAB treatment and the control group. Shannon index in the LAB treatment was significantly increased while Simpson index significantly declined. The PCoA and cluster analysis exhibited significant differences in the composition and abundance between the two groups. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria acted as biomarkers which may have effects to promote absorption and/or trigger the immune function. In conclusion, the administration of HY2 strain was capable of improving growth performance of turbot by enhancing immune response and optimizing structure and diversity of intestinal microbiota.
Subject(s)
Flatfishes/immunology , Flatfishes/microbiology , Gastrointestinal Microbiome , Immunity , Lactobacillales/immunology , Probiotics/pharmacology , Animal Feed , Animals , Lactobacillales/isolation & purification , RNA, Ribosomal, 16S/genetics , Seafood/microbiologyABSTRACT
Macroalgae represent valuable sources of functional ingredients for fish diets, and the influence of supplemented aquafeeds on growth performance has been studied for some fish and seaweed species. In the present work, the potential immunomodulation exerted by U. ohnoi (5%) as dietary ingredient was investigated in Senegalese sole. After feeding with the experimental diets for 90 d, fish immune response before and after challenge with Photobacterium damselae subsp. piscicida (Phdp) was assessed. In absence of infection, systemic immune response was not modified by 5% U. ohnoi dietary inclusion for 90 d. Thus, no differences in liver and head kidney immune gene transcription or serum lysozyme, peroxidase, antiprotease and complement activities were observed based on the diet received by Senegalese sole specimens. Regarding mucosal immune parameters, no changes in gene transcription were detected in the skin and gills, whilst only tnf, cd4 and cd8 were significantly up-regulated in the intestine of fish fed with U. ohnoi, compared to the values obtained with control diet. On the contrary, when S. senegalensis specimens were challenged with Phdp, modulation of the immune response consisting in increased transcription of genes encoding complement (c1q4, c3, c9), lysozyme g (lysg), tumor necrosis factor alpha (tnfα) as well as those involved in the antioxidant response (gpx, sodmn) and iron metabolism (ferrm, hamp-1) was observed in the liver of fish fed with U. ohnoi. In parallel, decreased inflammatory cytokine and complement encoding gene transcription was displayed by the spleen of fish receiving the algal diet. Though mortality rates due to Phdp challenge were not affected by the diet received, lower pathogen loads were detected in the liver of soles receiving U. ohnoi diet. Further research to investigate the effects of higher inclusion levels of this seaweed in fish diets, feeding during short periods as wells as to assess the response against other pathogens needs to be carried out.
Subject(s)
Animal Feed/analysis , Dietary Supplements/analysis , Fish Diseases/immunology , Flatfishes/immunology , Gram-Negative Bacterial Infections/veterinary , Ulva , Animals , Fish Diseases/prevention & control , Flatfishes/microbiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Photobacterium/pathogenicityABSTRACT
Inactivated vaccines are often applied with adjuvants in commercial fish farming. Although some mineral or non-mineral oil adjuvants show efficient improvement with inactivated vaccines, but sometimes bring side effects such as tissue adhesion and granulomatous lesion at the injection site. CpG ODN is a novel type of soluble adjuvant which has been proved to possess excellent advantages in fish vaccine development. In this study, we designed a tandem sequence of CpG ODN synthesized in plasmid pcDNA 3.1, and an inactivated Vibrio anguillarum vaccine developed in our previous work was chosen for determining the efficiency of the CpG-riched plasmids (pCpG) as an adjuvant. Results showed that pCpG we designed can offer higher immunoprotection with the vaccine. Interestingly, even below the minimum immune dosage of the vaccine, a high RPS of 84% was observed once the vaccine was administrated with the pCpG. Serum specific antibody titer, superoxide dismutase and total protein were enhanced and some immune genes related to both innate and adaptive immune response were upregulated, implying an effective auxiliary function of the pCpG. Totally, our study suggested that the pCpG is a potential and available adjuvant for turbot vaccine development.
Subject(s)
Bacterial Vaccines/immunology , Fish Diseases/prevention & control , Flatfishes/immunology , Oligodeoxyribonucleotides/immunology , Vibrio Infections/veterinary , Vibrio/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemical synthesis , Animals , Bacterial Vaccines/administration & dosage , Fish Diseases/microbiology , Flatfishes/microbiology , Gene Expression Regulation/immunology , Immunity, Humoral , Oligodeoxyribonucleotides/administration & dosage , Plasmids/administration & dosage , Plasmids/immunology , Survival Rate , Vaccination/veterinary , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vibrio Infections/microbiology , Vibrio Infections/prevention & controlABSTRACT
Exposure to contaminants might directly affect organisms and alter their associated microbiota. The objective of the present study was to determine the impact of the petroleum-water-accommodated fraction (WAF) from a light crude oil (API gravity 35) on a benthic fish species native from the Gulf of Mexico (GoM). Ten adults of Achirus lineatus (Linnaeus, 1758) were exposed to a sublethal WAF/water solution of 50% v/v for 48 hr. Multiple endpoints were measured including tissue damage, presence of polycyclic aromatic hydrocarbons (PAHs) metabolites in bile and gut microbiota analyses. Atrophy and fatty degeneration were observed in livers. Nodules and inflammation were detected in spleen, and structural disintegration and atrophy in the kidney. In gills hyperplasia, aneurysm, and gills lamellar fusion were observed. PAHs metabolites concentrations in bile were significantly higher in exposed organisms. Gut microbiome taxonomic analysis showed significant shifts in bacterial structure and composition following WAF exposure. Data indicate that exposure to WAF produced toxic effects in adults of A. lineatus, as evidenced by histological alterations and dysbiosis, which might represent an impairment to long-term subsistence of exposed aquatic organisms.