Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
Add more filters

Publication year range
1.
Nature ; 627(8002): 108-115, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448695

ABSTRACT

The sea level along the US coastlines is projected to rise by 0.25-0.3 m by 2050, increasing the probability of more destructive flooding and inundation in major cities1-3. However, these impacts may be exacerbated by coastal subsidence-the sinking of coastal land areas4-a factor that is often underrepresented in coastal-management policies and long-term urban planning2,5. In this study, we combine high-resolution vertical land motion (that is, raising or lowering of land) and elevation datasets with projections of sea-level rise to quantify the potential inundated areas in 32 major US coastal cities. Here we show that, even when considering the current coastal-defence structures, further land area of between 1,006 and 1,389 km2 is threatened by relative sea-level rise by 2050, posing a threat to a population of 55,000-273,000 people and 31,000-171,000 properties. Our analysis shows that not accounting for spatially variable land subsidence within the cities may lead to inaccurate projections of expected exposure. These potential consequences show the scale of the adaptation challenge, which is not appreciated in most US coastal cities.


Subject(s)
Altitude , Cities , City Planning , Floods , Motion , Sea Level Rise , Cities/statistics & numerical data , City Planning/methods , City Planning/trends , Floods/prevention & control , Floods/statistics & numerical data , United States , Datasets as Topic , Sea Level Rise/statistics & numerical data , Acclimatization
2.
Nature ; 622(7981): 87-92, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794266

ABSTRACT

Disaster losses are increasing and evidence is mounting that climate change is driving up the probability of extreme natural shocks1-3. Yet it has also proved politically expedient to invoke climate change as an exogenous force that supposedly places disasters beyond the influence of local and national authorities4,5. However, locally determined patterns of urbanization and spatial development are key factors to the exposure and vulnerability of people to climatic shocks6. Using high-resolution annual data, this study shows that, since 1985, human settlements around the world-from villages to megacities-have expanded continuously and rapidly into present-day flood zones. In many regions, growth in the most hazardous flood zones is outpacing growth in non-exposed zones by a large margin, particularly in East Asia, where high-hazard settlements have expanded 60% faster than flood-safe settlements. These results provide systematic evidence of a divergence in the exposure of countries to flood hazards. Instead of adapting their exposure, many countries continue to actively amplify their exposure to increasingly frequent climatic shocks.


Subject(s)
Cities , Floods , Human Migration , Urbanization , Asia, Eastern , Cities/statistics & numerical data , Climate Change/statistics & numerical data , Floods/statistics & numerical data , Human Migration/statistics & numerical data , Human Migration/trends , Probability , Urbanization/trends
3.
Nature ; 619(7969): 305-310, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380773

ABSTRACT

The intensity of extreme precipitation events is projected to increase in a warmer climate1-5, posing a great challenge to water sustainability in natural and built environments. Of particular importance are rainfall (liquid precipitation) extremes owing to their instantaneous triggering of runoff and association with floods6, landslides7-9 and soil erosion10,11. However, so far, the body of literature on intensification of precipitation extremes has not examined the extremes of precipitation phase separately, namely liquid versus solid precipitation. Here we show that the increase in rainfall extremes in high-elevation regions of the Northern Hemisphere is amplified, averaging 15 per cent per degree Celsius of warming-double the rate expected from increases in atmospheric water vapour. We utilize both a climate reanalysis dataset and future model projections to show that the amplified increase is due to a warming-induced shift from snow to rain. Furthermore, we demonstrate that intermodel uncertainty in projections of rainfall extremes can be appreciably explained by changes in snow-rain partitioning (coefficient of determination 0.47). Our findings pinpoint high-altitude regions as 'hotspots' that are vulnerable to future risk of extreme-rainfall-related hazards, thereby requiring robust climate adaptation plans to alleviate potential risk. Moreover, our results offer a pathway towards reducing model uncertainty in projections of rainfall extremes.


Subject(s)
Floods , Global Warming , Rain , Snow , Climate , Floods/statistics & numerical data , Global Warming/statistics & numerical data , Climate Models , Datasets as Topic , Built Environment/trends , Atmosphere/chemistry , Humidity , Water Resources/supply & distribution
4.
Nature ; 608(7921): 80-86, 2022 08.
Article in English | MEDLINE | ID: mdl-35922501

ABSTRACT

Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.


Subject(s)
Droughts , Extreme Weather , Floods , Risk Management , Climate Change/statistics & numerical data , Datasets as Topic , Droughts/prevention & control , Droughts/statistics & numerical data , Floods/prevention & control , Floods/statistics & numerical data , Humans , Hydrology , Internationality , Risk Management/methods , Risk Management/statistics & numerical data , Risk Management/trends
5.
Nature ; 596(7870): 80-86, 2021 08.
Article in English | MEDLINE | ID: mdl-34349288

ABSTRACT

Flooding affects more people than any other environmental hazard and hinders sustainable development1,2. Investing in flood adaptation strategies may reduce the loss of life and livelihood caused by floods3. Where and how floods occur and who is exposed are changing as a result of rapid urbanization4, flood mitigation infrastructure5 and increasing settlements in floodplains6. Previous estimates of the global flood-exposed population have been limited by a lack of observational data, relying instead on models, which have high uncertainty3,7-11. Here we use daily satellite imagery at 250-metre resolution to estimate flood extent and population exposure for 913 large flood events from 2000 to 2018. We determine a total inundation area of 2.23 million square kilometres, with 255-290 million people directly affected by floods. We estimate that the total population in locations with satellite-observed inundation grew by 58-86 million from 2000 to 2015. This represents an increase of 20 to 24 per cent in the proportion of the global population exposed to floods, ten times higher than previous estimates7. Climate change projections for 2030 indicate that the proportion of the population exposed to floods will increase further. The high spatial and temporal resolution of the satellite observations will improve our understanding of where floods are changing and how best to adapt. The global flood database generated from these observations will help to improve vulnerability assessments, the accuracy of global and local flood models, the efficacy of adaptation interventions and our understanding of the interactions between landcover change, climate and floods.


Subject(s)
Acclimatization , Demography , Disaster Planning , Floods/statistics & numerical data , Models, Theoretical , Satellite Imagery , Databases as Topic , Extreme Weather , Humans , Risk Assessment
7.
Nature ; 573(7772): 108-111, 2019 09.
Article in English | MEDLINE | ID: mdl-31462777

ABSTRACT

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Subject(s)
Climate Change/statistics & numerical data , Floods/statistics & numerical data , Rivers , Climate Change/history , Europe , Floods/history , Floods/prevention & control , Geographic Mapping , History, 20th Century , History, 21st Century , Rain , Seasons , Time Factors
8.
Am J Epidemiol ; 193(10): 1384-1391, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38844537

ABSTRACT

Human-induced climate change has led to more frequent and severe flooding around the globe. We examined the association between flood risk and the prevalence of coronary heart disease, high blood pressure, asthma, and poor mental health in the United States, while taking into account different levels of social vulnerability. We aggregated flood risk variables from First Street Foundation data by census tract and used principal component analysis to derive a set of 5 interpretable flood risk factors. The dependent variables were census-tract level disease prevalences generated by the Centers for Disease Control and Prevention. Bayesian spatial conditional autoregressive models were fit on these data to quantify the relationship between flood risk and health outcomes under different stratifications of social vulnerability. We show that 3 flood risk principal components had small but significant associations with each of the health outcomes across the different stratifications of social vulnerability. Our analysis gives, to our knowledge, the first United States-wide estimates of the associated effects of flood risk on specific health outcomes. We also show that social vulnerability is an important moderator of the relationship between flood risk and health outcomes. Our approach can be extended to other ecological studies that examine the health impacts of climate hazards. This article is part of a Special Collection on Environmental Epidemiology.


Subject(s)
Asthma , Bayes Theorem , Censuses , Floods , Humans , Floods/statistics & numerical data , United States/epidemiology , Asthma/epidemiology , Risk Factors , Hypertension/epidemiology , Coronary Disease/epidemiology , Coronary Disease/etiology , Social Vulnerability , Climate Change , Prevalence , Principal Component Analysis , Mental Health/statistics & numerical data
10.
Nature ; 563(7731): 384-388, 2018 11.
Article in English | MEDLINE | ID: mdl-30429551

ABSTRACT

Category 4 landfalling hurricane Harvey poured more than a metre of rainfall across the heavily populated Houston area, leading to unprecedented flooding and damage. Although studies have focused on the contribution of anthropogenic climate change to this extreme rainfall event1-3, limited attention has been paid to the potential effects of urbanization on the hydrometeorology associated with hurricane Harvey. Here we find that urbanization exacerbated not only the flood response but also the storm total rainfall. Using the Weather Research and Forecast model-a numerical model for simulating weather and climate at regional scales-and statistical models, we quantify the contribution of urbanization to rainfall and flooding. Overall, we find that the probability of such extreme flood events across the studied basins increased on average by about 21 times in the period 25-30 August 2017 because of urbanization. The effect of urbanization on storm-induced extreme precipitation and flooding should be more explicitly included in global climate models, and this study highlights its importance when assessing the future risk of such extreme events in highly urbanized coastal areas.


Subject(s)
Cyclonic Storms/statistics & numerical data , Disasters/statistics & numerical data , Floods/statistics & numerical data , Rain , Urbanization , Climate Change/statistics & numerical data , Forecasting , Human Activities , Hydrology , Meteorology , Models, Theoretical , Probability , Texas , Weather
12.
Nature ; 556(7699): 95-98, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29620734

ABSTRACT

Over the past century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.


Subject(s)
Disasters/statistics & numerical data , Floods/statistics & numerical data , Hydrology/statistics & numerical data , Risk Assessment , Rivers , Water Movements , El Nino-Southern Oscillation , Geologic Sediments/analysis , Human Activities , Mississippi , Trees/growth & development
13.
Environ Monit Assess ; 196(6): 526, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722374

ABSTRACT

Flood disasters are frequent natural disasters that occur annually during the monsoon season and significantly impact urban areas. This area is characterized by impermeable concrete surfaces, which increase runoff and are particularly susceptible to flooding. Therefore, this study aims to adopt Bi-variate statistical methods such as frequency ratio (FR) and weight of evidence (WOE) to map flood susceptibility in an urbanized watershed. The study area encompasses an urbanized watershed surrounding the Chennai Metropolitan area in southern India. The essential parameters considered for flood susceptibility zonation include geomorphology, soil, land use/land cover (LU/LC), rainfall, drainage, slope, aspect, Topographic Wetness Index (TWI), and Normalized Difference Vegetation Index (NDVI). The flood susceptibility map was derived using 70% of randomly selected flood areas from the flood inventory database, and the other 30% was used for validation using the area under curve (AUC) method. The AUC method produced a frequency ratio of 0.806 and a weight of evidence value of 0.865 contributing to the zonation of the three classes. The study further investigates the impact of urbanization on flood susceptibility and is further classified into high, moderate, and low flood risk zones. With the abrupt change in climatic scenarios, there is an increase in the risk of flash floods. The results of this study can be used by policymakers and planners in developing a preparedness system to mitigate economic, human, and property losses due to floods in any urbanized watershed.


Subject(s)
Environmental Monitoring , Floods , Floods/statistics & numerical data , India , Environmental Monitoring/methods , Urbanization , Cities , Risk Assessment
14.
Nature ; 544(7651): 475-478, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28447639

ABSTRACT

The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms-mesoscale convective systems (MCSs)-poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in 'extreme' daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models.


Subject(s)
Floods/statistics & numerical data , Rain , Satellite Imagery , Africa South of the Sahara , Africa, Northern , Convection , Global Warming/statistics & numerical data , Models, Theoretical , Seasons , Temperature , Water Cycle , Wind
16.
Proc Natl Acad Sci U S A ; 117(4): 1877-1883, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31932437

ABSTRACT

Extreme sea levels are a significant threat to life, property, and the environment. These threats are managed by coastal planers through the implementation of risk mitigation strategies. Central to such strategies is knowledge of extreme event probabilities. Typically, these probabilities are estimated by fitting a suitable distribution to the observed extreme data. Estimates, however, are often uncertain due to the small number of extreme events in the tide gauge record and are only available at gauged locations. This restricts our ability to implement cost-effective mitigation. A remarkable fact about sea-level extremes is the existence of spatial dependences, yet the vast majority of studies to date have analyzed extremes on a site-by-site basis. Here we demonstrate that spatial dependences can be exploited to address the limitations posed by the spatiotemporal sparseness of the observational record. We achieve this by pooling all of the tide gauge data together through a Bayesian hierarchical model that describes how the distribution of surge extremes varies in time and space. Our approach has two highly desirable advantages: 1) it enables sharing of information across data sites, with a consequent drastic reduction in estimation uncertainty; 2) it permits interpolation of both the extreme values and the extreme distribution parameters at any arbitrary ungauged location. Using our model, we produce an observation-based probabilistic reanalysis of surge extremes covering the entire Atlantic and North Sea coasts of Europe for the period 1960-2013.


Subject(s)
Disaster Planning/methods , Floods/statistics & numerical data , Models, Statistical , Oceanography/methods , Oceans and Seas , Rheology/methods , Risk Assessment/methods , Bayes Theorem , Computer Simulation , Europe
17.
J Environ Manage ; 339: 117799, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37043911

ABSTRACT

In this paper, a new framework is developed for evaluating the resilience of urban drainage systems (UDSs) under floods by proposing and quantifying some technical and socio-ecological (SE) criteria. The proposed criteria are used to quantify the seven principles of building resilience in socio-ecological systems. The criteria mainly focus on preserving diversity and multiplicity in a UDS, managing variables that gradually change over time (slow variables), improving structural and functional connectivity, maintaining system adaptability, encouraging learning, broadening participation, and promoting polycentric governance systems. For evaluating the efficiency of the proposed framework, it is applied to a real-world case study of improving resilience of the UDS in the eastern part of Tehran metropolitan area. Three scenarios for flood management are proposed based on the Low Impact Development (LID) practices which are simulated using the Storm Water Management Model (SWMM). The Entropy method is used to consider the uncertainty in the relative importance of different criteria in estimating the flood resilience. The estimated values for the proposed criteria regarding the current drainage system in the study area show its undesirable condition in many sub-catchments. The results also show that using around 2.3 km2 of LID practices in this urban watershed can significantly improve the resilience in many sub-catchments (nearly, 30%) and reduce the total volume of the overflow (about 50%). The results also show that using the flood management scenarios, improving connectivity is the most influential factor that enhances the general resilience of the system.


Subject(s)
Floods , Models, Theoretical , Ecosystem , Floods/statistics & numerical data , Iran , Uncertainty
18.
Nature ; 529(7584): 84-7, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738594

ABSTRACT

In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.


Subject(s)
Crop Production/statistics & numerical data , Disasters/statistics & numerical data , Edible Grain/growth & development , Edible Grain/supply & distribution , Internationality , Weather , Climate Change/statistics & numerical data , Crop Production/trends , Droughts/statistics & numerical data , Extreme Cold/adverse effects , Extreme Heat/adverse effects , Floods/statistics & numerical data , Oryza/growth & development , Risk Management , Time Factors , Triticum/growth & development , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL