Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.374
Filter
Add more filters

Publication year range
1.
Mol Cell ; 81(11): 2445-2459.e13, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33905682

ABSTRACT

How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting an oligomeric substrate. Cryoelectron microscopy (cryo-EM) structures show that, to bind the tetrameric substrate fructose-1,6-bisphosphatase (Fbp1), two minimally functional GID E3s assemble into the 20-protein Chelator-GIDSR4, which resembles an organometallic supramolecular chelate. The Chelator-GIDSR4 assembly avidly binds multiple Fbp1 degrons so that multiple Fbp1 protomers are simultaneously ubiquitylated at lysines near the allosteric and substrate binding sites. Importantly, key structural and biochemical features, including capacity for supramolecular assembly, are preserved in the human ortholog, the CTLH E3. Based on our integrative structural, biochemical, and cell biological data, we propose that higher-order E3 ligase assembly generally enables multipronged targeting, capable of simultaneously incapacitating multiple protomers and functionalities of oligomeric substrates.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Cell Adhesion Molecules/chemistry , Fructose-Bisphosphatase/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Multienzyme Complexes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Binding Sites , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cryoelectron Microscopy , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Gene Expression , Gluconeogenesis/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , K562 Cells , Kinetics , Models, Molecular , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sf9 Cells , Spodoptera , Structural Homology, Protein , Substrate Specificity , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
2.
Cell ; 154(1): 134-45, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23791384

ABSTRACT

Dysfunction of protein quality control contributes to the cellular pathology of polyglutamine (polyQ) expansion diseases and other neurodegenerative disorders associated with aggregate deposition. Here we analyzed how polyQ aggregation interferes with the clearance of misfolded proteins by the ubiquitin-proteasome system (UPS). We show in a yeast model that polyQ-expanded proteins inhibit the UPS-mediated degradation of misfolded cytosolic carboxypeptidase Y(∗) fused to green fluorescent protein (GFP) (CG(∗)) without blocking ubiquitylation or proteasome function. Quantitative proteomic analysis reveals that the polyQ aggregates sequester the low-abundant and essential Hsp40 chaperone Sis1p. Overexpression of Sis1p restores CG(∗) degradation. Surprisingly, we find that Sis1p, and its homolog DnaJB1 in mammalian cells, mediates the delivery of misfolded proteins into the nucleus for proteasomal degradation. Sis1p shuttles between cytosol and nucleus, and its cellular level limits the capacity of this quality control pathway. Upon depletion of Sis1p by polyQ aggregation, misfolded proteins are barred from entering the nucleus and form cytoplasmic inclusions.


Subject(s)
Peptides/metabolism , Protein Folding , Proteolysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Cell Nucleus/metabolism , Cytosol/metabolism , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/metabolism , HEK293 Cells , HSP40 Heat-Shock Proteins/metabolism , HSP72 Heat-Shock Proteins/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
3.
Plant Cell Physiol ; 65(5): 737-747, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38305687

ABSTRACT

Various chloroplast proteins are activated/deactivated during the light/dark cycle via the redox regulation system. Although the photosynthetic electron transport chain provides reducing power to redox-sensitive proteins via the ferredoxin (Fd)/thioredoxin (Trx) pathway for their enzymatic activity control, how the redox states of individual proteins are linked to electron transport efficiency remains uncharacterized. Here we addressed this subject with a focus on the photosynthetic induction phase. We used Arabidopsis plants, in which the amount of Fd-Trx reductase (FTR), a core component in the Fd/Trx pathway, was genetically altered. Several chloroplast proteins showed different redox shift responses toward low- and high-light treatments. The light-dependent reduction of Calvin-Benson cycle enzymes fructose 1,6-bisphosphatase (FBPase) and sedoheptulose 1,7-bisphosphatase (SBPase) was partially impaired in the FTR-knockdown ftrb mutant. Simultaneous analyses of chlorophyll fluorescence and P700 absorbance change indicated that the induction of the electron transport reactions was delayed in the ftrb mutant. FTR overexpression also mildly affected the reduction patterns of FBPase and SBPase under high-light conditions, which were accompanied by the modification of electron transport properties. Accordingly, the redox states of FBPase and SBPase were linearly correlated with electron transport rates. In contrast, ATP synthase was highly reduced even when electron transport reactions were not fully induced. Furthermore, the redox response of proton gradient regulation 5-like photosynthetic phenotype1 (PGRL1; a protein involved in cyclic electron transport) did not correlate with electron transport rates. Our results provide insights into the working dynamics of the redox regulation system and their differential associations with photosynthetic electron transport efficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oxidation-Reduction , Photosynthesis , Electron Transport , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Light , Chloroplasts/metabolism , Chlorophyll/metabolism , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Iron-Sulfur Proteins , Phosphoric Monoester Hydrolases
4.
Physiol Plant ; 176(3): e14375, 2024.
Article in English | MEDLINE | ID: mdl-38837224

ABSTRACT

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Plant Diseases , Nicotiana/virology , Nicotiana/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Salicylic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tobamovirus/physiology , Tobamovirus/genetics , Plants, Genetically Modified
5.
Mol Biol Rep ; 51(1): 78, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183507

ABSTRACT

BACKGROUND: Aberrant DNA methylation has been implicated in the development of gastric cancer (GC). In our previous study, we demonstrated that fructose-1,6-bisphosphatase-2 (FBP2), an enzyme that suppresses cell glycolysis and growth, is downregulated in GC due to promoter methylation. However, the precise mechanism underlying this process remains unknown. Thus, this study aimed to elucidate the mechanisms involved in FBP2 promoter hypermethylation. METHODS AND RESULTS: The methylation levels in GC and normal adjacent tissues were quantified using methylation-specific polymerase chain reaction. FBP2 promoter was frequently hypermethylated in primary GC tissues compared to adjacent normal tissues. To explore the functional consequences of this hypermethylation, we employed small interfering RNA-mediated knockdown of DNA methyltransferase 3a (DNMT3a) in GC cells. FBP2 expression increased following DNMT3a knockdown, suggesting that reduced methylation of the FBP2 promoter contributed to this upregulation. To further investigate this interaction, chromatin immunoprecipitation assays were conducted. The results confirmed an interaction between DNMT3a and the FBP2 promoter region, providing evidence that DNMT3a-mediated hypermethylation of the FBP2 promoter promotes GC progression. CONCLUSIONS: This study provides evidence that DNMT3a is involved in the hypermethylation of the FBP2 promoter and regulation of GC cell metabolism. Hypermethylation of the FBP2 promoter may be a promising prognostic biomarker in GC.


Subject(s)
DNA Methylation , Stomach Neoplasms , Humans , Carcinogenesis , DNA Methylation/genetics , DNA Methyltransferase 3A , DNA Modification Methylases , Fructose , Fructose-Bisphosphatase/genetics , Promoter Regions, Genetic/genetics , Stomach Neoplasms/genetics
6.
Mol Cell ; 62(3): 359-370, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27153534

ABSTRACT

Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Glucose/metabolism , Glycolysis , Intracellular Signaling Peptides and Proteins/metabolism , Pentose Phosphate Pathway , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Amino Acids/deficiency , Amino Acids/metabolism , Animals , Autophagy-Related Protein-1 Homolog/deficiency , Autophagy-Related Protein-1 Homolog/genetics , Biomarkers, Tumor/metabolism , Cell Death , DNA-Binding Proteins/metabolism , Female , Fructose-Bisphosphatase/metabolism , Genotype , HCT116 Cells , Hexokinase/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , Male , Mice, Knockout , Phenotype , Phosphofructokinase-1/metabolism , Phosphopyruvate Hydratase/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors , Transfection , Tumor Suppressor Proteins/metabolism
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928505

ABSTRACT

Nannochloropsis gaditana, a microalga known for its photosynthetic efficiency, serves as a cell factory, producing valuable biomolecules such as proteins, lipids, and pigments. These components make it an ideal candidate for biofuel production and pharmaceutical applications. In this study, we genetically engineered N. gaditana to overexpress the enzyme fructose-1,6-bisphosphatase (cyFBPase) using the Hsp promoter, aiming to enhance sugar metabolism and biomass accumulation. The modified algal strain, termed NgFBP, exhibited a 1.34-fold increase in cyFBPase activity under photoautotrophic conditions. This modification led to a doubling of biomass production and an increase in eicosapentaenoic acid (EPA) content in fatty acids to 20.78-23.08%. Additionally, the genetic alteration activated the pathways related to glycine, protoporphyrin, thioglucosides, pantothenic acid, CoA, and glycerophospholipids. This shift in carbon allocation towards chloroplast development significantly enhanced photosynthesis and growth. The outcomes of this study not only improve our understanding of photosynthesis and carbon allocation in N. gaditana but also suggest new biotechnological methods to optimize biomass yield and compound production in microalgae.


Subject(s)
Biomass , Fructose-Bisphosphatase , Metabolomics , Microalgae , Photosynthesis , Stramenopiles , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Stramenopiles/genetics , Stramenopiles/metabolism , Stramenopiles/growth & development , Stramenopiles/enzymology , Microalgae/metabolism , Microalgae/genetics , Microalgae/growth & development , Microalgae/enzymology , Metabolomics/methods , Cytosol/metabolism
8.
Am J Physiol Cell Physiol ; 325(5): C1354-C1368, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37781737

ABSTRACT

Glomerular angiogenesis is a characteristic feature of diabetic nephropathy (DN). Enhanced glycolysis plays a crucial role in angiogenesis. The present study was designed to investigate the role of glycolysis in glomerular endothelial cells (GECs) in a mouse model of DN. Mouse renal cortex and isolated glomerular cells were collected for single-cell and RNA sequencing. Cultured GECs were exposed to high glucose in the presence (proangiogenic) and absence of a vascular sprouting regimen. MicroRNA-590-3p was delivered by lipofectamine in vivo and in vitro. In the present study, a subgroup of GECs with proangiogenic features was identified in diabetic kidneys by using sequencing analyses. In cultured proangiogenic GECs, high glucose increased glycolysis and phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) protein expression, which were inhibited by overexpressing miRNA-590-3p. Mimics of miRNA-590-3p also increased receptor for sphingosine 1-phosphate (S1pR1) expression, an angiogenesis regulator, in proangiogenic GECs challenged with high glucose. Inhibition of PFKFB3 by pharmacological and genetic approaches upregulated S1pR1 protein in vitro. Mimics of miRNA-590-3p significantly reduced migration and angiogenic potential in proangiogenic GECs challenged with high glucose. Ten-week-old type 2 diabetic mice had elevated urinary albumin levels, reduced renal cortex miRNA-590-3p expression, and disarrangement of glomerular endothelial cell fenestration. Overexpressing miRNA-590-3p via perirenal adipose tissue injection restored endothelial cell fenestration and reduced urinary albumin levels in diabetic mice. Therefore, the present study identifies a subgroup of GECs with proangiogenic features in mice with DN. Local administration of miRNA-590-3p mimics reduces glycolytic rate and upregulates S1pR1 protein expression in proangiogenic GECs. The protective effects of miRNA-590-3p provide therapeutic potential in DN treatment.NEW & NOTEWORTHY Proangiogenetic glomerular endothelial cells (GECs) are activated in diabetic nephropathy. High glucose upregulates glycolytic enzyme phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) in proangiogenetic cells. PFKFB3 protects the glomerular filtration barrier by targeting endothelial S1pR1. MiRNA-590-3p restores endothelial cell function and mitigates diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , MicroRNAs , Mice , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/pharmacology , Phosphofructokinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Phosphofructokinase-1/metabolism , Glucose/metabolism , MicroRNAs/metabolism , Albumins/metabolism , Albumins/pharmacology , Glycolysis
9.
Arch Biochem Biophys ; 742: 109619, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37142076

ABSTRACT

Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive disorder characterized by impaired gluconeogenesis caused by mutations in the fructose-1,6-bisphosphatase 1 (FBP1) gene. The molecular mechanisms underlying FBPase deficiency caused by FBP1 mutations require investigation. Herein, we report the case of a Chinese boy with FBPase deficiency who presented with hypoglycemia, ketonuria, metabolic acidosis, and repeated episodes of generalized seizures that progressed to epileptic encephalopathy. Whole-exome sequencing revealed compound heterozygous variants, c.761 A > G (H254R) and c.962C > T (S321F), in FBP1. The variants, especially the novel H254R, reduced protein stability and enzymatic activity in patient-derived leukocytes and transfected HepG2 and U251 cells. Mutant FBP1 undergoes enhanced ubiquitination and proteasomal degradation. NEDD4-2 was identified as an E3 ligase for FBP1 ubiquitination in transfected cells and the liver and brain of Nedd4-2 knockout mice. The H254R mutant FBP1 interacted with NEDD4-2 at significantly higher levels than the wild-type control. Our study identified a novel H254R variant of FBP1 underlying FBPase deficiency and elucidated the molecular mechanism underlying the enhanced NEDD4-2-mediated ubiquitination and proteasomal degradation of mutant FBP1.


Subject(s)
Fructose-1,6-Diphosphatase Deficiency , Fructose-Bisphosphatase , Animals , Mice , Fructose , Fructose-1,6-Diphosphatase Deficiency/genetics , Fructose-Bisphosphatase/genetics , Mutation , Ubiquitination , Humans , Male , Child
10.
Eur Radiol ; 33(5): 3396-3406, 2023 May.
Article in English | MEDLINE | ID: mdl-36692596

ABSTRACT

OBJECTIVES: To determine whether fructose-1,6-bisphosphatase 1 (FBP1) expression is associated with [18F]FDG PET uptake and postsurgical outcomes in patients with mesial temporal lobe epilepsy (mTLE) and to investigate whether the molecular mechanism involving gamma-aminobutyric acid type A receptor (GABAAR), glucose transporter-3 (GLUT-3), and hexokinase-II (HK-II). METHODS: Forty-three patients with mTLE underwent [18F]FDG PET/CT. Patients were divided into Ia (Engel class Ia) and non-Ia (Engel class Ib-IV) groups according to more than 1 year of follow-up after surgery. The maximum standard uptake value (SUVmax) and asymmetry index (AI) of hippocampus were measured. The relationship among the SUVmax, AI, prognosis, and FBP1 expression was analyzed. A lithium-pilocarpine acute mTLE rat model was subjected to [18F]FDG micro-PET/CT. Hippocampal SUVmax and FBP1, GABAAR, GLUT-3, and HK-II expression were analyzed. RESULTS: SUVmax was higher in the Ia group than in the non-Ia group (7.31 ± 0.97 vs. 6.56 ± 0.96, p < 0.05) and FBP1 expression was lower in the Ia group (0.24 ± 0.03 vs. 0.27 ± 0.03, p < 0.01). FBP1 expression was negatively associated with SUVmax and AI (p < 0.01). In mTLE rats, the hippocampal FBP1 increased (0.26 ± 0.00 vs. 0.17 ± 0.00, p < 0.0001), and SUVmax, GLUT-3 and GABAAR levels decreased significantly (0.73 ± 0.12 vs. 1.46 ± 0.23, 0.20 ± 0.01 vs. 0.32 ± 0.05, 0.26 ± 0.02 vs. 0.35 ± 0.02, p < 0.05); no significant difference in HK-II levels was observed. In mTLE patients and rats, FBP1 negatively correlated with SUVmax and GLUT-3 and GABAAR levels (p < 0.05). CONCLUSION: FBP1 expression was inversely associated with SUVmax in mTLE, which might inhibit [18F]FDG uptake by regulating GLUT-3 expression. High FBP1 expression was indicative of low GABAAR expression and poor prognosis. KEY POINTS: • It is of paramount importance to explore the deep pathophysiological mechanisms underlying the pathogenesis of mesial temporal lobe epilepsy and find potential therapeutic targets. • [18F]FDG PET has demonstrated low metabolism in epileptic regions during the interictal period, and hypometabolism may be associated with prognosis, but the pathomechanism of this association remains uncertain. • Our results support the possibility that FBP1 might be simultaneously involved in the regulation of glucose metabolism levels and the excitability of neurons and suggest that targeting FBP1 may be a viable strategy in the diagnosis and treatment of mesial temporal lobe epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , Fluorodeoxyglucose F18 , Animals , Rats , Fluorodeoxyglucose F18/metabolism , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Fructose-Bisphosphatase/metabolism , Positron Emission Tomography Computed Tomography , Prognosis , Positron-Emission Tomography/methods , gamma-Aminobutyric Acid
11.
Nucleic Acids Res ; 49(17): 9809-9820, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34486060

ABSTRACT

Transcriptional regulation, a pivotal biological process by which cells adapt to environmental fluctuations, is achieved by the binding of transcription factors to target sequences in a sequence-specific manner. However, how transcription factors recognize the correct target from amongst the numerous candidates in a genome has not been fully elucidated. We here show that, in the fission-yeast fbp1 gene, when transcription factors bind to target sequences in close proximity, their binding is reciprocally stabilized, thereby integrating distinct signal transduction pathways. The fbp1 gene is massively induced upon glucose starvation by the activation of two transcription factors, Atf1 and Rst2, mediated via distinct signal transduction pathways. Atf1 and Rst2 bind to the upstream-activating sequence 1 region, carrying two binding sites located 45 bp apart. Their binding is reciprocally stabilized due to the close proximity of the two target sites, which destabilizes the independent binding of Atf1 or Rst2. Tup11/12 (Tup-family co-repressors) suppress independent binding. These data demonstrate a previously unappreciated mechanism by which two transcription-factor binding sites, in close proximity, integrate two independent-signal pathways, thereby behaving as a hub for signal integration.


Subject(s)
Activating Transcription Factor 1/metabolism , Fructose-Bisphosphatase/genetics , Gene Expression Regulation, Fungal , Phosphoproteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Transcription Factors/metabolism , Transcriptional Activation , Activating Transcription Factor 1/physiology , Binding Sites , Chromatin/metabolism , Fructose-Bisphosphatase/biosynthesis , Phosphoproteins/physiology , Protein Binding , Repressor Proteins/physiology , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/physiology , Signal Transduction , Transcription Factors/physiology
12.
Proc Natl Acad Sci U S A ; 117(51): 32806-32815, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288721

ABSTRACT

The yeast Saccharomyces cerevisiae is a powerful model system for systems-wide biology screens and large-scale proteomics methods. Nearly complete proteomics coverage has been achieved owing to advances in mass spectrometry. However, it remains challenging to scale this technology for rapid and high-throughput analysis of the yeast proteome to investigate biological pathways on a global scale. Here we describe a systems biology workflow employing plate-based sample preparation and rapid, single-run, data-independent mass spectrometry analysis (DIA). Our approach is straightforward, easy to implement, and enables quantitative profiling and comparisons of hundreds of nearly complete yeast proteomes in only a few days. We evaluate its capability by characterizing changes in the yeast proteome in response to environmental perturbations, identifying distinct responses to each of them and providing a comprehensive resource of these responses. Apart from rapidly recapitulating previously observed responses, we characterized carbon source-dependent regulation of the GID E3 ligase, an important regulator of cellular metabolism during the switch between gluconeogenic and glycolytic growth conditions. This unveiled regulatory targets of the GID ligase during a metabolic switch. Our comprehensive yeast system readout pinpointed effects of a single deletion or point mutation in the GID complex on the global proteome, allowing the identification and validation of targets of the GID E3 ligase. Moreover, this approach allowed the identification of targets from multiple cellular pathways that display distinct patterns of regulation. Although developed in yeast, rapid whole-proteome-based readouts can serve as comprehensive systems-level assays in all cellular systems.


Subject(s)
Mass Spectrometry/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligases/metabolism , Carbon/metabolism , Culture Media , Fructose-Bisphosphatase/metabolism , Glucose/metabolism , Malate Dehydrogenase/metabolism , Point Mutation , Pyruvate Decarboxylase/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Stress, Physiological , Systems Biology/methods , Ubiquitin-Protein Ligases/genetics , Workflow
13.
Anticancer Drugs ; 33(1): e198-e206, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34387592

ABSTRACT

Growing evidence has shown that aerobic glycolysis, as a hallmark of cancer cells, plays a crucial role in cervical cancer. The aim of the study is to uncover whether fructose-1,6-bisphosphatase 2 (FBP2) is involved in cervical cancer progression via the aerobic glycolysis pathway. FBP2 levels were determined by quantitative PCR (qPCR) and western blotting. Cell growth viability and apoptosis were tested by cell counting kit-8 (CCK-8) and flow cytometry assays. Immunoprecipitation assay was applied for the detection of the FBP2 effect on pyruvate kinase isozyme type M2 (PKM2) ubiquitination. FBP2 level was decreased in cervical cancer, which is closely linked to shorter overall survival. FBP2 decreased cell growth and aerobic glycolysis and increased cell apoptosis, as well as decreased PKM2 expression and increased its ubiquitination level. The above-mentioned roles of FBP2 were weakened followed by PKM2 overexpression. FBP2 inhibited cervical cancer cell growth via inhibiting aerobic glycolysis by inducing PKM2 ubiquitination.


Subject(s)
Fructose-Bisphosphatase/genetics , Pyruvate Kinase/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Warburg Effect, Oncologic , Apoptosis/physiology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Neoplasm Staging , Ubiquitination/physiology
14.
J Inherit Metab Dis ; 45(2): 215-222, 2022 03.
Article in English | MEDLINE | ID: mdl-34687058

ABSTRACT

Liver disease, occurring during pediatric or adult age, is often of undetermined cause. Some cases are probably related to undiagnosed inherited metabolic disorders. Hepatic disorders associated with fructose-1,6-bisphosphatase deficiency, a gluconeogenesis defect, are not reported in the literature. These symptoms are mainly described during acute crises, and many reports do not mention them because hypoglycemia and hyperlactatemia are more frequently in the forefront. Herein, the liver manifestations of 18 patients affected with fructose-1,6-bisphosphatase deficiency are described and the corresponding literature is reviewed. Interestingly, all 18 patients had liver abnormalities either during follow-up (hepatomegaly [n = 8/18], elevation of transaminases [n = 6/15], bright liver [n = 7/11]) or during acute crises (hepatomegaly [n = 10/17], elevation of transaminases [n = 13/16], acute liver failure [n = 6/14], bright liver [n = 4/14]). Initial reports described cases of liver steatosis, when liver biopsy was necessary to confirm the diagnosis by an enzymatic study. There is no clear pathophysiological basis for this fatty liver disease but we postulate that endoplasmic reticulum stress and de novo lipogenesis activation could be key factors, as observed in FBP1 knockout mice. Liver steatosis may expose patients to severe long-term liver complications. As hypoglycemia becomes less frequent with age, most adult patients are no longer monitored by hepatologist. Signs of fructose-1,6-bisphosphatase deficiency may be subtle and can be missed in childhood. We suggest that fructose-1,6-bisphosphatase deficiency should be considered as an etiology of hepatic steatosis, and a liver monitoring protocol should be set up for these patients, during lifelong follow-up.


Subject(s)
Fatty Liver , Fructose-1,6-Diphosphatase Deficiency , Hypoglycemia , Animals , Follow-Up Studies , Fructose , Fructose-1,6-Diphosphatase Deficiency/complications , Fructose-1,6-Diphosphatase Deficiency/diagnosis , Fructose-Bisphosphatase/metabolism , Hepatomegaly , Humans , Hypoglycemia/complications , Liver/metabolism , Mice , Transaminases
15.
Pathol Int ; 72(3): 176-186, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35147255

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The spheroid colony formation assay is a useful method to identify cancer stem cells (CSCs). Using the DLD-1 and WiDr CRC cell lines, we performed microarray analyses of spheroid body-forming and parental cells and demonstrated that aldolase, fructose-bisphosphate C (ALDOC) was overexpressed in the spheroid body-forming cells of both lines. Cells transfected with small interfering RNA against ALDOC demonstrated lower proliferation, migration, and invasion compared with negative control cells. Both the number and size of spheres produced by the CRC cells were significantly reduced by ALDOC knockdown. Additionally, inhibition of ALDOC reduced lactate production. Immunohistochemistry was used to analyze ALDOC protein expression in tissues from 135 CRC patients and revealed that 66 (49%) cases were positive for ALDOC. The ALDOC-positive cases were associated with higher T and M grades and, as determined by Kaplan-Meier analysis, a poorer prognosis. Univariate and multivariate analyses indicated that ALDOC expression was an independent prognostic factor for CRC patients. Furthermore, ALDOC expression was associated with CD44 expression. These results suggest that ALDOC contributes to CRC progression and plays an important role in CSCs derived from CRC.


Subject(s)
Colorectal Neoplasms/etiology , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphate Aldolase/genetics , Spheroids, Cellular/pathology , Cell Line, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Gene Expression Regulation, Neoplastic , Humans , Spheroids, Cellular/metabolism
16.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613872

ABSTRACT

Glucose homeostasis is of critical importance for the survival of organisms. It is under hormonal control and often coordinated by the action of kinases and phosphatases. We have previously shown that CK2 regulates insulin production and secretion in pancreatic ß-cells. In order to shed more light on the CK2-regulated network of glucose homeostasis, in the present study, a qRT-PCR array was carried out with 84 diabetes-associated genes. After inhibition of CK2, fructose-1,6-bisphosphatase 1 (FBP1) showed a significant lower gene expression. Moreover, FBP1 activity was down-regulated. Being a central enzyme of gluconeogenesis, the secretion of glucose was decreased as well. Thus, FBP1 is a new factor in the CK2-regulated network implicated in carbohydrate metabolism control.


Subject(s)
Casein Kinase II , Fructose-Bisphosphatase , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Casein Kinase II/genetics , Casein Kinase II/metabolism , Glucose/metabolism , Gluconeogenesis , Homeostasis
17.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142164

ABSTRACT

A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential therapy of type II diabetes mellitus. To explore the structure-activity relationships (SARs) and the mechanisms of action of these FBPIs, a systematic computational study was performed in the present study, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-QSAR models exhibited good predictive ability with reasonable parameters using comparative molecular field analysis (q2 = 0.709, R2 = 0.979, rpre2 = 0.932) and comparative molecular similarity indices analysis (q2 = 0.716, R2 = 0.978, rpre2 = 0.890). Twelve hit compounds were obtained by virtual screening using the best pharmacophore model in combination with molecular dockings. Three compounds with relatively higher docking scores and better ADME properties were then selected for further studies by docking and MD analyses. The docking results revealed that the amino acid residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified several potential FBPIs by modeling studies and might provide important insights into developing novel FBPIs.


Subject(s)
Diabetes Mellitus, Type 2 , Fructose-Bisphosphatase , Amino Acids , Fructose , Humans , Indoles/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship
18.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232688

ABSTRACT

Acute myeloid leukemia (AML)-the most frequent form of adult blood cancer-is characterized by heterogeneous mechanisms and disease progression. Developing an effective therapeutic strategy that targets metabolic homeostasis and energy production in immature leukemic cells (blasts) is essential for overcoming relapse and improving the prognosis of AML patients with different subtypes. With respect to metabolic regulation, fructose-1,6-bisphosphatase 1 (FBP1) is a gluconeogenic enzyme that is vital to carbohydrate metabolism, since gluconeogenesis is the central pathway for the production of important metabolites and energy necessary to maintain normal cellular activities. Beyond its catalytic activity, FBP1 inhibits aerobic glycolysis-known as the "Warburg effect"-in cancer cells. Importantly, while downregulation of FBP1 is associated with carcinogenesis in major human organs, restoration of FBP1 in cancer cells promotes apoptosis and prevents disease progression in solid tumors. Recently, our large-scale sequencing analyses revealed FBP1 as a novel inducible therapeutic target among 17,757 vitamin-D-responsive genes in MV4-11 or MOLM-14 blasts in vitro, both of which were derived from AML patients with FLT3 mutations. To investigate FBP1's anti-leukemic function in this study, we generated a new AML cell line through lentiviral overexpression of an FBP1 transgene in vitro (named FBP1-MV4-11). Results showed that FBP1-MV4-11 blasts are more prone to apoptosis than MV4-11 blasts. Mechanistically, FBP1-MV4-11 blasts have significantly increased gene and protein expression of P53, as confirmed by the P53 promoter assay in vitro. However, enhanced cell death and reduced proliferation of FBP1-MV4-11 blasts could be reversed by supplementation with post-glycolytic metabolites in vitro. Additionally, FBP1-MV4-11 blasts were found to have impaired mitochondrial homeostasis through reduced cytochrome c oxidase subunit 2 (COX2 or MT-CO2) and upregulated PTEN-induced kinase (PINK1) expressions. In summary, this is the first in vitro evidence that FBP1-altered carbohydrate metabolism and FBP1-activated P53 can initiate leukemic death by activating mitochondrial reprogramming in AML blasts, supporting the clinical potential of FBP1-based therapies for AML-like cancers.


Subject(s)
Carbohydrate Metabolism , Granulocyte Precursor Cells , Leukemia, Myeloid, Acute , Mitochondria , Tumor Suppressor Protein p53 , Apoptosis , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Carbon Dioxide/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Disease Progression , Electron Transport Complex IV/metabolism , Fructose/pharmacology , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Glycolysis , Granulocyte Precursor Cells/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Protein Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Vitamin D/pharmacology , Vitamins/pharmacology , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
19.
J Cell Mol Med ; 25(11): 5001-5014, 2021 06.
Article in English | MEDLINE | ID: mdl-33960626

ABSTRACT

Asthma is a chronic airway disease that causes excessive inflammation, oxidative stress, mucus production and bronchial epithelial cell apoptosis. Fructose-1,6-bisphosphatase (Fbp1) is one of the rate-limiting enzymes in gluconeogenesis and plays a critical role in several cancers. However, its role in inflammatory diseases, such as asthma, is unclear. Here, we examined the expression, function and mechanism of action of Fbp1 in asthma. Gene Expression Omnibus (GEO) data sets revealed that Fbp1 was overexpressed in a murine model of asthma and in interleukin (IL)-4- or IL-13-stimulated bronchial epithelial cells. We confirmed the findings in an animal model as well as Beas-2B and 16HBE cells. In vitro investigations revealed that silencing of Fbp1 reduced apoptosis and the proportion of cells in the G2/M phase, whereas overexpression led to increases. Fbp1 knock-down inhibited oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, whereas Fbp1 overexpression aggravated oxidative stress by suppressingthe Nrf2 pathway. Moreover, the Nrf2 pathway inhibitor ML385 reversed the changes caused by Fbp1 inhibition in Beas-2B and 16HBE cells. Collectively, our data indicate that Fbp1 aggravates oxidative stress-induced apoptosis by suppressing Nrf2 signalling, substantiating its potential as a novel therapeutic target in asthma.


Subject(s)
Asthma/pathology , Fructose-Bisphosphatase/metabolism , Gene Expression Regulation , NF-E2-Related Factor 2/antagonists & inhibitors , Ovalbumin/toxicity , Oxidative Stress , Animals , Asthma/chemically induced , Asthma/metabolism , Female , Fructose-Bisphosphatase/genetics , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
20.
Cancer Sci ; 112(10): 4112-4126, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34363719

ABSTRACT

Evi1 is a transcription factor essential for the development as well as progression of acute myeloid leukemia (AML) and high Evi1 AML is associated with extremely poor clinical outcome. Since targeting metabolic vulnerability is the emerging therapeutic strategy of cancer, we herein investigated a novel therapeutic target of Evi1 by analyzing transcriptomic, epigenetic, and metabolomic profiling of mouse high Evi1 leukemia cells. We revealed that Evi1 overexpression and Evi1-driven leukemic transformation upregulate transcription of gluconeogenesis enzyme Fbp1 and other pentose phosphate enzymes with interaction between Evi1 and the enhancer region of these genes. Metabolome analysis using Evi1-overexpressing leukemia cells uncovered pentose phosphate pathway upregulation by Evi1 overexpression. Suppression of Fbp1 as well as pentose phosphate pathway enzymes by shRNA-mediated knockdown selectively decreased Evi1-driven leukemogenesis in vitro. Moreover, pharmacological or shRNA-mediated Fbp1 inhibition in secondarily transplanted Evi1-overexpressing leukemia mouse significantly decreased leukemia cell burden. Collectively, targeting FBP1 is a promising therapeutic strategy of high Evi1 AML.


Subject(s)
Fructose-Bisphosphatase/metabolism , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/metabolism , MDS1 and EVI1 Complex Locus Protein/metabolism , Pentose Phosphate Pathway , Animals , Disease Models, Animal , Disease Progression , Enhancer Elements, Genetic , Epigenesis, Genetic , Fructose-Bisphosphatase/antagonists & inhibitors , Fructose-Bisphosphatase/genetics , Gene Expression Profiling , Humans , Leukemia, Myeloid, Acute/pathology , Metabolomics , Mice , Mice, Inbred C57BL , Pentose Phosphate Pathway/genetics , RNA, Small Interfering , Tumor Stem Cell Assay , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL