Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Neurosci ; 41(35): 7492-7508, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34244365

ABSTRACT

Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.


Subject(s)
Chronic Pain/physiopathology , Depression/etiology , Endocannabinoids/physiology , Neuralgia/physiopathology , Prefrontal Cortex/physiopathology , Animals , Brain Mapping , Chronic Pain/complications , Chronic Pain/drug therapy , Chronic Pain/psychology , Depression/physiopathology , Feeding Behavior , Female , GABAergic Neurons/chemistry , Gabapentin/therapeutic use , Genes, fos , Hyperalgesia/physiopathology , Hyperalgesia/psychology , Interneurons/chemistry , Magnetic Resonance Imaging , Male , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/psychology , Nociception/physiology , Open Field Test , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/analysis , Sciatic Neuropathy/physiopathology , Sciatic Neuropathy/psychology , Specific Pathogen-Free Organisms , Swimming
2.
Cereb Cortex ; 31(6): 3064-3081, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33570093

ABSTRACT

Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , GABAergic Neurons/metabolism , Inhibition, Psychological , MAP Kinase Kinase 1/metabolism , Parvalbumins/metabolism , Animals , Cerebral Cortex/chemistry , Electroencephalography/methods , Embryonic Development/physiology , GABAergic Neurons/chemistry , Locomotion/physiology , MAP Kinase Kinase 1/analysis , Mice , Organ Culture Techniques , Parvalbumins/analysis , Signal Transduction/physiology
3.
Anesthesiology ; 135(3): 463-481, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34259824

ABSTRACT

BACKGROUND: The γ-aminobutyric acid-mediated (GABAergic) inhibitory system in the brain is critical for regulation of sleep-wake and general anesthesia. The lateral septum contains mainly GABAergic neurons, being cytoarchitectonically divided into the dorsal, intermediate, and ventral parts. This study hypothesized that GABAergic neurons of the lateral septum participate in the control of wakefulness and promote recovery from anesthesia. METHODS: By employing fiber photometry, chemogenetic and optogenetic neuronal manipulations, anterograde tracing, in vivo electrophysiology, and electroencephalogram/electromyography recordings in adult male mice, the authors measured the role of lateral septum GABAergic neurons to the control of sleep-wake transition and anesthesia emergence and the corresponding neuron circuits in arousal and emergence control. RESULTS: The GABAergic neurons of the lateral septum exhibited high activities during the awake state by in vivo fiber photometry recordings (awake vs. non-rapid eye movement sleep: 3.3 ± 1.4% vs. -1.3 ± 1.2%, P < 0.001, n = 7 mice/group; awake vs. anesthesia: 2.6 ± 1.2% vs. -1.3 ± 0.8%, P < 0.001, n = 7 mice/group). Using chemogenetic stimulation of lateral septum GABAergic neurons resulted in a 100.5% increase in wakefulness and a 51.2% reduction in non-rapid eye movement sleep. Optogenetic activation of these GABAergic neurons promoted wakefulness from sleep (median [25th, 75th percentiles]: 153.0 [115.9, 179.7] s to 4.0 [3.4, 4.6] s, P = 0.009, n = 5 mice/group) and accelerated emergence from isoflurane anesthesia (514.4 ± 122.2 s vs. 226.5 ± 53.3 s, P < 0.001, n = 8 mice/group). Furthermore, the authors demonstrated that the lateral septum GABAergic neurons send 70.7% (228 of 323 cells) of monosynaptic projections to the ventral tegmental area GABAergic neurons, preferentially inhibiting their activities and thus regulating wakefulness and isoflurane anesthesia depth. CONCLUSIONS: The results uncover a fundamental role of the lateral septum GABAergic neurons and their circuit in maintaining awake state and promoting general anesthesia emergence time.


Subject(s)
Anesthesia/methods , GABAergic Neurons/physiology , Septal Nuclei/physiology , Sleep/physiology , Wakefulness/physiology , Animals , GABAergic Neurons/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics/methods , Septal Nuclei/chemistry
4.
Neural Plast ; 2021: 8833087, 2021.
Article in English | MEDLINE | ID: mdl-33510780

ABSTRACT

Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.


Subject(s)
GABAergic Neurons/metabolism , Hippocampus/metabolism , Noise/adverse effects , Tinnitus/metabolism , Vesicular Glutamate Transport Proteins/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Acoustic Stimulation/adverse effects , Animals , Auditory Pathways/metabolism , Auditory Pathways/pathology , Female , GABAergic Neurons/chemistry , Glutamic Acid/analysis , Glutamic Acid/metabolism , Guinea Pigs , Hippocampus/pathology , Male , Synapses/chemistry , Synapses/metabolism , Tinnitus/pathology , Vesicular Glutamate Transport Proteins/analysis , Vesicular Inhibitory Amino Acid Transport Proteins/analysis
5.
J Neurosci ; 39(23): 4527-4549, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30926750

ABSTRACT

The medial septum implements cortical theta oscillations, a 5-12 Hz rhythm associated with locomotion and paradoxical sleep reflecting synchronization of neuronal assemblies such as place cell sequence coding. Highly rhythmic burst-firing parvalbumin-positive GABAergic medial septal neurons are strongly coupled to theta oscillations and target cortical GABAergic interneurons, contributing to coordination within one or several cortical regions. However, a large population of medial septal neurons of unidentified neurotransmitter phenotype and with unknown axonal target areas fire with a low degree of rhythmicity. We investigated whether low-rhythmic-firing neurons (LRNs) innervated similar or different cortical regions to high-rhythmic-firing neurons (HRNs) and assessed their temporal dynamics in awake male mice. The majority of LRNs were GABAergic and parvalbumin-immunonegative, some expressing calbindin; they innervated interneurons mostly in the dentate gyrus (DG) and CA3. Individual LRNs showed several distinct firing patterns during immobility and locomotion, forming a parallel inhibitory stream for the modulation of cortical interneurons. Despite their fluctuating firing rates, the preferred firing phase of LRNs during theta oscillations matched the highest firing probability phase of principal cells in the DG and CA3. In addition, as a population, LRNs were markedly suppressed during hippocampal sharp-wave ripples, had a low burst incidence, and several of them did not fire on all theta cycles. Therefore, CA3 receives GABAergic input from both HRNs and LRNs, but the DG receives mainly LRN input. We propose that distinct GABAergic LRNs contribute to changing the excitability of the DG and CA3 during memory discrimination via transient disinhibition of principal cells.SIGNIFICANCE STATEMENT For the encoding and recall of episodic memories, nerve cells in the cerebral cortex are activated in precisely timed sequences. Rhythmicity facilitates the coordination of neuronal activity and these rhythms are detected as oscillations of different frequencies such as 5-12 Hz theta oscillations. Degradation of these rhythms, such as through neurodegeneration, causes memory deficits. The medial septum, a part of the basal forebrain that innervates the hippocampal formation, contains high- and low-rhythmic-firing neurons (HRNs and LRNs, respectively), which may contribute differentially to cortical neuronal coordination. We discovered that GABAergic LRNs preferentially innervate the dentate gyrus and the CA3 area of the hippocampus, regions important for episodic memory. These neurons act in parallel with the HRNs mostly via transient inhibition of inhibitory neurons.


Subject(s)
CA3 Region, Hippocampal/physiology , Dentate Gyrus/physiology , GABAergic Neurons/physiology , Neural Pathways/physiology , Septum of Brain/cytology , Action Potentials , Animals , CA3 Region, Hippocampal/cytology , Calbindins/analysis , Dentate Gyrus/cytology , GABAergic Neurons/chemistry , Male , Memory, Episodic , Mental Recall/physiology , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/analysis , Parvalbumins/analysis , Running , Septum of Brain/physiology , Theta Rhythm/physiology , Wakefulness
6.
Cereb Cortex ; 29(2): 627-647, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29300837

ABSTRACT

Spatio-temporal cortical activity patterns relative to both peripheral input and local network activity carry information about stimulus identity and context. GABAergic interneurons are reported to regulate spiking at millisecond precision in response to sensory stimulation and during gamma oscillations; their role in regulating spike timing during induced network bursts is unclear. We investigated this issue in murine auditory thalamo-cortical (TC) brain slices, in which TC afferents induced network bursts similar to previous reports in vivo. Spike timing relative to TC afferent stimulation during bursts was poor in pyramidal cells and SOM+ interneurons. It was more precise in PV+ interneurons, consistent with their reported contribution to spiking precision in pyramidal cells. Optogenetic suppression of PV+ cells unexpectedly improved afferent-locked spike timing in pyramidal cells. In contrast, our evidence suggests that PV+ cells do regulate the spatio-temporal spike pattern of pyramidal cells during network bursts, whose organization is suited to ensemble coding of stimulus information. Simulations showed that suppressing PV+ cells reduces the capacity of pyramidal cell networks to produce discriminable spike patterns. By dissociating temporal precision with respect to a stimulus versus internal cortical activity, we identified a novel role for GABAergic cells in regulating information processing in cortical networks.


Subject(s)
Action Potentials/physiology , Auditory Cortex/physiology , GABAergic Neurons/physiology , Nerve Net/physiology , Parvalbumins , Pyramidal Cells/physiology , Animals , Auditory Cortex/chemistry , Auditory Cortex/cytology , Female , GABAergic Neurons/chemistry , Mice , Mice, Inbred CBA , Mice, Transgenic , Nerve Net/chemistry , Nerve Net/cytology , Optogenetics/methods , Organ Culture Techniques , Parvalbumins/analysis
7.
Eur J Neurosci ; 50(11): 3732-3749, 2019 12.
Article in English | MEDLINE | ID: mdl-31374129

ABSTRACT

γ-Aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA) provide local inhibitory control of dopamine neuron activity and send long-range projections to several target regions including the nucleus accumbens. They play diverse roles in reward and aversion, suggesting that they be comprised of several functionally distinct sub-groups, but our understanding of this diversity has been limited by a lack of molecular markers that might provide genetic entry points for cell type-specific investigations. To address this, we conducted transcriptional profiling of GABA neurons and dopamine neurons using immunoprecipitation of tagged polyribosomes (RiboTag) and RNAseq. First, we directly compared these two transcriptomes in order to obtain a list of genes enriched in GABA neurons compared with dopamine neurons. Next, we created a novel bioinformatic approach, that used the PANTHER (Protein ANalysis THrough Evolutionary Relationships) gene ontology database and VTA gene expression data from the Allen Mouse Brain Atlas, from which we obtained 6 candidate genes: Cbln4, Rxfp3, Rora, Gpr101, Trh and Nrp2. As a final step, we verified the selective expression of these candidate genes in sub-groups of GABA neurons in the VTA (and neighbouring substantia nigra pars compacta) using immunolabelling. Taken together, our study provides a valuable toolbox for the future investigation of GABA neuron sub-groups in the VTA.


Subject(s)
GABAergic Neurons/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks/physiology , Ventral Tegmental Area/metabolism , gamma-Aminobutyric Acid/biosynthesis , Animals , GABAergic Neurons/chemistry , Gene Expression , Mice , Mice, Transgenic , Ventral Tegmental Area/chemistry , gamma-Aminobutyric Acid/genetics
8.
Neural Plast ; 2016: 5648390, 2016.
Article in English | MEDLINE | ID: mdl-28070425

ABSTRACT

Neural plasticity is associated with memory formation. The coordinated refinement and interaction between cortical glutamatergic and GABAergic neurons remain elusive in associative memory, which we examine in a mouse model of associative learning. In the mice that show odorant-induced whisker motion after pairing whisker and odor stimulations, the barrel cortical glutamatergic and GABAergic neurons are recruited to encode the newly learnt odor signal alongside the innate whisker signal. These glutamatergic neurons are functionally upregulated, and GABAergic neurons are refined in a homeostatic manner. The mutual innervations between these glutamatergic and GABAergic neurons are upregulated. The analyses by high throughput sequencing show that certain microRNAs related to regulating synapses and neurons are involved in this cross-modal reflex. Thus, the coactivation of the sensory cortices through epigenetic processes recruits their glutamatergic and GABAergic neurons to be the associative memory cells as well as drive their coordinated refinements toward the optimal state for the storage of the associated signals.


Subject(s)
Association Learning/physiology , GABAergic Neurons/physiology , Glutamic Acid/physiology , Neuronal Plasticity/physiology , Somatosensory Cortex/physiology , Vibrissae/physiology , Animals , GABAergic Neurons/chemistry , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton/methods , Organ Culture Techniques , Physical Stimulation/methods , Somatosensory Cortex/chemistry
9.
Mol Genet Metab ; 116(4): 289-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26547561

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated proteinaceous aggregates in the globus pallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons. However, the protein content, other than ubiquitin, of these aggregates remains unknown. In the present study, we performed biochemical and immunohistochemical studies to characterize these aggregates and found them to be enriched in apolipoprotein E that is poorly soluble in detergent solutions. However, we did not determine a significant association between APOE genotype and the clinical phenotype of disease in our database of 81 cases. Rather, we frequently identified similar ubiquitin- and apolipoprotein E-enriched lesions in these neurons in non-PKAN patients in the penumbrae of remote infarcts that involve the globus pallidus, and occasionally in other brain sites that contain large γ-aminobutyric acid (GABA)ergic neurons. Our findings, taken together, suggest that tissue or cellular hypoxic/ischemic injury within the globus pallidus may underlie the pathogenesis of PKAN.


Subject(s)
Apolipoproteins E/chemistry , Brain Ischemia/genetics , GABAergic Neurons/chemistry , Pantothenate Kinase-Associated Neurodegeneration/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Aggregation, Pathological/genetics , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Brain Ischemia/pathology , Case-Control Studies , Child , Female , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Gene Expression , Globus Pallidus/metabolism , Globus Pallidus/pathology , Humans , Male , Middle Aged , Mutation , Pantothenate Kinase-Associated Neurodegeneration/complications , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Protein Aggregation, Pathological/complications , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin/metabolism
10.
Hum Mol Genet ; 21(8): 1824-34, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22215440

ABSTRACT

Angelman syndrome (AS) is a neurodevelopmental disorder caused due to deletions or loss-of-function mutations in maternally inherited UBE3A. Ube3a functions as an ubiquitin ligase as well as a transcriptional coactivator of steroid hormone receptors. However, the mechanisms by which maternal Ube3a deficiency gives rise to phenotypic features of AS are not clear. We report here that Ube3a regulates glucocorticoid receptor (GR) transactivation and GR signaling pathway is disrupted in Ube3a-maternal-deficient mice brain. The expression of several GR-dependent genes is down-regulated in multiple brain regions of Ube3a-maternal-deficient mice. AS mice show significantly higher level of blood corticosterone, selective loss of GR and reduced number of parvalbumin-positive inhibitory interneurons in their hippocampus that could ultimately lead to increased stress. These mice also exhibit increased anxiety-like behavior, which could be due to chronic stress. Altogether, our findings suggest that chronic stress due to altered GR signaling might lead to anxiety-like behavior in a mouse of model of AS.


Subject(s)
Angelman Syndrome/metabolism , Angelman Syndrome/psychology , Anxiety/etiology , Brain/metabolism , Receptors, Glucocorticoid/metabolism , Stress, Psychological/etiology , Ubiquitin-Protein Ligases/metabolism , Amygdala/metabolism , Angelman Syndrome/pathology , Animals , Disease Models, Animal , GABAergic Neurons/chemistry , GABAergic Neurons/physiology , Hippocampus/pathology , Immediate-Early Proteins/metabolism , Interneurons/chemistry , Interneurons/physiology , Mice , Parvalbumins/analysis , Protein Serine-Threonine Kinases/metabolism , Receptors, Glucocorticoid/genetics , Signal Transduction , Transcriptional Activation , Ubiquitin-Protein Ligases/genetics
11.
J Neurosci ; 32(50): 18035-46, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23238719

ABSTRACT

Dopaminergic (DAergic) neurons in the ventral tegmental area (VTA) play crucial roles in motivational control of behaviors, and their activity is regulated directly or indirectly via GABAergic neurons by extrinsic afferents from various sources, including the bed nucleus of the stria terminalis (BST). Here, the neurochemical composition of VTA-projecting BST neurons and their outputs to the VTA were studied in adult mouse brains. By combining retrograde tracing with fluorescence in situ hybridization for 67 kDa glutamate decarboxylase (GAD67) and vesicular glutamate transporters (VGluTs), VTA-targeting BST neurons were classified into GAD67-positive (GAD67(+))/VGluT3-negative (VGluT3(-)), GAD67(+)/VGluT3(+), and VGluT2(+) neurons, of which GAD67(+)/VGluT3(-) neurons constituted the majority (∼90%) of VTA-projecting BST neurons. GABAergic efferents from the BST formed symmetrical synapses on VTA neurons, which were mostly GABAergic neurons, and expressed GABA(A) receptor α1 subunit on their synaptic and extrasynaptic membranes. In the VTA, VGluT3 was detected in terminals expressing vesicular inhibitory amino acid transporter (VIAAT), plasmalemmal serotonin transporter, or neither. Of these, VIAAT(+)/VGluT3(+) terminals, which should include those from GAD67(+)/VGluT3(+) BST neurons, formed symmetrical synapses. When single axons from VGluT3(+) BST neurons were examined, almost all terminals were labeled for VIAAT, whereas VGluT3 was often absent from terminals with high VIAAT loads. VGluT2(+) terminals in the VTA exclusively formed asymmetrical synapses, which expressed AMPA receptors on postsynaptic membrane. Therefore, the major mode of the BST-VTA projection is GABAergic, and its activation is predicted to disinhibit VTA DAergic neurons. VGluT2(+) and VGluT3(+) BST neurons further supply additional projections, which may principally convey excitatory or inhibitory inputs, respectively, to the VTA.


Subject(s)
Neural Pathways/cytology , Neurons/cytology , Septal Nuclei/cytology , Ventral Tegmental Area/cytology , Animals , Fluorescent Antibody Technique , GABAergic Neurons/chemistry , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Gene Knock-In Techniques , Glutamate Decarboxylase/metabolism , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Neural Pathways/chemistry , Neural Pathways/metabolism , Neurons/chemistry , Neurons/metabolism , Septal Nuclei/chemistry , Septal Nuclei/metabolism , Ventral Tegmental Area/chemistry , Ventral Tegmental Area/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
12.
Histochem Cell Biol ; 139(2): 267-81, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23052836

ABSTRACT

While tryptophan hydroxylase-2 (Tph2) null mutant (Tph2(-/-)) mice are completely deficient in brain serotonin (5-HT) synthesis, the formation of serotonergic neurons and pathfinding of their projections are not impaired. However, 5-HT deficiency, during development and in the adult, might affect morphological and functional parameters of other neural systems. To assess the influence of 5-HT deficiency on γ-amino butyric acid (GABA) systems, we carried out measurements of GABA concentrations in limbic brain regions of adult male wildtype (wt), heterozygous (Tph2(+/-)) and Tph2(-/-) mice. In addition, unbiased stereological estimation of GABAergic interneuron numbers and density was performed in subregions of amygdala and hippocampus. Amygdala and prefrontal cortex displayed significantly increased and decreased GABA concentrations, respectively, exclusively in Tph2(+/-) mice while no changes were detected between Tph2(-/-) and wt mice. In contrast, in the hippocampus, increased GABA concentrations were found in Tph2(-/-) mice. While total cell density in the anterior basolateral amygdala did not differ between genotypes, the number and density of the GABAergic interneurons were significantly decreased in Tph2(-/-) mice, with the group of parvalbumin (PV)-immunoreactive (ir) interneurons contributing somewhat less to the decrease than that of non-PV-ir GABAergic interneurons. Major morphological changes were also absent in the dorsal hippocampus, and only a trend toward reduced density of PV-ir cells was observed in the CA3 region of Tph2(-/-) mice. Our findings are the first to document that life-long reduction or complete lack of brain 5-HT transmission causes differential changes of GABA systems in limbic regions which are key players in emotional learning and memory processes. The changes likely reflect a combination of developmental alterations and functional adaptations of emotion circuits to balance the lack of 5-HT, and may underlie altered emotional behavior in 5-HT-deficient mice. Taken together, our findings provide further insight into the mechanisms how life-long 5-HT deficiency impacts the pathogenesis of anxiety- and fear-related disorders.


Subject(s)
GABAergic Neurons/metabolism , Limbic System/cytology , Limbic System/metabolism , Serotonin/deficiency , Tryptophan Hydroxylase/deficiency , gamma-Aminobutyric Acid/metabolism , Animals , GABAergic Neurons/chemistry , GABAergic Neurons/cytology , Limbic System/chemistry , Male , Mice , Mice, Knockout , gamma-Aminobutyric Acid/analysis
13.
Neurol Sci ; 34(11): 1991-2000, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23595547

ABSTRACT

The GABAergic neurons of the thalamic reticular nucleus (TRN) play a critical role in the generation and control of spike-and-wave discharges (SWDs) in absence epilepsy. We have used the disector method to count the GABA+ve and GABA-ve neurons in the intermediate TRN sector of genetic absence epilepsy rats from Strasbourg (GAERS) and of Wistar rats during postnatal (P) development at P10, P20, P30, and P60 days. The same part of TRN was removed from each animal, the GABAergic neurons were labelled using light-microscopical GABA immunohistochemistry and the data were statistically analysed. Both the GAERS and Wistar animals showed an increase in the density of GABA+ve and GABA-ve cells from P10 to P20. From P20 to P60, Wistar animals showed no significant differences for either cell type, but in the GAERS a progressive decrease from P20 to P60 was observed in both GABA+ve and GABA-ve cells. The decrease of the GABA-ve cells was more pronounced than that of the GABA+ve cells. There were no significant differences between cell sizes for GAERS and Wistar rats at any developmental age. The lower density GABA+ve and GABA-ve neurons at P30 and P60 of GAERS compared to Wistar animals may contribute to the generation of SWDs in absence epilepsy.


Subject(s)
Epilepsy, Absence/pathology , GABAergic Neurons/cytology , Intralaminar Thalamic Nuclei/cytology , Animals , Cell Count , Disease Models, Animal , Epilepsy, Absence/metabolism , GABAergic Neurons/chemistry , Intralaminar Thalamic Nuclei/chemistry , Intralaminar Thalamic Nuclei/growth & development , Rats , Rats, Inbred Strains , Rats, Wistar , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/immunology
14.
Eur J Neurosci ; 35(5): 723-34, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22356461

ABSTRACT

Neurons in the pedunculopontine nucleus (PPN) are highly heterogeneous in their discharge properties, their neurochemical markers, their pattern of connectivity and the behavioural processes in which they participate. Three main transmitter phenotypes have been described, cholinergic, GABAergic and glutamatergic, and yet electrophysiological evidence suggests heterogeneity within these subtypes. To gain further insight into the molecular composition of these three populations in the rat, we investigated the pattern of expression of calcium binding proteins (CBPs) across distinct regions of the PPN and in relation to the presence of other neurochemical markers. Calbindin- and calretinin-positive neurons are as abundant as cholinergic neurons, and their expression follows a rostro-caudal gradient, whereas parvalbumin is expressed by a low number of neurons. We observed a high degree of expression of CBPs by GABAergic and glutamatergic neurons, with a large majority of calbindin- and calretinin-positive neurons expressing GAD or VGluT2 mRNA. Notably, CBP-positive neurons expressing GAD mRNA were more concentrated in the rostral PPN, whereas the caudal PPN was characterized by a higher density of CBP-positive neurons expressing VGluT2 mRNA. In contrast to these two large populations, in cholinergic neurons expression of calretinin is observed only in low numbers and expression of calbindin is virtually non-existent. These findings thus identify novel subtypes of cholinergic, GABAergic and glutamatergic neurons based on their expression of CBPs, and further contribute to the notion of the PPN as a highly heterogeneous structure, an attribute that is likely to underlie its functional complexity.


Subject(s)
Calcium-Binding Proteins/metabolism , Cholinergic Neurons/physiology , GABAergic Neurons/physiology , Glutamic Acid/physiology , Pedunculopontine Tegmental Nucleus/metabolism , Animals , Calcium-Binding Proteins/biosynthesis , Cholinergic Neurons/chemistry , Cholinergic Neurons/cytology , GABAergic Neurons/chemistry , GABAergic Neurons/cytology , Pedunculopontine Tegmental Nucleus/chemistry , Pedunculopontine Tegmental Nucleus/cytology , Rats , Rats, Sprague-Dawley
15.
J Neurosci Res ; 90(12): 2349-61, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22987212

ABSTRACT

Glutamate, the major excitatory neurotransmitter in the retina, functions by activation of both ionotropic (iGluR) and metabotropic (mGluR) glutamate receptors. Group III mGluRs, except for mGluR6, are mostly found in the inner plexiform layer (IPL), and their retinal functions are not well known. Therefore, we decided to investigate the effect of mGluRIII on glutamate release and GABAergic amacrine cells in the chick retina. The nonselective mGluRIII agonist L-SOP promoted a decrease in the number of γ-aminobutyric acid (GABA)-positive cells and in the GABA immunoreactivity in all sublayers of the IPL. This effect was prevented by the antagonist MAP-4, by GAT-1 inhibitor, and by antagonists of iGluR. Under the conditions used, L-SOP did not alter endogenous glutamate release. VU0155041, an mGluR4-positive allosteric modulator, reduced GABA immunoreactivity in amacrine cells and in sublayers 2 and 4 of the IPL but evoked an increase in the glutamate released. VU0155041's effect was inhibited by the absence of calcium. AMN082, a selective mGluR7-positive allosteric modulator, also decreased GABA immunoreactivity in amacrine cells and sublayers 1, 2, and 3 and increased glutamate release, and this effect was also inhibited by calcium absence. DCPG, an mGluR8-selective agonist, did not significantly alter GABA immunoreactivity in amacrine cells or glutamate release. However, it did significantly increase GABA immunoreactivity in sublayers 4 and 5. The results suggest that mGluRIIIs are involved in the modulation of glutamate and GABA release in the retina, possibly participating in distinct visual pathways: mGluR4 might be involved with cholinergic circuitry, whereas mGluR7 and mGluR8 might participate, respectively, in the OFF and the ON pathways.


Subject(s)
Amacrine Cells/drug effects , GABAergic Neurons/drug effects , Glutamic Acid/metabolism , Receptors, Metabotropic Glutamate/physiology , gamma-Aminobutyric Acid/metabolism , Amacrine Cells/chemistry , Amacrine Cells/metabolism , Anilides/pharmacology , Animals , Benzhydryl Compounds/pharmacology , Calcium/physiology , Chickens , Cyclohexanecarboxylic Acids/pharmacology , Dizocilpine Maleate/pharmacology , GABA Plasma Membrane Transport Proteins/physiology , GABAergic Neurons/chemistry , GABAergic Neurons/metabolism , Nipecotic Acids/pharmacology , Oximes/pharmacology , Phosphoserine/pharmacology , Quinoxalines/pharmacology , Receptors, Metabotropic Glutamate/agonists , gamma-Aminobutyric Acid/analysis
16.
Synapse ; 66(3): 204-19, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22034050

ABSTRACT

Within the basal ganglia, the functionally defined region referred to as the striatum contains a subset of GABAergic medium spiny neurons expressing the neuropeptide enkephalin. Although the major features of ultrastructural enkephalin localization in striatum have been characterized among various species, its ultrastructural organization has never been studied in the human brain. Human striatal tissue was obtained from the Maryland and Alabama Brain Collections from eight normal controls. The brains were received and fixed within 8 h of death allowing for excellent preservation suitable for electron microscopy. Tissue from the dorsal striatum was processed for enkephalin immunoreactivity and prepared for electron microscopy. General morphology of the dorsal striatum was consistent with light microscopy in human. The majority of neurons labeled with enkephalin was medium-sized and had a large nonindented nucleus with a moderate amount of cytoplasm, characteristic of medium spiny neurons. Of the spines receiving synapses in dorsal striatum, 39% were labeled for enkephalin and were of varied morphologies. Small percentages (2%) of synapses were formed by labeled axon terminals. Most (82%) labeled terminals formed symmetric synapses. Enkephalin-labeled terminals showed no preference toward spines or dendrites for postsynaptic targets, whereas in rat and monkey, the vast majority of synapses in the neuropil are formed with dendritic shafts. Thus, there is an increase in the prevalence of axospinous synapses formed by enkephalin-labeled axon terminals in human compared with other species. Quantitative differences in synaptic features were also seen between the caudate nucleus and the putamen in the human tissue.


Subject(s)
Corpus Striatum/chemistry , Enkephalins/analysis , Adult , Aged , Corpus Striatum/cytology , Female , GABAergic Neurons/chemistry , GABAergic Neurons/ultrastructure , Humans , Immunohistochemistry , Male , Middle Aged , Synapses/chemistry , Synapses/ultrastructure
17.
Neurosci Lett ; 745: 135621, 2021 02 06.
Article in English | MEDLINE | ID: mdl-33421491

ABSTRACT

The Basolateral amygdala (BLA) and central nucleus of the amygdala (CEA) have been proved to play a key role in the control of anxiety, stress and fear-related behaviors. BLA is a cortex-like complex consisting of both γ-aminobutyric acidergic (GABAergic) interneurons and glutamatergic neurons. The CEA is a striatum-like output of the amygdala, consisting almost exclusively of GABAergic medium spiny neurons. In this study, we explored the morphology and axonal projections of the GABAergic neurons in BLA and CEA, using conditional anterograde axonal tracing, immunohistochemistry, and VGAT-Cre transgenic mice to further understand their functional roles. We found that the axonal projections of GABAergic neurons from the BLA mainly distributed to the forebrain, whilst GABAergic neurons from the CEA distributed to the forebrain, midbrain and brainstem. In the forebrain, the axonal projections of GABAergic neurons from the BLA projected to the anterior olfactory nucleus, the cerebral cortex, the septum, the striatum, the thalamus, the amygdala and the hippocampus. The axonal projections of GABAergic neurons from the CEA distributed to the nuclei of the prefrontal cortex, the bed nucleus of the stria terminalis, the hypothalamus and the thalamus. In the midbrain and brainstem, the axonal projections of GABAergic neurons from the CEA were found in the periaqueductal gray, the substantia nigra, and the locus coeruleus. These data reveal the neuroanatomical basis for exploring the function of GABAergic neurons in the BLA and CEA, particularly during the processing of fear-related behavior.


Subject(s)
Basolateral Nuclear Complex/physiology , Central Amygdaloid Nucleus/physiology , Efferent Pathways/physiology , GABAergic Neurons/physiology , Animals , Basolateral Nuclear Complex/chemistry , Central Amygdaloid Nucleus/chemistry , Efferent Pathways/chemistry , GABAergic Neurons/chemistry , HEK293 Cells , Humans , Mice , Mice, Transgenic
18.
J Chem Neuroanat ; 116: 101997, 2021 10.
Article in English | MEDLINE | ID: mdl-34182088

ABSTRACT

In the last few years we assist to an unexpected deluge of genomic data on hypothalamic development and structure. Perhaps most surprisingly, the Lateral Zone has received much attention too. The new information focuses first of all on transcriptional heterogeneity. Many already known and a number of hitherto unknown lateral hypothalamic neurons have been described to an enormous degree of detail. Maybe the most surprising novel discoveries are two: First, some restricted regions of the embryonic forebrain neuroepithelium generate specific LHA neurons, either GABAergic or glutamatergic. Second, evidence is mounting that supports the existence of numerous kinds of "bilingual" lateral hypothalamic neurons, expressing (and releasing) glutamate and GABA both as well as assorted neuropeptides. This is not accepted by all, and it could be that genomic researchers need a common set of rules to interpret their data (sensitivity, significance, age of analysis). In any case, some of the new results appear to confirm hypotheses about the ability of the hypothalamus and in particular its Lateral Zone to achieve physiological flexibility on a fixed connectivity ("biochemical switching"). Furthermore, the results succinctly reviewed here are the basis for future advances, since the transcriptional databases generated can now be mined e.g. for adhesion genes, to figure out the causes of the peculiar histology of the Lateral Zone; or for ion channel genes, to clarify present and future electrophysiological data. And with the specific expression data about small subpopulations of neurons, their connections can now be specifically labeled, revealing novel relations with functional significance.


Subject(s)
GABAergic Neurons/chemistry , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Hypothalamic Area, Lateral/growth & development , Hypothalamic Area, Lateral/metabolism , Neurogenesis/physiology , Animals , Glutamic Acid/analysis , Humans , Hypothalamic Area, Lateral/chemistry , Transcription Factors/analysis , Transcription Factors/biosynthesis
19.
Mol Brain ; 14(1): 158, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645511

ABSTRACT

Alterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer's Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.


Subject(s)
Amyloid Precursor Protein Secretases/chemistry , Membrane Glycoproteins/chemistry , Synapses/chemistry , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Endocytosis , GABAergic Neurons/chemistry , GABAergic Neurons/ultrastructure , Microscopy/methods , Nerve Tissue Proteins/analysis , Post-Synaptic Density/chemistry , Post-Synaptic Density/ultrastructure , Presenilin-1/chemistry , Protein Domains , Pyramidal Cells/chemistry , Pyramidal Cells/ultrastructure , Synapses/ultrastructure
20.
Front Neural Circuits ; 15: 714780, 2021.
Article in English | MEDLINE | ID: mdl-34366798

ABSTRACT

Anatomical and physiological studies have described the cortex as a six-layer structure that receives, elaborates, and sends out information exclusively as excitatory output to cortical and subcortical regions. This concept has increasingly been challenged by several anatomical and functional studies that showed that direct inhibitory cortical outputs are also a common feature of the sensory and motor cortices. Similar to their excitatory counterparts, subsets of Somatostatin- and Parvalbumin-expressing neurons have been shown to innervate distal targets like the sensory and motor striatum and the contralateral cortex. However, no evidence of long-range VIP-expressing neurons, the third major class of GABAergic cortical inhibitory neurons, has been shown in such cortical regions. Here, using anatomical anterograde and retrograde viral tracing, we tested the hypothesis that VIP-expressing neurons of the mouse auditory and motor cortices can also send long-range projections to cortical and subcortical areas. We were able to demonstrate, for the first time, that VIP-expressing neurons of the auditory cortex can reach not only the contralateral auditory cortex and the ipsilateral striatum and amygdala, as shown for Somatostatin- and Parvalbumin-expressing long-range neurons, but also the medial geniculate body and both superior and inferior colliculus. We also demonstrate that VIP-expressing neurons of the motor cortex send long-range GABAergic projections to the dorsal striatum and contralateral cortex. Because of its presence in two such disparate cortical areas, this would suggest that the long-range VIP projection is likely a general feature of the cortex's network.


Subject(s)
Auditory Cortex/metabolism , Auditory Pathways/metabolism , GABAergic Neurons/metabolism , Motor Cortex/physiology , Vasoactive Intestinal Peptide/biosynthesis , Animals , Auditory Cortex/chemistry , Auditory Pathways/chemistry , Female , GABAergic Neurons/chemistry , Male , Mice , Mice, Transgenic , Organ Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL