Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.558
Filter
Add more filters

Publication year range
1.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32437660

ABSTRACT

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Lysosomes/metabolism , Mitophagy/physiology , Animals , Autophagy/physiology , Fluorescent Antibody Technique/methods , Fluorescent Dyes/chemistry , Humans , Lysosomes/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitophagy/genetics
2.
Cell ; 174(4): 926-937.e12, 2018 08 09.
Article in English | MEDLINE | ID: mdl-29961575

ABSTRACT

Influenza hemagglutinin (HA) is the canonical type I viral envelope glycoprotein and provides a template for the membrane-fusion mechanisms of numerous viruses. The current model of HA-mediated membrane fusion describes a static "spring-loaded" fusion domain (HA2) at neutral pH. Acidic pH triggers a singular irreversible conformational rearrangement in HA2 that fuses viral and cellular membranes. Here, using single-molecule Förster resonance energy transfer (smFRET)-imaging, we directly visualized pH-triggered conformational changes of HA trimers on the viral surface. Our analyses reveal reversible exchange between the pre-fusion and two intermediate conformations of HA2. Acidification of pH and receptor binding shifts the dynamic equilibrium of HA2 in favor of forward progression along the membrane-fusion reaction coordinate. Interaction with the target membrane promotes irreversible transition of HA2 to the post-fusion state. The reversibility of HA2 conformation may protect against transition to the post-fusion state prior to arrival at the target membrane.


Subject(s)
Cell Membrane/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A virus/physiology , Influenza, Human/metabolism , Single Molecule Imaging/methods , A549 Cells , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinins/metabolism , Humans , Hydrogen-Ion Concentration , Influenza, Human/virology , Protein Binding , Protein Conformation , Virus Internalization
3.
Nat Methods ; 21(7): 1222-1230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877317

ABSTRACT

Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Photons , Fluorescent Dyes/chemistry , Single Molecule Imaging/methods
4.
Annu Rev Biochem ; 80: 327-32, 2011.
Article in English | MEDLINE | ID: mdl-21513458

ABSTRACT

Understanding how cells of all types sense external and internal signals and how these signals are processed to yield particular responses is a major goal of biology. Genetically encoded fluorescent proteins (FPs) and fluorescent sensors are playing an important role in achieving this comprehensive knowledge base of cell function. Providing high sensitivity and immense versatility while being minimally perturbing to a biological specimen, the probes can be used in different microscopy techniques to visualize cellular processes on many spatial scales. Three review articles in this volume discuss recent advances in probe design and applications. These developments help expand the range of biochemical processes in living systems suitable for study. They provide researchers with exciting new tools to explore how cellular processes are organized and their activity regulated in vivo.


Subject(s)
Cell Physiological Phenomena , Microscopy, Fluorescence/methods , Fluorescence Resonance Energy Transfer/methods , Luminescent Proteins/metabolism , Nitric Oxide/chemistry , Signal Transduction/physiology , Zinc/chemistry
5.
Annu Rev Biochem ; 80: 357-73, 2011.
Article in English | MEDLINE | ID: mdl-21529159

ABSTRACT

Many genetically encoded probes that employ fluorescent proteins and fluorescence resonance energy transfer (FRET) have been developed to better understand the spatiotemporal regulation of various cellular processes. The different types of FRET and measurement techniques necessitate characterization of their specific features. Here I provide theoretical and practical comparisons of bimolecular and unimolecular FRET constructs, intensity-based and lifetime-based FRET measurements, FRET imaging using live- and fixed-cell samples, green fluorescent protein-based and chemical fluorophore-based FRET, and FRET efficiency and indices. The potential benefits and limitations of a variety of features in the technologies using fluorescent proteins and FRET are discussed.


Subject(s)
Cell Physiological Phenomena , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Animals , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence/methods , Models, Molecular , Protein Conformation , Proteins
6.
Annu Rev Biochem ; 80: 375-401, 2011.
Article in English | MEDLINE | ID: mdl-21495849

ABSTRACT

Real-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Signal Transduction/physiology , Animals , Calcium/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/chemistry , Intracellular Membranes/chemistry , Models, Molecular
7.
Nat Methods ; 20(4): 523-535, 2023 04.
Article in English | MEDLINE | ID: mdl-36973549

ABSTRACT

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Subject(s)
Fluorescence Resonance Energy Transfer , Proteins , Fluorescence Resonance Energy Transfer/methods , Reproducibility of Results , Proteins/chemistry , Molecular Conformation , Laboratories
8.
Nat Methods ; 20(12): 1920-1929, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945909

ABSTRACT

A grand challenge in biosensor design is to develop a single-molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Here, we created a family of adaptable, turn-on maturation (ATOM) biosensors consisting of a monobody (circularly permuted at one of two positions) or a nanobody (circularly permuted at one of three positions) inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells coexpressing cyan, yellow and red ATOM sensors detected biosensor targets that were specifically localized to various subcellular compartments. Fluorescence activation involved ligand-dependent chromophore maturation with turn-on ratios of up to 62-fold in cells and 100-fold in vitro. Endoplasmic reticulum- and mitochondria-localized ATOM sensors detected ligands that were targeted to those organelles. The ATOM design was validated with three monobodies and one nanobody inserted into distinct fluorescent proteins, suggesting that customized ATOM sensors can be generated quickly.


Subject(s)
Biosensing Techniques , Proteins , Humans , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/metabolism , Biosensing Techniques/methods
9.
Mol Cell ; 72(3): 541-552.e6, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388413

ABSTRACT

Numerous classes of riboswitches have been found to regulate bacterial gene expression in response to physiological cues, offering new paths to antibacterial drugs. As common studies of isolated riboswitches lack the functional context of the transcription machinery, we here combine single-molecule, biochemical, and simulation approaches to investigate the coupling between co-transcriptional folding of the pseudoknot-structured preQ1 riboswitch and RNA polymerase (RNAP) pausing. We show that pausing at a site immediately downstream of the riboswitch requires a ligand-free pseudoknot in the nascent RNA, a precisely spaced sequence resembling the pause consensus, and electrostatic and steric interactions with the RNAP exit channel. While interactions with RNAP stabilize the native fold of the riboswitch, binding of the ligand signals RNAP release from the pause. Our results demonstrate that the nascent riboswitch and its ligand actively modulate the function of RNAP and vice versa, a paradigm likely to apply to other cellular RNA transcripts.


Subject(s)
DNA-Directed RNA Polymerases/physiology , Nucleoside Q/physiology , Riboswitch/physiology , Aptamers, Nucleotide , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Fluorescence Resonance Energy Transfer/methods , Gene Expression Regulation, Bacterial , Ligands , Nucleic Acid Conformation , Nucleoside Q/metabolism , Protein Folding , RNA Folding , RNA, Bacterial/physiology , Riboswitch/genetics , Single Molecule Imaging , Transcription, Genetic/physiology
10.
Proc Natl Acad Sci U S A ; 120(4): e2211896120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36652471

ABSTRACT

Fluorescence correlation spectroscopy is a versatile tool for studying fast conformational changes of biomolecules especially when combined with Förster resonance energy transfer (FRET). Despite the many methods available for identifying structural dynamics in FRET experiments, the determination of the forward and backward transition rate constants and thereby also the equilibrium constant is difficult when two intensity levels are involved. Here, we combine intensity correlation analysis with fluorescence lifetime information by including only a subset of photons in the autocorrelation analysis based on their arrival time with respect to the excitation pulse (microtime). By fitting the correlation amplitude as a function of microtime gate, the transition rate constants from two fluorescence-intensity level systems and the corresponding equilibrium constants are obtained. This shrinking-gate fluorescence correlation spectroscopy (sg-FCS) approach is demonstrated using simulations and with a DNA origami-based model system in experiments on immobilized and freely diffusing molecules. We further show that sg-FCS can distinguish photophysics from dynamic intensity changes even if a dark quencher, in this case graphene, is involved. Finally, we unravel the mechanism of a FRET-based membrane charge sensor indicating the broad potential of the method. With sg-FCS, we present an algorithm that does not require prior knowledge and is therefore easily implemented when an autocorrelation analysis is carried out on time-correlated single-photon data.


Subject(s)
Fluorescence Resonance Energy Transfer , Photons , Spectrometry, Fluorescence/methods , Fluorescence Resonance Energy Transfer/methods , Models, Biological
11.
Proc Natl Acad Sci U S A ; 120(15): e2211807120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37014867

ABSTRACT

Intensity-based time-lapse fluorescence resonance energy transfer (FRET) microscopy has been a major tool for investigating cellular processes, converting otherwise unobservable molecular interactions into fluorescence time series. However, inferring the molecular interaction dynamics from the observables remains a challenging inverse problem, particularly when measurement noise and photobleaching are nonnegligible-a common situation in single-cell analysis. The conventional approach is to process the time-series data algebraically, but such methods inevitably accumulate the measurement noise and reduce the signal-to-noise ratio (SNR), limiting the scope of FRET microscopy. Here, we introduce an alternative probabilistic approach, B-FRET, generally applicable to standard 3-cube FRET-imaging data. Based on Bayesian filtering theory, B-FRET implements a statistically optimal way to infer molecular interactions and thus drastically improves the SNR. We validate B-FRET using simulated data and then apply it to real data, including the notoriously noisy in vivo FRET time series from individual bacterial cells to reveal signaling dynamics otherwise hidden in the noise.


Subject(s)
Fluorescence Resonance Energy Transfer , Microscopy , Fluorescence Resonance Energy Transfer/methods , Bayes Theorem
12.
Q Rev Biophys ; 56: e3, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37198943

ABSTRACT

Although viral protein structure and replication mechanisms have been explored extensively with X-ray crystallography, cryo-electron microscopy, and population imaging studies, these methods are often not able to distinguish dynamic conformational changes in real time. Single-molecule fluorescence resonance energy transfer (smFRET) offers unique insights into interactions and states that may be missed in ensemble studies, such as nucleic acid or protein structure, and conformational transitions during folding, receptor-ligand interactions, and fusion. We discuss the application of smFRET to the study of viral protein conformational dynamics, with a particular focus on viral glycoprotein dynamics, viral helicases, proteins involved in HIV reverse transcription, and the influenza RNA polymerase. smFRET experiments have played a crucial role in deciphering conformational changes in these processes, emphasising the importance of smFRET as a tool to help elucidate the life cycle of viral pathogens and identify key anti-viral targets.


Subject(s)
Fluorescence Resonance Energy Transfer , Nucleic Acids , Fluorescence Resonance Energy Transfer/methods , Cryoelectron Microscopy , Protein Conformation , Viral Proteins
13.
J Biol Chem ; 300(4): 107121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417795

ABSTRACT

Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.


Subject(s)
Congenital Disorders of Glycosylation , Fluorescence Resonance Energy Transfer , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Animals , Humans , Male , Rats , Aging/metabolism , Brain/metabolism , Congenital Disorders of Glycosylation/diagnosis , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency
14.
J Biol Chem ; 300(6): 107367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750796

ABSTRACT

The main protease (Mpro) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease Mpro (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein. Many structures of Mpro (often bound to various small molecule inhibitors or peptides) have been detailed recently, including structures of Mpro bound to each of the polyprotein cleavage sequences, showing that Mpro can accommodate a wide range of targets within its active site. However, to date, kinetic characterization of the interaction of Mpro with each of its native cleavage sequences remains incomplete. Here, we present a robust and cost-effective FRET based system that benefits from a more consistent presentation of the substrate that is also closer in organization to the native polyprotein environment compared to previously reported FRET systems that use chemically modified peptides. Using this system, we were able to show that while each site maintains a similar Michaelis constant, the catalytic efficiency of Mpro varies greatly between cut-site sequences, suggesting a clear preference for the order of nsp processing.


Subject(s)
Coronavirus 3C Proteases , Fluorescence Resonance Energy Transfer , Polyproteins , SARS-CoV-2 , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , COVID-19/virology , COVID-19/metabolism , Fluorescence Resonance Energy Transfer/methods , Kinetics , Polyproteins/metabolism , Polyproteins/chemistry , Proteolysis , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics
15.
Nat Methods ; 19(12): 1612-1621, 2022 12.
Article in English | MEDLINE | ID: mdl-36344833

ABSTRACT

We report the rational engineering of a remarkably stable yellow fluorescent protein (YFP), 'hyperfolder YFP' (hfYFP), that withstands chaotropic conditions that denature most biological structures within seconds, including superfolder green fluorescent protein (GFP). hfYFP contains no cysteines, is chloride insensitive and tolerates aldehyde and osmium tetroxide fixation better than common fluorescent proteins, enabling its use in expansion and electron microscopies. We solved crystal structures of hfYFP (to 1.7-Å resolution), a monomeric variant, monomeric hyperfolder YFP (1.6 Å) and an mGreenLantern mutant (1.2 Å), and then rationally engineered highly stable 405-nm-excitable GFPs, large Stokes shift (LSS) monomeric GFP (LSSmGFP) and LSSA12 from these structures. Lastly, we directly exploited the chemical stability of hfYFP and LSSmGFP by devising a fluorescence-assisted protein purification strategy enabling all steps of denaturing affinity chromatography to be visualized using ultraviolet or blue light. hfYFP and LSSmGFP represent a new generation of robustly stable fluorescent proteins developed for advanced biotechnological applications.


Subject(s)
Fluorescence Resonance Energy Transfer , Microscopy , Luminescent Proteins/metabolism , Green Fluorescent Proteins/metabolism , Fluorescence Resonance Energy Transfer/methods , Light
16.
Nat Chem Biol ; 19(9): 1147-1157, 2023 09.
Article in English | MEDLINE | ID: mdl-37291200

ABSTRACT

Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.


Subject(s)
Biosensing Techniques , NAD , Luminescent Proteins/metabolism , NAD/metabolism , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods
17.
FASEB J ; 38(9): e23627, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690708

ABSTRACT

Colonoscopy is the gold standard for diagnosing inflammatory bowel disease (IBD). However, this invasive procedure has a high burden for pediatric patients. Previous research has shown elevated fecal amino acid concentrations in children with IBD versus controls. We hypothesized that this finding could result from increased proteolytic activity. Therefore, the aim of this study was to investigate whether fecal protease-based profiling was able to discriminate between IBD and controls. Protease activity was measured in fecal samples from patients with IBD (Crohn's disease (CD) n = 19; ulcerative colitis (UC) n = 19) and non-IBD controls (n = 19) using a fluorescence resonance energy transfer (FRET)-peptide library. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of each FRET-peptide substrate. Screening the FRET-peptide library revealed an increased total proteolytic activity (TPA), as well as degradation of specific FRET-peptides specifically in fecal samples from IBD patients. Based on level of significance (p < .001) and ROC curve analysis (AUC > 0.85), the fluorogenic substrates W-W, A-A, a-a, F-h, and H-y showed diagnostic potential for CD. The substrates W-W, a-a, T-t, G-v, and H-y showed diagnostic potential for UC based on significance (p < .001) and ROC analysis (AUC > 0.90). None of the FRET-peptide substrates used was able to differentiate between protease activity in fecal samples from CD versus UC. This study showed an increased fecal proteolytic activity in children with newly diagnosed, treatment-naïve, IBD. This could lead to the development of novel, noninvasive biomarkers for screening and diagnostic purposes.


Subject(s)
Feces , Inflammatory Bowel Diseases , Proteolysis , Humans , Feces/chemistry , Feces/enzymology , Child , Female , Male , Pilot Projects , Adolescent , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/diagnosis , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/diagnosis , Fluorescence Resonance Energy Transfer/methods , Peptide Hydrolases/metabolism , Crohn Disease/diagnosis , Crohn Disease/metabolism , ROC Curve , Case-Control Studies , Child, Preschool
18.
PLoS Biol ; 20(9): e3001772, 2022 09.
Article in English | MEDLINE | ID: mdl-36067248

ABSTRACT

Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically-encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically-encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Animals , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Ions , Mice , Potassium
19.
Exp Cell Res ; 441(2): 114166, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39029572

ABSTRACT

Given the importance of aberrant protein-protein interactions (PPIs) in disease, the recent drug discovery focuses on targeting the altered PPIs to treat the disease. In this context, identifying the atypical PPIs underlying the disease is critical for the development of diagnostics and therapeutics. Various biochemical, biophysical, and genetic methods have been reported to study PPIs. Here, we are giving a short account of those techniques with more emphasis on Förster resonance energy transfer (FRET), which can be used to monitor macromolecular interactions in live cells. Besides the basics of FRET, we explain the modifications of its application, like Single molecule FRET (smFRET), Fluorescence Lifetime Imaging Microscopy-FRET (FLIM-FRET), and photoswitching FRET. While smFRET is extensively used for evaluating the biology of nucleic acids and also to develop diagnostics, FLIM-FRET is widely exploited to study the PPIs underlying neurological disorders and cancer. Photoswitching FRET is a relatively newer technique and it has tremendous potential to unravel the significance of different PPIs. Besides these modifications, there are several advancements in the field by introducing new fluorophores. Identification of lanthanide chelates, quantum dots, and other nanoparticle fluorophores has revolutionized the applications of FRET in diagnostics and basic biology. Yet, these methods can be employed to study the interactions of only two molecules. Since the majority of the PPIs are multimeric complexes, we still need to improve our technologies to study these interactions in live cells in real-time.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Humans , Animals , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry , Protein Interaction Mapping/methods , Single Molecule Imaging/methods
20.
Nucleic Acids Res ; 51(9): 4613-4624, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36999628

ABSTRACT

Cryogenic electron microscopy (cryo-EM) is a promising method for characterizing the structure of larger RNA structures and complexes. However, the structure of individual aptamers is difficult to solve by cryo-EM due to their low molecular weight and a high signal-to-noise ratio. By placing RNA aptamers on larger RNA scaffolds, the contrast for cryo-EM can be increased to allow the determination of the tertiary structure of the aptamer. Here we use the RNA origami method to scaffold two fluorescent aptamers (Broccoli and Pepper) in close proximity and show that their cognate fluorophores serve as donor and acceptor for FRET. Next, we use cryo-EM to characterize the structure of the RNA origami with the two aptamers to a resolution of 4.4 Å. By characterizing the aptamers with and without ligand, we identify two distinct modes of ligand binding, which are further supported by selective chemical probing. 3D variability analysis of the cryo-EM data show that the relative position between the two bound fluorophores on the origami fluctuate by only 3.5 Å. Our results demonstrate a general approach for using RNA origami scaffolds for characterizing small RNA motifs by cryo-EM and for positioning functional RNA motifs with high spatial precision.


Subject(s)
Aptamers, Nucleotide , Nucleic Acid Conformation , RNA , Aptamers, Nucleotide/chemistry , Cryoelectron Microscopy/methods , Fluorescence Resonance Energy Transfer/methods , Ligands , RNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL