Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.647
Filter
Add more filters

Publication year range
1.
Nature ; 606(7912): 102-108, 2022 06.
Article in English | MEDLINE | ID: mdl-35344982

ABSTRACT

The advent of total-body positron emission tomography (PET) has vastly broadened the range of research and clinical applications of this powerful molecular imaging technology1. Such possibilities have accelerated progress in fluorine-18 (18F) radiochemistry with numerous methods available to 18F-label (hetero)arenes and alkanes2. However, access to 18F-difluoromethylated molecules in high molar activity is mostly an unsolved problem, despite the indispensability of the difluoromethyl group for pharmaceutical drug discovery3. Here we report a general solution by introducing carbene chemistry to the field of nuclear imaging with a [18F]difluorocarbene reagent capable of a myriad of 18F-difluoromethylation processes. In contrast to the tens of known difluorocarbene reagents, this 18F-reagent is carefully designed for facile accessibility, high molar activity and versatility. The issue of molar activity is solved using an assay examining the likelihood of isotopic dilution on variation of the electronics of the difluorocarbene precursor. Versatility is demonstrated with multiple [18F]difluorocarbene-based reactions including O-H, S-H and N-H insertions, and cross-couplings that harness the reactivity of ubiquitous functional groups such as (thio)phenols, N-heteroarenes and aryl boronic acids that are easy to install. The impact is illustrated with the labelling of highly complex and functionalized biologically relevant molecules and radiotracers.


Subject(s)
Fluorine Radioisotopes , Hydrocarbons, Fluorinated , Positron-Emission Tomography , Radiopharmaceuticals , Boronic Acids/chemistry , Fluorine Radioisotopes/chemistry , Hydrocarbons, Fluorinated/chemistry , Molecular Imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry
2.
EMBO J ; 40(22): e107757, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34636430

ABSTRACT

Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Animals , Brain/cytology , Callithrix , Carbon Radioisotopes/chemistry , Fluorine Radioisotopes/chemistry , Genes, Reporter , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Molecular Imaging/methods , Nerve Net/diagnostic imaging , Proteins/analysis , Proteins/metabolism , Radiopharmaceuticals/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/analogs & derivatives , Trimethoprim/chemistry
3.
Arterioscler Thromb Vasc Biol ; 44(6): 1432-1446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660800

ABSTRACT

BACKGROUND: Vascular calcification causes significant morbidity and occurs frequently in diseases of calcium/phosphate imbalance. Radiolabeled sodium fluoride positron emission tomography/computed tomography has emerged as a sensitive and specific method for detecting and quantifying active microcalcifications. We developed a novel technique to quantify and map total vasculature microcalcification to a common space, allowing simultaneous assessment of global disease burden and precise tracking of site-specific microcalcifications across time and individuals. METHODS: To develop this technique, 4 patients with hyperphosphatemic familial tumoral calcinosis, a monogenic disorder of FGF23 (fibroblast growth factor-23) deficiency with a high prevalence of vascular calcification, underwent radiolabeled sodium fluoride positron emission tomography/computed tomography imaging. One patient received serial imaging 1 year after treatment with an IL-1 (interleukin-1) antagonist. A radiolabeled sodium fluoride-based microcalcification score, as well as calcification volume, was computed at all perpendicular slices, which were then mapped onto a standardized vascular atlas. Segment-wise mCSmean and mCSmax were computed to compare microcalcification score levels at predefined vascular segments within subjects. RESULTS: Patients with hyperphosphatemic familial tumoral calcinosis had notable peaks in microcalcification score near the aortic bifurcation and distal femoral arteries, compared with a control subject who had uniform distribution of vascular radiolabeled sodium fluoride uptake. This technique also identified microcalcification in a 17-year-old patient, who had no computed tomography-defined calcification. This technique could not only detect a decrease in microcalcification score throughout the patient treated with an IL-1 antagonist but it also identified anatomic areas that had increased responsiveness while there was no change in computed tomography-defined macrocalcification after treatment. CONCLUSIONS: This technique affords the ability to visualize spatial patterns of the active microcalcification process in the peripheral vasculature. Further, this technique affords the ability to track microcalcifications at precise locations not only across time but also across subjects. This technique is readily adaptable to other diseases of vascular calcification and may represent a significant advance in the field of vascular biology.


Subject(s)
Fibroblast Growth Factor-23 , Fluorine Radioisotopes , Hyperphosphatemia , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Sodium Fluoride , Vascular Calcification , Humans , Hyperphosphatemia/genetics , Hyperphosphatemia/diagnostic imaging , Male , Female , Vascular Calcification/diagnostic imaging , Vascular Calcification/genetics , Adult , Predictive Value of Tests , Middle Aged , Adolescent , Young Adult , Calcinosis/genetics , Calcinosis/diagnostic imaging , Hyperostosis, Cortical, Congenital
4.
J Am Chem Soc ; 146(15): 10581-10590, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38580459

ABSTRACT

Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.


Subject(s)
Copper , Positron-Emission Tomography , Radiochemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals , Fluorine Radioisotopes
5.
J Am Chem Soc ; 146(25): 17517-17529, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869959

ABSTRACT

Despite the widespread use of hydrophilic building blocks to incorporate 18F and improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated "AquaF" (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)-F candidates, the "AquaF" building blocks exhibit superior water solubility, sufficient capacity for 18F-fluorination in water, and excellent in vivo metabolic properties. Two nitropyridinol leaving groups, identified from a pool of leaving group candidates that further enhance the precursor water solubility, enable 18F-fluorination in water with a 10-2 M-1 s-1 level reaction rate constant (surpassing the 18F/19F-exchange) at room temperature. With the exergonic concerted SN2 18F-fluorination mechanism confirmed, this 18F-fluorination method achieves ∼90% radiochemical conversions and reaches a molar activity of 175 ± 40 GBq/µmol (using 12.2 GBq initial activity) in saline for 12 "AquaF"-modified proof-of-concept functional substrates and small-molecule 18F-tracers. [18F]AquaF-Flurpiridaz demonstrates significantly improved radiochemical yield and molar activity compared to 18F-Flurpiridaz, alongside enhanced cardiac uptake and heart/liver ratio in targeted myocardial perfusion imaging, providing a comprehensive illustration of "AquaF" building blocks-assisted water-compatible SN2 18F-fluorination of small-molecule radiotracers.


Subject(s)
Fluorine Radioisotopes , Halogenation , Water , Fluorine Radioisotopes/chemistry , Water/chemistry , Animals , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Mice , Positron-Emission Tomography , Solubility , Molecular Structure , Radioactive Tracers
6.
Biochem Biophys Res Commun ; 703: 149650, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38377941

ABSTRACT

Tenascin-C is an extracellular matrix glycoprotein strongly expressed in coronary atherosclerotic plaque. Aptamers are single-stranded oligonucleotides that bind to specific target molecules with high affinity. This study hypothesized that tenascin-C expression at atherosclerotic plaque in vivo could be detected by tenascin-C specific aptamers using positron emission tomography (PET). This paper reports the radiosynthesis of a fluorine-18 (18F)-labeled tenascin-C aptamer for the biodistribution and PET imaging of the tenascin-C expression in apolipoprotein E-deficient (ApoE-/-) mice. The aortas ApoE-/- mice showed significantly increased positive areas of Oil red O staining than control C57BL/6 mice, and tenascin-C expression was detected in foam cells accumulated in the subendothelial lesions of ApoE-/- mice. The ex vivo biodistribution of the 18F-labeled tenascin-C aptamer showed significantly increased uptake at the aorta of ApoE-/- mice, and ex vivo autoradiography of aorta revealed the high accumulation of the 18F-labeled tenascin-C aptamer in the atherosclerotic lesions of ApoE-/- mice, which was consistent with the location of the atherosclerotic plaques detected by Oil red O staining. PET imaging of the 18F-labeled tenascin-C aptamer revealed a significantly higher mean standardized uptake in the aorta of the ApoE-/- mice than the control C57BL/6 mice. These data highlight the potential use of tenascin-C aptamer to diagnose atherosclerotic lesions in vivo.


Subject(s)
Atherosclerosis , Azo Compounds , Fluorine Radioisotopes , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/pathology , Tenascin/metabolism , Tissue Distribution , Mice, Inbred C57BL , Atherosclerosis/metabolism , Positron-Emission Tomography/methods , Extracellular Matrix/metabolism , Oligonucleotides/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Mice, Knockout
7.
Radiology ; 311(2): e231879, 2024 May.
Article in English | MEDLINE | ID: mdl-38771185

ABSTRACT

Background Multiparametric MRI (mpMRI) is effective for detecting prostate cancer (PCa); however, there is a high rate of equivocal Prostate Imaging Reporting and Data System (PI-RADS) 3 lesions and false-positive findings. Purpose To investigate whether fluorine 18 (18F) prostate-specific membrane antigen (PSMA) 1007 PET/CT after mpMRI can help detect localized clinically significant PCa (csPCa), particularly for equivocal PI-RADS 3 lesions. Materials and Methods This prospective study included participants with elevated prostate-specific antigen (PSA) levels referred for prostate mpMRI between September 2020 and February 2022. 18F-PSMA-1007 PET/CT was performed within 30 days of mpMRI and before biopsy. PI-RADS category and level of suspicion (LOS) were assessed. PI-RADS 3 or higher lesions at mpMRI and/or LOS 3 or higher lesions at 18F-PSMA-1007 PET/CT underwent targeted biopsies. PI-RADS 2 or lower and LOS 2 or lower lesions were considered nonsuspicious and were monitored during a 1-year follow-up by means of PSA testing. Diagnostic accuracy was assessed, with histologic examination serving as the reference standard. International Society of Urological Pathology (ISUP) grade 2 or higher was considered csPCa. Results Seventy-five participants (median age, 67 years [range, 52-77 years]) were assessed, with PI-RADS 1 or 2, PI-RADS 3, and PI-RADS 4 or 5 groups each including 25 participants. A total of 102 lesions were identified, of which 80 were PI-RADS 3 or higher and/or LOS 3 or higher and therefore underwent targeted biopsy. The per-participant sensitivity for the detection of csPCa was 95% and 91% for mpMRI and 18F-PSMA-1007 PET/CT, respectively, with respective specificities of 45% and 62%. 18F-PSMA-1007 PET/CT was used to correctly differentiate 17 of 26 PI-RADS 3 lesions (65%), with a negative and positive predictive value of 93% and 27%, respectively, for ruling out or detecting csPCa. One additional significant and one insignificant PCa lesion (PI-RADS 1 or 2) were found at 18F-PSMA-1007 PET/CT that otherwise would have remained undetected. Two participants had ISUP 2 tumors without PSMA uptake that were missed at PET/CT. Conclusion 18F-PSMA-1007 PET/CT showed good sensitivity and moderate specificity for the detection of csPCa and ruled this out in 93% of participants with PI-RADS 3 lesions. Clinical trial registration no. NCT04487847 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Turkbey in this issue.


Subject(s)
Fluorine Radioisotopes , Multiparametric Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods , Prospective Studies , Aged , Middle Aged , Niacinamide/analogs & derivatives , Oligopeptides , Radiopharmaceuticals , Prostate/diagnostic imaging , Sensitivity and Specificity
8.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38482815

ABSTRACT

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Subject(s)
Azides , Peptidoglycan , Humans , Animals , Mice , Azides/chemistry , Tissue Distribution , Positron-Emission Tomography , Bacteria , Amino Acids , Alanine , Fluorine Radioisotopes/chemistry
9.
Bioconjug Chem ; 35(5): 665-673, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598424

ABSTRACT

Enhancing the accumulation and retention of small-molecule probes in tumors is an important way to achieve accurate cancer diagnosis and therapy. Enzyme-stimulated macrocyclization of small molecules possesses great potential for enhanced positron emission tomography (PET) imaging of tumors. Herein, we reported an 18F-labeled radiotracer [18F]AlF-RSM for legumain detection in vivo. The tracer was prepared by a one-step aluminum-fluoride-restrained complexing agent ([18F]AlF-RESCA) method with high radiochemical yield (RCY) (88.35 ± 3.93%) and radiochemical purity (RCP) (>95%). More notably, the tracer can be transformed into a hydrophobic macrocyclic molecule under the joint action of legumain and reductant. Simultaneously, the tracer could target legumain-positive tumors and enhance accumulation and retention in tumors, resulting in the amplification of PET imaging signals. The enhancement of radioactivity enables PET imaging of legumain activity with high specificity. We envision that, by combining this highly efficient 18F-labeled strategy with our intramolecular macrocyclization reaction, a range of radiofluorinated tracers can be designed for tumor PET imaging and early cancer diagnosis in the future.


Subject(s)
Cysteine Endopeptidases , Fluorine Radioisotopes , Positron-Emission Tomography , Positron-Emission Tomography/methods , Fluorine Radioisotopes/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/analysis , Animals , Cyclization , Mice , Humans , Radiopharmaceuticals/chemistry , Cell Line, Tumor , Mice, Inbred BALB C , Fluorides/chemistry , Mice, Nude
10.
Bioconjug Chem ; 35(5): 567-574, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38634516

ABSTRACT

The exploration of pharmaceutically active agents and positron emission tomography (PET) tracers targeting CXCR4 has been a focal point in cancer research given its pivotal role in the development and progression of various cancers. While significant strides have been made in PET imaging with radiometal-labeled tracers, the landscape of 18F-labeled small molecule tracers remains relatively limited. Herein, we introduce a novel and promising derivative, [18F]SFB-AMD3465, as a targeted PET tracer for CXCR4. The compound was synthesized by modifying the pyridine ring of AMD3465, which was subsequently labeled with 18F using [18F]SFB. The study provides comprehensive insights into the design, synthesis, and biological evaluation of [18F]SFB-AMD3465. In vitro and in vivo assessments demonstrated the CXCR4-dependent, specific, and sensitive uptake of [18F]SFB-AMD3465 in the CXCR4-overexpressing 4T1 cell line and the corresponding xenograft-bearing mouse model. These findings contribute to bridging the gap in 18F-labeled PET tracers for CXCR4 and underscore the potential of [18F]SFB-AMD3465 as a PET radiotracer for in vivo CXCR4 imaging.


Subject(s)
Fluorine Radioisotopes , Positron-Emission Tomography , Receptors, CXCR4 , Animals , Receptors, CXCR4/analysis , Receptors, CXCR4/metabolism , Positron-Emission Tomography/methods , Mice , Fluorine Radioisotopes/chemistry , Female , Cell Line, Tumor , Humans , Pyridines/chemistry , Pyridines/pharmacokinetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
11.
Eur J Nucl Med Mol Imaging ; 51(3): 656-668, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37940685

ABSTRACT

The mesenchymal epithelial transition factor (c-Met) is frequently overexpressed in numerous cancers and has served as a validated anticancer target. Inter- and intra-tumor heterogeneity of c-Met, however, challenges the use of anti-MET therapies, highlighting an urgent need to develop an alternative tool for visualizing whole-body c-Met expression quantitatively and noninvasively. Here we firstly reported an 18F labeled, small-molecule quinine compound-based PET probe, 1-(4-(5-amino-7-(trifluoromethyl) quinolin-3-yl) piperazin-1-yl)-2-(fluoro-[18F]) propan-1-one, herein referred as [18F]-AZC. METHODS: [18F]-AZC was synthesized via a one-step substitution reaction and characterized by radiochemistry methods. [18F]-AZC specificity and affinity toward c-Met were assessed by cell uptake assay, with or without cold compound [19F]-AZC or commercial c-Met inhibitor blocking. MicroPET/CT imaging and biodistribution studies were conducted in subcutaneous murine xenografts of glioma. Additionally, [18F]-AZC was then further evaluated in orthotopic glioma xenografts, by microPET/CT imaging accompanied with MRI and autoradiography for co-registration of the tumor. Immunofluorescence staining was also carried out to qualitatively evaluate the c-Met expression in tumor tissue, co-localizes with H&E staining. RESULTS: This probe shows easy radiosynthesis, high stability in vitro and in vivo, high targeting affinity, and favorable lipophilicity and brain transport coefficient. [18F]-AZC demonstrates excellent tumor imaging properties in vivo and can delineate c-Met positive glioma specifically at 1 h after intravenous injection of the probe. Moreover, favorable correlation was observed between the [18F]-AZC accumulation and the amount of c-Met expression in tumor. CONCLUSION: This novel imaging probe could be applied as a valuable tool for management of anti-c-Met therapies in patients in the future.


Subject(s)
Glioma , Positron-Emission Tomography , Humans , Mice , Animals , Tissue Distribution , Positron-Emission Tomography/methods , Glioma/pathology , Biological Transport , Cell Line, Tumor , Fluorine Radioisotopes
12.
Eur J Nucl Med Mol Imaging ; 51(6): 1703-1712, 2024 May.
Article in English | MEDLINE | ID: mdl-38191817

ABSTRACT

PURPOSE: Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure. METHODS: This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging. RESULTS: Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115-0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement. CONCLUSION: This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.


Subject(s)
Boron Compounds , Brain Neoplasms , Fluorine Radioisotopes , Phenylalanine , Positron Emission Tomography Computed Tomography , Radioactive Tracers , Animals , Female , Humans , Mice , Boron Compounds/analysis , Boron Compounds/metabolism , Boron Compounds/pharmacokinetics , Boron Neutron Capture Therapy , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Fluorine Radioisotopes/analysis , Fluorine Radioisotopes/metabolism , Fluorine Radioisotopes/pharmacokinetics , Healthy Volunteers , Large Neutral Amino Acid-Transporter 1/metabolism , Magnetic Resonance Imaging , Melanoma, Experimental , Mice, Inbred C57BL , Molecular Probes/analysis , Molecular Probes/metabolism , Molecular Probes/pharmacokinetics , Phenylalanine/analogs & derivatives , Phenylalanine/analysis , Phenylalanine/metabolism , Phenylalanine/pharmacokinetics , Positron Emission Tomography Computed Tomography/methods , Xenograft Model Antitumor Assays
13.
Eur J Nucl Med Mol Imaging ; 51(6): 1685-1697, 2024 May.
Article in English | MEDLINE | ID: mdl-38246909

ABSTRACT

Due to the heterogeneity of tumors, strategies to improve the effectiveness of dual-targeting tracers in tumor diagnostics have been intensively practiced. In this study, the radiolabeled [18F]AlF-NOTA-FAPI-RGD (denoted as [18F]AlF-LNC1007), a dual-targeting heterodimer tracer targeting both fibroblast activation protein (FAP) and integrin αvß3 to enhance specific tumor uptake and retention, was synthesized and evaluated. The tracer was compared with [68Ga]Ga-LNC1007 in preclinical and clinical settings. METHODS: The preparation of [18F]AlF- and 68Ga-labeled FAPI-RGD was carried out with an optimized protocol. The stability was tested in PBS and fetal bovine serum (FBS). Cellular uptake and in vivo distribution of the two products were compared and carried out on the U87MG cell line and its xenograft model. The safety and dosimetry of [18F]AlF-LNC1007 PET/CT scan were evaluated in six patients with malignant tumors. RESULTS: Two radiolabeling protocols of [18F]AlF-/[68Ga]Ga-LNC1007 were developed and optimized to give a high yield of tracers with good stability. In vivo microPET images showed that the two tracers exhibited comparable pharmacokinetic characteristics, with high tumor uptake and prolonged tumor retention. In vivo distribution data showed that the target-to-non-target ratios of [18F]AlF-LNC1007 were similar to[68Ga]Ga-LNC1007. A total of six patients underwent [18F]AlF-LNC1007 PET/CT evaluation while two had head-to-head [18F]FDG PET/CT scans. The total body effective dose was 9.94E-03 mSv/MBq. The biodistribution curve showed optimal normal organ uptake with high tumor uptake and long retention of up to 3h p.i., and notably, the tumor-to-background ratio increased over time. CONCLUSION: We successfully prepared an [18F]AlF-LNC1007 dual-targeting PET probe with comparable performances as [68Ga]Ga-LNC1007. With prolonged tumor retention and tumor specificity, it produced good imaging quality in preclinical and clinical translational studies, indicating that [18F]AlF-LNC1007 is a promising non-invasive tracer for detecting tumors expressing FAP and/or integrin avß3, with the prospect of clinical implementation.


Subject(s)
Aluminum Compounds , Endopeptidases , Fluorides , Fluorine Radioisotopes , Membrane Proteins , Oligopeptides , Positron Emission Tomography Computed Tomography , Positron Emission Tomography Computed Tomography/methods , Humans , Animals , Mice , Fluorine Radioisotopes/chemistry , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Female , Tissue Distribution , Gallium Radioisotopes , Pilot Projects , Male , Isotope Labeling , Neoplasms/diagnostic imaging , Middle Aged , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry
14.
Eur J Nucl Med Mol Imaging ; 51(4): 978-990, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38049658

ABSTRACT

PURPOSE: A same-day PET imaging agent capable of measuring PD-L1 status in tumors is an important tool for optimizing PD-1 and PD-L1 treatments. Herein we describe the discovery and evaluation of a novel, fluorine-18 labeled macrocyclic peptide-based PET ligand for imaging PD-L1. METHODS: [18F]BMS-986229 was synthesized via copper mediated click-chemistry to yield a PD-L1 PET ligand with picomolar affinity and was tested as an in-vivo tool for assessing PD-L1 expression. RESULTS: Autoradiography showed an 8:1 binding ratio in L2987 (PD-L1 (+)) vs. HT-29 (PD-L1 (-)) tumor tissues, with >90% specific binding. Specific radioligand binding (>90%) was observed in human non-small-cell lung cancer (NSCLC) and cynomolgus monkey spleen tissues. Images of PD-L1 (+) tissues in primates were characterized by high signal-to-noise, with low background signal in non-expressing tissues. PET imaging enabled clear visualization of PD-L1 expression in a murine model in vivo, with 5-fold higher uptake in L2987 (PD-L1 (+)) than in control HT-29 (PD-L1 (-)) tumors. Moreover, this imaging agent was used to measure target engagement of PD-L1 inhibitors (peptide or mAb), in PD-L1 (+) tumors as high as 97%. CONCLUSION: A novel 18F-labeled macrocyclic peptide radioligand was developed for PET imaging of PD-L1 expressing tissues that demonstrated several advantages within a nonhuman primate model when compared directly to adnectin- or mAb-based ligands. Clinical studies are currently evaluating [18F]BMS-986229 to measure PD-L1 expression in tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fibronectin Type III Domain , Fluorine Radioisotopes , Lung Neoplasms , Recombinant Proteins , Humans , Mice , Animals , B7-H1 Antigen/metabolism , Ligands , Macaca fascicularis/metabolism , Positron-Emission Tomography/methods , Peptides/chemistry
15.
Eur J Nucl Med Mol Imaging ; 51(8): 2216-2228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38532026

ABSTRACT

PURPOSE: Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated mannosylated dextran derivative (Al[18F]F-NOTA-D10CM) is a new tracer for PET imaging. We report here on in vitro and in vivo validation of the tracer's ability to target the macrophage mannose receptor CD206. METHODS: First, the uptake of intravenously (i.v.) administered Al[18F]F-NOTA-D10CM was compared between wild-type (WT) and CD206-/- knockout (KO) mice. C57BL/6N mice were injected with complete Freund's adjuvant (CFA) in the left hind leg and the uptake of Al[18F]F-NOTA-D10CM after i.v. or intradermal (i.d.) injection was studied at 5 and 14 days after CFA induction of inflammation. Healthy C57BL/6N mice were studied as controls. Mice underwent PET/CT on consecutive days with [18F]FDG, i.v. Al[18F]F-NOTA-D10CM, and i.d. Al[18F]F-NOTA-D10CM. After the last imaging, Al[18F]F-NOTA-D10CM was i.v. injected for an ex vivo biodistribution study and autoradiography of inflamed tissues. Blood plasma samples were analyzed using high-performance liquid chromatography. To evaluate the specificity of Al[18F]F-NOTA-D10CM binding, an in vitro competitive displacement study was performed on inflamed tissue sections using autoradiography. CD206 expression was assessed by immunohistochemical staining. RESULTS: Compared with WT mice, the uptake of Al[18F]F-NOTA-D10CM was significantly lower in several CD206-/- KO mice tissues, including liver (SUV 8.21 ± 2.51 vs. 1.06 ± 0.16, P < 0.001) and bone marrow (SUV 1.63 ± 0.37 vs. 0.22 ± 0.05, P < 0.0001). The uptake of i.v. injected Al[18F]F-NOTA-D10CM was significantly higher in inflamed ankle joint (SUV 0.48 ± 0.13 vs. 0.18 ± 0.05, P < 0.0001) and inflamed foot pad skin (SUV 0.41 ± 0.10 vs. 0.04 ± 0.01, P < 0.0001) than in the corresponding tissues in healthy mice. The i.d.-injected Al[18F]F-NOTA-D10CM revealed differences between CFA-induced lymph node activation and lymph nodes in healthy mice. Ex vivo γ-counting, autoradiography, and immunohistochemistry supported the results, and a decrease of ~ 80% in the binding of Al[18F]F-NOTA-D10CM in the displacement study with excess NOTA-D10CM confirmed that tracer binding was specific. At 60 min after i.v. injection, an average 96.70% of plasma radioactivity was derived from intact Al[18F]F-NOTA-D10CM, indicating good in vivo stability. The uptake of Al[18F]F-NOTA-D10CM into inflamed tissues was positively associated with the area percentage of CD206-positive staining. CONCLUSION: The uptake of mannosylated dextran derivative Al[18F]F-NOTA-D10CM correlated with CD206 expression and the tracer appears promising for inflammation imaging.


Subject(s)
Dextrans , Fluorine Radioisotopes , Lectins, C-Type , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , Animals , Mice , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Tissue Distribution , Dextrans/chemistry , Mannose/chemistry , Positron Emission Tomography Computed Tomography , Mice, Inbred C57BL , Macrophages/metabolism , Isotope Labeling , Heterocyclic Compounds, 1-Ring
16.
Eur J Nucl Med Mol Imaging ; 51(7): 2137-2150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38286936

ABSTRACT

AIM: In addition to significant improvements in sensitivity and image quality, the recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has enabled dynamic whole-body imaging for the first time. We aim herein to determine an appropriate acquisition time range for static low-dose [18F]PSMA-1007 PET imaging and to investigate the whole-body pharmacokinetics of [18F]PSMA-1007 by dynamic PET with the LAFOV Biograph Vision Quadra PET/CT in a group of prostate cancer patients. METHODOLOGY: In total, 38 prostate cancer patients were enrolled in the analysis for staging or re-staging purposes. Thirty-four patients underwent dynamic whole-body PET/CT (60 min) followed by static whole-body PET/CT and four patients underwent static whole-body PET/CT only. The activity applied was 2 MBq/kg [18F]PSMA-1007. The static PET images of 10-min duration (PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were made between the different reconstructed scan times in terms of lesion detection rate and image quality based on SUV calculations of tumor lesions and the spleen, which served as background. Analysis of the dynamic PET/CT data was based on a two-tissue compartment model using an image-derived input function obtained from the descending aorta. RESULTS: Analysis of lesion detection rate showed no significant differences when reducing PET acquisitions from 10 up to 5 min. In particular, a total of 169 lesions were counted with PET-10, and the corresponding lesion detection rates (95% CI for the 90% quantile of the differences in tumor lesions) for shorter acquisitions were 100% (169/169) for PET-8 (95% CI: 0-0), 98.8% (167/169) for PET-6 (95% CI: 0-1), 95.9% (162/169) for PET-5 (95% CI: 0-3), 91.7% (155/169) for PET-4 (95% CI: 1-2), and 85.2% (144/169) for PET-2 (95% CI: 1-6). With the exception of PET-2, the differences observed between PET-10 and the other shorter acquisition protocols would have no impact on any patient in terms of clinical management. Objective evaluation of PET/CT image quality showed no significant decrease in tumor-to-background ratio (TBR) with shorter acquisition times, despite a gradual decrease in signal-to-noise ratio (SNR) in the spleen. Whole-body quantitative [18F]PSMA-1007 pharmacokinetic analysis acquired with full dynamic PET scanning was feasible in all patients. Two-tissue compartment modeling revealed significantly higher values for the parameter k3 in tumor lesions and parotid gland compared to liver and spleen, reflecting a higher specific tracer binding to the PSMA molecule and internalization rate in these tissues, a finding also supported by the respective time-activity curves. Furthermore, correlation analysis demonstrated a significantly strong positive correlation (r = 0.72) between SUV and k3 in tumor lesions. CONCLUSIONS: In prostate cancer, low-dose (2 MBq/kg) [18F]PSMA-1007 LAFOV PET/CT can reduce static scan time by 50% without significantly compromising lesion detection rate and objective image quality. In addition, dynamic PET can elucidate molecular pathways related to the physiology of [18F]PSMA-1007 in both tumor lesions and normal organs at the whole-body level. These findings unfold many of the potentials of the new LAFOV PET/CT technology in the field of PSMA-based diagnosis and theranostics of prostate cancer.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Whole Body Imaging , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Aged , Middle Aged , Niacinamide/analogs & derivatives , Niacinamide/pharmacokinetics , Oligopeptides/pharmacokinetics , Fluorine Radioisotopes/pharmacokinetics , Aged, 80 and over , Radiation Dosage , Radiopharmaceuticals/pharmacokinetics
17.
Eur J Nucl Med Mol Imaging ; 51(6): 1753-1762, 2024 May.
Article in English | MEDLINE | ID: mdl-38212531

ABSTRACT

PURPOSE: This is a first-in-human study to evaluate the radiation dosimetry of a new prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical, [18F]AlF-P16-093, and also initial investigation of its ability to detect PSMA-positive tumors using PET scans in a cohort of prostate cancer (PCa) patients. METHODS: The [18F]AlF-P16-093 was automatically synthesized with a GE TRACERlab. A total of 23 patients with histopathologically proven PCa were prospectively enrolled. Dosimetry and biodistribution study investigations were carried out on a subset of six (6) PCa patients, involving multiple time-point scanning. The mean absorbed doses were estimated with PMOD and OLINDA software. RESULTS: [18F]AlF-P16-093 was successfully synthesized, and radiochemical purity was > 95%, and average labeling yield was 36.5 ± 8.3% (decay correction, n = 12). The highest tracer uptake was observed in the kidneys, spleen, and liver, contributing to an effective dose of 16.8 ± 1.3 µSv/MBq, which was ~ 30% lower than that of [68Ga]Ga-P16-093. All subjects tolerated the PET examination well, and no reportable side-effects were observed. The PSMA-positive tumors displayed rapid uptake, and they were all detectable within 10 min, and no additional lesions were observed in the following multi-time points scanning. Each patient had at least one detectable tumor lesion, and a total of 356 tumor lesions were observed, including intraprostatic, lymph node metastases, bone metastases, and other soft tissue metastases. CONCLUSIONS: We report herein a streamlined method for high yield synthesis of [18F]AlF-P16-093. Preliminary study in PCa patients has demonstrated its safety and acceptable radiation dosimetry. The initial diagnostic study indicated that [18F]AlF-P16-093 PET/CT is efficacious and potentially useful for a widespread application in the diagnosis of PCa patients.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Radiometry , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Glutamate Carboxypeptidase II/metabolism , Middle Aged , Antigens, Surface/metabolism , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes/chemistry , Aged, 80 and over , Positron Emission Tomography Computed Tomography
18.
Eur J Nucl Med Mol Imaging ; 51(8): 2193-2203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38441662

ABSTRACT

PURPOSE: Histone deacetylase 6 (HDAC6) has emerged as a therapeutic target for neurodegenerative diseases such as Alzheimer's disease. Noninvasive imaging of HDAC6 in the brain by positron emission tomography (PET) would accelerate research into its roles in these diseases. We recently discovered an 18F-labeled derivative of the selective HDAC6 inhibitor SW-100 ([18F]FSW-100) as a potential candidate for brain HDAC6 radioligand. As a mandatory step prior to clinical translation, we performed preclinical validation of [18F]FSW-100. METHODS: Process validation of [18F]FSW-100 radiosynthesis for clinical use and assessment of preclinical toxicity and radiation dosimetry estimated from mouse distribution data were performed. In vitro selectivity of FSW-100 for 28 common receptors in the brain and HDAC isoforms was characterized. [18F]FSW-100 PET imaging was performed in non-human primates in a conscious state to estimate the feasibility of HDAC6 imaging in humans. RESULTS: Three consecutive validation runs of the automated radiosynthesis gave [18F]FSW-100 injections with radiochemical yields of 12%, and the injections conformed to specified quality control criteria for batch release. No acute toxicity was observed for non-radiolabeled FSW-100 or radioactivity decayed [18F]FSW-100 injection, and the former was negative in the Ames test. The whole-body effective dose estimated from biodistribution in mice was within the range of that of previously reported 18F-radioligands in humans. In vitro selectivity against common receptors and other HDAC isoforms was confirmed. [18F]FSW-100 demonstrated good penetration in monkey brain, and in vivo blocking studies suggested that the uptake was specific. CONCLUSION: These results support the clinical utility of [18F]FSW-100 for in vivo imaging of HDAC6 in the brain.


Subject(s)
Brain , Histone Deacetylase 6 , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Mice , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Brain/diagnostic imaging , Brain/metabolism , Ligands , Neurodegenerative Diseases/diagnostic imaging , Male , Humans , Tissue Distribution , Radiochemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes
19.
Eur J Nucl Med Mol Imaging ; 51(8): 2444-2457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38480552

ABSTRACT

PURPOSE: The cluster of differentiation (CD70) is a potential biomarker of clear cell renal cell carcinoma (ccRCC). This study aims to develop CD70-targeted immuno-positron emission tomography/computed tomography (immunoPET/CT) imaging tracers and explore the diagnostic value in preclinical studies and the potential value in detecting metastases in ccRCC patients. METHODS: Four novel CD70-specific single-domain antibodies (sdAbs) were produced and labelled with 18F by the aluminium fluoride restrained complexing agent (AlF-RESCA) method to develop radiotracers. The visualisation properties of the tracers were evaluated in a subcutaneous ccRCC patient-derived xenograft (PDX) model. In a registered prospective clinical trial (NCT06148220), six patients with pathologically confirmed RCC were included and underwent immunoPET/CT examination exploiting one of the developed tracers (i.e., [18F]RCCB6). RESULTS: We engineered four sdAbs (His-tagged RCCB3 and RCCB6, His-tag-free RB3 and RB6) specifically targeting recombinant human CD70 without cross-reactivity to murine CD70. ImmunoPET/CT imaging with [18F]RCCB3 and [18F]RCCB6 demonstrated a high tumour-to-background ratio in a subcutaneous ccRCC PDX model, with the latter showing better diagnostic potential supported by higher tumour uptake and lower bone accumulation. In comparison, [18F]RB6, developed by sequence optimisation, has significantly lower kidney accumulation than that of [18F]RCCB6. In a pilot translational study, [18F]RCCB6 immunoPET/CT displayed ccRCC metastases in multiple patients and demonstrated improved imaging contrast and diagnostic value than 18F-FDG PET/CT in a patient with ccRCC. CONCLUSION: The work successfully developed a series of CD70-targeted immunoPET/CT imaging tracers. Of them, [18F]RCCB6 clearly and specifically identified inoculated ccRCCs in preclinical studies. Clinical translation of [18F]RCCB6 suggests potential for identifying recurrence and/or metastasis in ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Carcinoma, Renal Cell/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Kidney Neoplasms/diagnostic imaging , Female , Male , Fluorine Radioisotopes/chemistry , Animals , Mice , Middle Aged , Single-Domain Antibodies , Aged , Cell Line, Tumor , Tissue Distribution
20.
Mol Pharm ; 21(4): 2034-2042, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38456403

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis and nonspecific symptoms and progresses rapidly, is the most common pancreatic cancer type. Inhibitors targeting KRAS G12D and G12C mutations have been pivotal in PDAC treatment. Cancer cells with different KRAS mutations exhibit various degrees of glutamine dependency; in particular, cells with KRAS G12D mutations exhibit increased glutamine uptake. (2S,4R)-4-[18F]FGln has recently been developed for clinical cancer diagnosis and tumor cell metabolism analysis. Thus, we verified the heterogeneity of glutamine dependency in PDAC models with different KRAS mutations by a visual and noninvasive method with (2S,4R)-4-[18F]FGln. Two tumor-bearing mouse models (bearing the KRAS G12D or G12C mutation) were injected with (2S,4R)-4-[18F]FGln, and positron emission tomography (PET) imaging features and biodistribution were observed and analyzed. The SUVmax in the regions of interest (ROI) was significantly higher in PANC-1 (G12D) tumors than in MIA PaCa-2 (G12C) tumors. Biodistribution analysis revealed higher tumor accumulation of (2S,4R)-4-[18F]FGln and other metrics, such as T/M and T/B, in the PANC-1 mouse models compared to those in the MIAPaCa-2 mouse models. In conclusion, PDAC cells with the KRAS G12D and G12C mutations exhibit various degrees of (2S,4R)-4-[18F]FGln uptake, indicating that (2S,4R)-4-[18F]FGln might be applied to detect KRAS G12C and G12D mutations and provide treatment guidance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/genetics , Glutamine/metabolism , Glutamine/pharmacology , Mutation , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tissue Distribution , Fluorine Radioisotopes/chemistry , Fluorine Radioisotopes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL